, , , , , . , .

 

 

!

 

:

:

 

 

 

?

 

100413


:


-

:

: . : . : 10.11.2016. : 2009. : 140. antiplagiat.ru: < 30%

():


̲
4
1. 9
2. 18
2.1. 18
2.2. 20
2.3. 22
3. ó 24
3.1. ó 24
3.2. () 26
3.3. X () 29
3.4.
3.5. ó 32
3.6. () 35
3.7. 37
3.8. () 39
3.9. ³ 45
3.10. () X 54
3 58
4. 59
4.1. 59
4.2. 64
4.3. ϳ () 65
4.4. () 67
4.5. () 71
4.6. () 72
4.7. () 74

4.8. ()
4.9. ()
4

75
78
82
5. 84
5.1. 84
5.2. 91
5.3. 102
5.4. (˳) () 105
5.5. 106
5.6. () 108
5.7. () 112
5.8. () 115
5.9. ̳ () 118
5.10. ̳ () 120
5.11. 122
5 130
132
134

140

4

. ϳ -1 [53], . , *, 5, (5) - 5. , - (5) . (5) , - , () , .., .
- . () [18, 16, 61, 17, 62], . (-) [6, 7], . () [53, 54, 55], . () [55], . (--) [42] .
- (5) - ((5)). - (X) X (, X = (5)) , {0,1}^ X - . - (X) ᒺ.
((5)), (5), 0(5) , ᒺ 㳿. , (5) 5 , 5.
, . [55, . 102], [54].

5
, , 8, (8), 0(8) V(V(8)), (8), - . , 0(8) - , (8) . (8), 0(8) - : (8) 8, (8) ^-
, ҳ1(8) 8 ( - (8) 8), ..
, , . , + . , .
, , . - 25.1/099 " , , ", 010811009228, 㳿 224 "- ", 010411002128.
. - , 8, .

6
0(3) ; . :
, - 3, 0(3) ;
- 0(3);
- - (3) 3.
ᒺ - , , .
- .
. , , - , , , 㳿, - -, - .
. - :
, - 3, 0(3) ;
,
() , , - () , () , - ;
(^) (,2), ^2 - 2- ;
- 0() () .

7
. , , , , ; , , , 1 ϳ 賳鳳 ҳ . . .
. , , - . . . . . - .
- -
. :
VI (-- , 1-7 2007 .);
V ", " (, 6-18
2007 .);
( ) (, 2008 .);
" -", 80- . . ϳ (, 25-29 2008 .);
" " (, 2-7 2008 .);
" , " - (, 7-11 2008 .);

8
VI " " - (, 23-30 2008 .);
" -" (, 27 - 1 2009 .);
- (-, 2005 - 2008 .).
. 5 - [46], [47], [26], [27], [28] 6 [44], [45], [48], [], [49], [50]. 5 , .
. , , , 69 - ( 6 ). 140 . ^-

IJ 1
˲ Ҳ
˲
9
ϳ 1 [53], . , *, 3, - (3), - 3. , V (3) : 3 : 3 ^ 3, : ^ * , ^ : (3) ^ (3) , 3 * V = ^() , : 3 ^ (3), : ^ * V, : (3) ^ (3), V = (). : * ,
{}?; V. , - (3) . (3) , , () , .., -.
, , 3, - -, . [40], - [23]. - (3) [41, . 8] , 3 - .
, . [55, . 102], [54].

10
- . () [18, 16, 61, 17, 62], . (-) [6, 7], . (Ѳ) [53, 54, 55], . () [55], . (--) [42] .
- (8) - ((8)). - (X) X (, X = (8)) , {0,1}^ X - . - (X) ᒺ.
((8)), (8), 0(8) , ᒺ 㳿. , (8) 8 , 8. X \ = { X : }, {). = ].
. 1978 . [37, 38]. . [13]. . [5, 66], . ̳ [10, 11], . [12], . [19], . [64, 65], . [58] .
(X) - , , . [66]. , . . (X) ), , -

11
() , X - , , X () - (@), (X) = () - - X. , ., [13]. (X): ҳ1(X), ^- (X), (X).
(X). - X (X) 䳺
ֲ : (X) (X) - -*^), : (,)
: (X) (X) - -(X), : (,)

: (X) (X), : X ձ = { X : = %},
Ѳ
. ֳ (X) .
3.7.1 - . , X, X. 4.6.1 - (X) X. : X ҳ- X , X X^ ,
(8) (8). , , 8, (8), (8) ((8)),

12
{8). , 8,
* : 8 8 ^ 8, (
""2). 8 ,
, 8 * = * = & {, ) 8 8.
8 {8),
, ,
{8) . 8 ,
{8), . 4.1.1. ,
- .
{8). ,
{8) , 8

* -1 = { 8 : * } . {8)
.
4.4.1, {8) ,

{8). , = , {8).
, {8) . {8)
{8) {8), .

, {8) , {8). {8) , , 8 * = 8.
8 () {8) 8, . 4.5.2. ֳ , 8 {8) 8, . 6.54 [55]. , 8 8, 8.
ϳ 8, 㳺, 쳺 {8), 8,
<
""
, "".

13

: 8 ^ 8, : ^ , : 8 ^ 8, : ^
. 8 0(8) 0*(8) , . 4.6.1.
0(8) 4.7 4.8. 4.7.1 , 0(8) 8 0(8) , -. 8.34 [55], , () (8) (8) 8. 0(8) : 0(8) 0(8), , {8}^5 \ 8 8 = 0 , 8, . 4.8.2, 0(8), (8), . [55, . 8.11]. 8 :
1) 0(8);
2) (8);
3) { : 8} (8);
4) {~}5 , , 8 ~ .
, , 8 (8) , . 8.10 [55]. , 0 (8): 8 0 (8)

14
, . - 4.8.4.
(3), 0(3) - : (3) 3, (3) ^- , г1(3) 3 ( - (3) 3), ..
³, 0(3), (3), (3), г1(3), (3) (3) - (3) 3, . [29]. - . . [66]. , : ^ , 3 (3) , . [4] [66, 3.4]. (3) (3) 3 [31], [32] [21].
0(3) - (3), . , X , - 쒿 . , . () X 1967 , . [51]. 1968 , . . "" [52]. ϳ (. [51], [52], [68], [69] .) ̳ " "[67].
, : . [5, 3, 2], . [8], . [19], . [12, 13] .

15
() X. () , ? X X = ֲ X , ?. .
, . -, X , = 0 X. 5.1.1 8^(X) X. , X 8^(X) > IX|/2 5.1.2.
5.2 (X) X. 5.2.4 , X 22 . 5.2.5 5.2.8
(X) X IX < 8, X | (X)| = 1. 5.4 5.5 X, () . 5.3.1 , ? ^) (X) IJ , ? , ? ? X. 5.3.2 , X (, (X) ) , X . () : ? ^) (X) , ? (X) , ? X. (X) () , X IX < 5. (X) , X IX < 4, . 5.5.1. ֳ , -

16
(X) X .
, ( ) () X. () (X) (), () (X) (X),
5.6 XX). , , X XX) . , X , X (X) (^^) - , . 5.6.5. (X), (. [55, . 8.10]), ), , Ѱ (X) , . 4.8.4.
ϳ 5.7 XX) [55], X (X) X. , (X) - *(X) (X), , . 4.6.1. XX): X XX) X* (X), . 5.7.4.
ϳ 5.8 XX). 5.8.2 , X XX) X. ֳ , X (X) (X) X, . [55, . 6.54]
4.5.2. , X 3 < IX| < 5

17
() X, . 5.11.
(X) - . , - (X) [55, . 14.3], [43]. ̳ (%) , . [24], [25], [55, . 19]. , () () .
5.10.1, -, (>) , - (Ƴ2) Ƴ2 2- .
, 5.11 - () X \ \ < 5.
, , . , + .

18
IJ 2
̲Ͳ
2.1.
X, * : X X ^ X, . ϳ (X, *) ^^ * , * = { * : , }. , X . ³ : XI ^ X2 (XI, * , *2)
, ( * ) = () *2 () , XI.
/ (X, *) ( , ), * X X * ( * X , X * ). (X, *) ( , ) ^^ * = * = ( * = , * = ) X. , ( , ) X. X , * = .
(X, *) , * = , X.
, () X
= { X : X = }.
ϳ X, 㳺, 쳺 ), X,
: X ^ X, : ^ , : X ^ X, : ^ .
X ( ), , X = (

19
= ) , = . , ( ) : X ^ X, 1 : ^ * , ( : X ^ X, : ^ * ) .
X , , X * = * = (,) X X. , . , , , . [60], [35].
8 , 8. 8 , 8 -. , 8 , = = . , . , ᒺ , .
ϳ - 쳺 X, 䳺 X ^ X . -, 䳺 . - - / = { : } .
8, . 8 -, 䳺 . , 8/ = { : 8 8} : 8 ^ 8/ 8 ( 8), 8/ 䳺 , 8/ : 8 ^ 8/ . , 8 , 8 : 8/ ^ 8, ? 8 8/. 8 () = 8(8/) - 8. , - () 8.

20
3 , 3 & .
2.1.1. 3 () - 3, () 3/ 3 - () : () ^ 3, : (, ) ^ .
. , 02 - 2. 2, - , - . , > =

3
2

- .
2.2.
. , 3, * : 3 3 ^ 3, 3 : 3 ^ 3, : ^ * , . * : 3 3 ^ 3 , (3, *) . , () .
³, 3 3 = { : 8 3} (, 3 = {8 : 8 3}) (, ) 3. . I 3 , 3, I, I. 3. , ( ) I . ,

21
I = ( I = ) /. , . " . [ (^ [55, . 2.6] , 0 0 - . ᒺ () () , . [55, . 2.8].
2.5 [55], - . () (). , 2.9 [55] () -
^
^
= () ;
(), .
{ : (())}, { : (())} { : (())} () , (()) ().
2.11 [55], () . , , .
.
2.2.1. Ŵ , - . : X ^ 풺 X, 풺 X.

22
. , X. [55, . 2.11], : X ^ X, : ^ , 풺 , ,() : ^ , ) : ^ (). ? = () ? 풺 \ܳ \, , \ - 풺. ?
2.3.
() X, 㳺 ³, 㳺, ,

(ϳ ,...,) = { ^) : ӳ < = ,
=1
1,..., - X.
³. [20, IV.3], 7- X ^) , X - . 7- X () ^), X ( ) - x(X), . [22, . 2.7.20, . 3.12.26]. ³ - () N 㳿 . ^) 㳺 , . [57, . 19.] [22, . 3.12.26]. , 2 (^ = (^)) . X ( X) , ( )

X.
2.3.1. ϳ ^) , X , .

^) X.

23
X () 㳺, 2 (X).
X - , () - ,
+ = { () | , }
- = { () | = 0 },
X .
/ : X ^ X - / : (X) ^ ()
/() = { () | 3 /() }, (X).
/ : X ^ , / : (X) ^ () . 2.3.2 [66] , .
2.3.2. ѳ ? X X, - 쒿 .
2.3.3. ^) , .
(X) - X, XX) 㳺, - (X).
[66] , /(XX)) () , , X .

24
IJ
ò
() - , , . [66]. , . , X () (@), () - - X.
3.1. ó
, .
ó - ().
3.1.1. 1() () () () .
1()(), 1()(). (1,..., ) - (). 1 ... . ز, . ͳ1,..., ͳ, (ͳ1 ,...,ͳ). - 쒿 , (ͳ1,..., 1). 쒿 , (1,..., ). (). ?

25
, X
= Ѳ(){ X : }.
Ѳ
ѳ X ^^ = ].
- 㳿 ³.
ֲ 3.1.2. ѳ - X , : X , - .
. X. , X 쒿 , X . , - ). (ѳ,..., ) ), ᒺ ͳ ... 0 , , , . (ѳ,..., ), - .
, 쒿 - X : X , - . , - .
-, , , . ). ij,
Ѳ
X - ). - , () - ), , .

26
, . , - () 2.3.1. ?
, 3.1.1 , - 3.1.2.
3.1.3. -, 3.1.2 : - X , . = |, , = \
3.2. ()
() - . () - (), () - 2 () () 㳺. . , - () ,
+ = { () | , }
- = { () = 0 },
.
, , (, 2 ()).
4 5 = {).

27
() , , + -, () . .. 1 Dz
3.2.1. () ҳ- X.
, , .
. , () -. , (), = . , \. , 3.1.2, V , - V, V + V +.
, - , (\) = 0 (\ )^^ (\) = ^ (\)-.
, () . () ᒺ ,
() = V- .

= ֲ I = V , - - = () V+ = () . , = ֳ = V I, ^.
I = 0,
( ) = .
, V ^ = , , {} (), {} ֲ + ^ . ^ = V () = V+.

28
I = 0. = { X | X\ֲ I} XX ղ^^ɳճ = 1() , , 3.1.1.
, X \ ֲ I. , + _ 3, ,-0
1(){ X : X\в } {^0),
" ^0) " . , I X\ֲ " ]0 , , ϲ ֲ ^0 = X. , ӗ + = ^). +, - -0 (X \^0) = 0. , X\]0 ֲ , = 0 -.
?
, X 4-, - X -
.
3.2.2. X - 4-, (X) - 2-.
. 0,ҳ (X), 0 = ҳ, , , , 0 0\1. 3.1.2, , , ҳ. X 4, 0 , 0 , , 0 0+. 1 = X\ 0, 0 1 = 0. , 1 ؗ. ij, ^1 0. , 0 ^, .
, + ؗ = 0. +, , 0, (X\0) = , 1 = 0\ ؗ.
?

29
3.4, , -
^ ^ |. ./1\1 . 1^ 111^^<10, . ,, ^ ^- X ()
X.
3.3. X ()
X
() = = 1() { X : },
Ѳ
3.1.1. ,
: X ^ (X), : ^ .
3.3.1. X -:
1) X - ҳ--;
2) : X ^ (X) 풺 ;
3) : X ^ (X) .
. (1) ^ (3) X ^-. , () = { x(X) : } X. , = { ^) : } ^). , ^) \ {X \ {}) , .
() = , ( +) = V = (V-) V X. , : X > (X)
- .
(3) ^ (2) , (2) ^ (1) 3.2.1 , ҳ-, 풺 -. ?


X,
3.3.2. X = {,,} -㳺 = {%, X, {}, {, }, {, }}. , ҳ-. : () = {{}, {, }, {, , }} () = {{,,}} () = {{}, {,}, {,,}}
1 ({,}+) = {} - X. , - : X ^ () 풺 .
3.3.3. , X = {, } 㳺 = {$, {}, {, }}. :
() = 1() {{, }} = {{}, {, }}
() = 1() {{} {, }} = {{}, {, }}
- : X ^ (X) 풺.
3.3.4. , , 0- X, : X ^ (X) 풺.
3.4.
, ^ X (X) ^(X) X, - (X). .
3.4.1. ѳ X X , :

31
1) ^ ;
2) \ ,2 , \ 2 ;
) , , .
Գ X X, ().
, X , .
.."! .! 3.4.2. ^^ ^^, *** ^ , .
3.4.3. \- X , , ().
. - X. , , - 3.1.2. в X , - . , . , , . X \ - , , . ?
3.4.4. (X) -㳺, + | X},

X.
3.4.3 , (X).
3.4.5. X - \-, ) (X).

32
. 㳿 () :
V+ = { () | , },
X .
, , () (), 㳺 (). , () - = () + . , - () - , () + . : 0, , - 0 (\) = 0. \ 0 (\) = 0 - .
() + () -. () +, . 0 0 0,
0 = 0, 0 = 0, . ?
, ҳ- :
) ().
˲ 3.4.6. - :
1) ;
2) () ;
3) () .
^ 1,0 ^ , . 11 . ::11 [ / ^1) ^ ^3) ^^^^ ^^^^^ ^3. , ^3) ^ ^2)
, 2) ^ 1) 3.6.22. [22, .273-274]. ?
3.4.7. 1) 3) . [13] ( ).
3.5. ó
- .

33
, () X, = 쒿 X X. * (X) (), - X.
3.5.1. X * (X) .
. X - {1, 2, , } .

() = (+ ((X \ ) {})-)
=1 ^г
X. ?
3.5.2. 1- X *(X) (X).
. (X) () (X). , , () :
() = + + V- V;-
~1, ... ,~ VI,, V X. ^^^
, ֲ. ʲ V^, < в
, ^ V, 3 < - 1- X , X = { X : dz < в }
Ѳ
X (). ?
. ó X (X) X , X X X, , \ . 0(X)

34
(), . , * (X) Ѱ() = 0 . ҳ- X.
X = N ( ) N [33].
3.5.3. X ΰ() (X).
. X (X) \ 0 (X) X \ X, = 0 X . X , V X ^ V X. , \ V X. 3.1.2 0( \ V) \, X* X , X,
V 0( \ V) V.
^ = + (V \))- (X). , X . , X + , X. , , X V (X \ ) , \ V 0( \ V), . , X.
, , 0 (X) = 0. , - . +, . V - , , \ V \ V \ V. , V (X \ ), 1.
ϳ ?(X) (X), - ٲ Ε (X). ?

35
3.6. ()
(). X () 䳺
: () () - -(), : (,)
: () () - -(), : (,)

: {) {), : ű { X : %},
Ѳ
.
, ^ . , ^ - (). , ^ () () \ ^ 0. ( \ ^ (^)5 , () ^ { : 0}
Ѳ
. , ^ \ 1() { : }, .
3.6.1. - 쒿 () ^ \.
. \ ^ \ ^ ^ ().
, \ (^ \ ]. 3.1.2 \ , . , ( \ ) \ (^, ( \ ) 0, . ?

36
-.
3.6.2. , () - X - .
1) (ұ = ;
2) + , ^ -;
3) () = ұ ;
4) () = ұ .
. 1. г (^ = ^ = \ = .
2. + , , , ^ , ^ -. V + X \ /, X \ ^ , , ^
3. г ( = ^ ^ . 4 3 Ҳ ͪ 0
= ұ 豱 = (ұ .
,
( = (ұ ) = ұ .
?
.
3.6.3. , () .
. 1. 3.6.2(2). 2. , : () () ^ () , ,
{(,) () (): +} = + () () +
{(,) () (): -} = - -.

37
3. 3.6.2(4). ?
, - X () 䳺 .
3.6.4. - (, V, ), : ^ , : ^ ^, ,
^ = - ;
( V ) = ;
( ) = V ;
[33, 4.2].
X () X ((X)) ( ) ᒺ ( ).
ᒺ , , (X) ᒺ.
3.6.5. X (X) ((X)), .
3.7.
- .

38
4.6.1 () X.
3.7.1. ó \- X , ^ , .
. - . , , ^ . , X - , . , - . , , 쒿 .
, , - . , - [56], . ^ ,
= 0 - , . - , 0 , , X \ 0 ^. ^ , , ^ X \ 0. , { \ 0 : } = \ 0, , - .
, .
= < , ֲ = { : < } .
= { : , }.
, , 쒿 4.

39
, [ - . , . , , . ^- , , , X \ ^ , ^ X \ = . 8 [ . , 8 = [. 8 , 8 ֲ {}. ,
( \ ) = ( \ ) = = 0,
, = \ < = , , 8 = {} [. [ , . , - . [56], = [ , , . ?
3.8. ()
() - . 3.4 , , - X. ().
X - > 2 - . ó (X)
-, = 0 쒿
\\ < ;
, = 0 쒿 ;

40
, 1 2 1,2 .
N (X), (X) 1() (),
-, . ,
1() (X) N(X) N2(X) ().
, X (X),
3.8.1. X ҳ^) (X).
. (X) \ ҳ^). ҳ^), ,2 2 ^), X 1 2, & + X 1 2, 1/ , (X) \ + (X \ )-. X , ֳ 1 2 3> 2 , ֳ &2 .
, + + (X \ )~ (X), г^). , , + + (X \ )~ 0 1,2 ) 1 1, 2 2. , 1 2 1 2 . , (X \ )~ , 1 2 . ?
3.8.2. X N(X) (X) > 2.
. , ^ 1, ... ^ - ^ 1.. . 1 ^ 1 ^
, 1 ... . = 2 - . , = , -, = + 1. 1 ... +1 = 0.

41
1 ... -+1 + ^0 1 ... , + 1 + 1 ) + = 0. \ 0, = 1,.. .. , 1 ... = 0 , , , 1 = 0. ֳ = 0. -, ^1 ... ^+1 = ((V ) ... ( )) + = ((1 ... ) ) ^+1 = ^+1 = 0-
(X) (). (X). , -. , 1 ,..., . 1 1 ,... , 1 ... = 0, + ... X, , + ... +. 1,..., 7 < . 1 ... 1 ... V = 0, -
. ?
ʲ < (X) = |>2 (X),
˲ 3.8.3. X <(X) - (X).
ó (X)
-, - = - - X (X), ;
, - = г^) .
, {} X , .
^(X) (X) (X), - . 3.4.5, X ^(X) X X - (X) X 2(X)

42
() X, - X . [67].
3.8.4. X () () ().
. ò 3.2.2 () . ³, () , , = ^. , () : () ^ () (). () () = ҳ1() () ^^^.
( ), . - > 2 :
3.8.5. - - X ( + 1)-, X - . , () +1 () ).
. , X. , 3 ( + - , - г,, -1 X ^
( ) 1 ... -1 = 1 ... -1
. X - , X. ?
, , (), <^ (), ҳ1(), () () () ( ^ , ).

43
г1()-^ < (X)
N+1 (X)
N(X2() ()

)
X
㿳*() =Ҳ) *^), <(X) = <(X) (X),
) =(X) * (X), *(X) = * (X)
(X) (X) .
3.8.6. \- X > 2 - ) ( < (X), ҳ* (X)) (X) (
<(X), ҳ1(X)).
X
ҳ10() =^1^) 0(), <(X) = <(X) 0(X),
) = (X) 0 (X), 0 (X) = 0 (X), 0^) =^) ?(X) = ) \ X
(X) 0 (X) - . , , - , ..
3.8.1-3.8.4 3.5.3,
˲ 3.8.7. X ҳ0 (X), < (X), N0 (X), 0 (X), 0 (X) (X).

44
, () ˰() , . [67]. () ˰ (X).
3.8.8. X - () .
. 2 3.6.2 = \ (), , () + = () - . , , {Η : } () . , = , .
, , { \ : } , , ?. , ? ֲ^ ֗ _ , {֗ : } (). , = , . , () V V-. ?
3.8.9. ˰ () .
. , {֗ : 0} ˰ () . () , .
, = , ϳ (). , , { \ ( ) : , ()} 2-.
?. , ? ˰ () , , ? ֗ . . ^ 1 ^ (^4^4,1 4 0.
, , \ V ?.
, = , ϳ (). , ˰ () ֗. ,

45
ֲ - , , , = 0 = ^^, X\ ( ) .
X, , , \ \ . ֳ :
( ) \ =
. ?
3.9. ³
, - . - , X () (@), (X) = () - - X.
/ : X ^ / : (X) ^ (), (X)
/() = / () = 1() (/()),

/() = { : , /~1()} ()
Ѳ
( /()^ = /() /() 3.6.1).
/ : (X) ^ () - .
3.9.1. Ŵ / : X ^ - , (X) - .
1) /( ) = /() /();

46
2) /() = /()/();
3) /(1) = /()\ , / - ^-. . 1* . ֲ
/( ) = / ( )11 = (/() / ())11 =
= (/()1 /()) = (/()11 /()11) = /() /().
2. , /( ) = /() /(),
/() /() , /-1 () /-1 (). ³ /-1 (), , , / ( ).
/() /() /( ). .
3. , / 4-. /(1) = /()1. /()1 = /()111 = / ()1,
/1) = / (1) /()1 = / ()1
, /(1) /()1. - /(1) 1 /-1 (). , /() , /-1 (). 1, ,
0 = /-1() /-1() = /-1 ( )
, , = 0. , /() , , /()1, /(1)
/ ()1.
/()1 /(1) / 4- . , /()1 \
/(1) , 0()

47
, /(1). 4- , = \ 0() 0(), = 0() \ . / /-1 () X. , = 11. 1 , /() /() /(1). 0() , /() = \ 0() , , /() 0() = 0(). , /-1 (), , /-1 () 11 = , , /(), , / ()1 ?
, 4- 3.9.1 .
3.9.2. / : X ^ X = {} = ({,, },), 㳺 = {$, {}, {, }, {, }, {, , ^^. / / : () ^ (). , /(1) = /()^, = {{}} - (). ij,
/1) = /() = /() = {{,,}, {,}},
/()1 = {{,,}, {,}}1 = {{,,}, {,}, {}, {}} = /(1).
/ -
3.9.3. ³ / : X ^ 1- , / : (X) ^ () - .
. : X ^ (X), : ^ ^, X (X).

48
(V) (). X - | = { () : } /() = { ^) : /() }.
/ , /(|) = |/(). / = / , , / /. ?
V .
3.9.4. / : X ^ V X 4- V, / : () ^ () .
. , V /-1( +) /-1(-) (). /-1 ( +) = /(). +, , / () . V 4-, V, . /-1 ()+ (), /() + /-1()+. , /-1 ( +) ().
, /-1 (-) (), /-1 (-) = /(). \ , V \ , , (V \ ) = 0 . V 4-, V V, V \ V V . , V-. , /-1()- /-1 (V)- , /-1(-), /-1(-) (). ?
, , , - / /.
3.9.5. / : ^ V = {, } 㳺 = {0, {}, {, 5^} V = {, , }

49
ò
= {$, {}, {, }, {, }, {, , }}.
, / / : () (?).
, () : = {{, ^ = {{}, {, ^^. (?), :
/() = {{ }, { }} /() = {{} {>}, {> >}}-
³, {, }+ (?) - /(), /(). ^, , = /-1 ({,}+) = {} (). , () {}- = {}.
, : .
3.9.6. / : X ? : ? 2 - . ()
1) ( ? /)() ( ? /)());
2) ( /)() = ( ? /)(), , 2 4-.
. 1. ( /)() = (/(, /() (/()). /(). -1 () /() /() = /() , , (/()) (/()) = (/()).
2. , 2 4-, , ( /)() ( /)(). ( /)() = (/()), , (/()) (/)(). (/()).
, (/)() = /() () 2

50
, 쒿 /(). % 4- , () 1 () %. (/ ()) /() % \ () (). , (/()) = % \ 1 () % \ (). , -1() /(), . , -1 () /()^. -1 () /() = /()^, , -1 () -1 (), (, = 0). ?
, 3.9.6 - 4-٪.
3.9.7. X = {} - = % = {, , } - , 㳺
= {0, {}, {, }, {,}, {, ,}}.
/ : X ^ , / : ^ , - : ^ % - , () = () = () = . = {{}} (). ,
( / )() = . {<*,,
/() = {{,}, {,,}},
(/()) = {{}, {,}, {,,}} , , ( })() = (/()).
4- - .
3.9.8. д / : X ^ - - X 4- . ,
1) /((X)) () > 2;
2) /(<(X) <();
3) /((X)) 2();

51
4) /(г1()) г1().
. 1. - (X). , /() () -. , /() = /() -. , 1,..., /() 1 . 3.8.2, ² , ϳ = 0. < /() , , /(). ² / (), ² . ʲ ² < , 1 , - /().
2. .
3. , () . - ^ = , 3.9.1(3), , /()^ = /(^) = /(). , /() .
4. г1() /().
, /() г1(), 1 ,2 /() 1 2 /(). , 1 2, /(). 3.8.1, , 1 2 1 ,2, 1 2 . ² /(),
² ² = 1, 2. Գ /-1(1) /-1(2) , , /-1 (1) /-1 (2) = /-1(1 2), , 1 2 / (). 1 2 1 2 , ^ 1 2,
/) 3 / (). ?
, / 풺. , 풺 / : X ^

52
* -, , X /() /() V.
3.9.9. / : X ^ V *- X V, / : () ^ (V) .
. X, (). X X. , X , X X X 0() X X, X . / -, = (/(X)) = (/(X \ 0())) V. /(X) , /(X). , /(), V \ , /(), ( /() V \ V \ /(X \ 0()), /-1 (V \ /(X \ 0())) = 0(), 0()). ?
3.9.10. / : X ^ V ^- /(X) V, /((X)) ().
. 3.5.2, -
/^) (V). ?
˲ 3.9.11. / : X ^ V *- X V /(X) V, / : (X) ^ () .
. 3.2.1 3.2.2, (X) () . , 3.9.4-3.9.10 , / : (X) ^ () , 풺, . , (X) , / - . ?

53
X - (X) , () (@). [13].
˲ 3.9.12. X - / : X ^ (X) - X -. / : (X) ^ (X) .
(X).
˲ 3.9.13. X - / : X ^ (X) - X - .
/ò^) : ҳ1(X) ^ ó^), /\<(X) : <(X) ^ /XX) : XX) ^ XXX), /N(X) : (X) ^ XX), > 2,
.
^ , 11 . . [\ . . .. .5 . ... ^ ( ) 1 X ( ) * .
/ : XX) ^ (X) , , /\(X) : (X) ^ XX) , /((X)) = XX). 3.9.8, /((X)) XX), 3.8.2, (X) XX) (X) (X).
3.5.2, ,
^^/ ( ^ (^ ]^1 (), ² 5.5 Ҫ. ٲͲ
/((X)) XX). /((X)) /((X)) = XX).
, /XX) : XX) ^ X(X) , , XX) = 2(X) 2(X)\ 2(X)^ = {^ : 2(X)}. 3.9.1(3), /(^) = /( IJ (X).

54
;
/ )) = / (2() N (X)1) = /(2 (X)) /(2()1) =
= /(2()) /(N2 ( ))1 = N2 () N2 ( 1 = \().
?
3.10. ()
() . () . () () ( ) [39], () . ()
-ܳ. Ų .. 2.
()
3.1
\ ()|
1 3
2 6
3 20
4 168
5 7581
6 7828354
7 2414682040998
8 56130437228687557907788
2???.8../-/຺88./8/8/88/8.?=000372

55
³, (X) : (X) ^ {0,1} - (X) X. , (0) = 0 (X) = 1. , / : (X) ^ {0,1} /(0) = 0 /(X) = 1 /-1 (1). , X () (X) () 2. , () < 8. (X) IX\ < 6 :
3.2
(X)
() N2 () 2 () N3 () () N4 () N< () ҳ()
1 1 1 1 1 1 1 1 1
2 4 3 2 3 2 3 3 3
3 18 11 4 10 3 10 10 7
4 166 80 12 54 5 53 53 15
5 7579 2645 81 762 20 687 686 31
6 7828352 ? 2646 ? ? ? 43285 63
. , ҳ(), (), 2 ()
.
3.10.1. N :
1) ҳ() = 2 1;
2) <^() = = (1 + ( ) <^( ));
3) () = < () > ;
4) ^-() = 1 + < ();
5) \2() = 1 + 2( 1).
. X - IX\ = .

56
1. X , , .X, 2 1,
2. X . ϲ = {1, . . . , } X 쒿 = . - . = { ֲ : }, - X \ = 0. ʳ ( ) <( ). , = 1 + ( ) < ( ). - X , ,

<() = ? (1 + 0( ) <( )).
=1
3. , > - - X ( + 1)-. , 1, 2, , +1 1 2 ... + , X = (X \ 1) ... (X \ +1). IX | = ^^ X = X \ в I {1,... , + 1} II . , \ в = 0, - . , - X , () = < ().
4. г _1 () = 1 + N () = 1 + < () , ( 1)-, - X = { X : ܲ > 1}. , . , в < 2. , = { : } ( 2)- . , , , -. ?, > 1 .

57
-, \, 2,.. . \ 2 ... . \ \ в \ < 1,
< , X = (X \ \) ... (X \ ) ,
{X \ в : < } = { X : \\ = 1}.
{X, в : < } , , = .
5. X . ? , ,
? = { : X \ {}}
X \ {}. ,
= 0 { X : , \ {} }.
, X \ {},

\() = 1 + N2( - 1).
?

58

, , () X , () - ҳ-. () (), , () , - . , , . [66]. , () (@), () = () - - . . [13]. (): ҳ1(), ^- (), ^- ().
3.7.1 - . - 4.6.1 () . : ^- , ,
^.

59
IJ 4
в òв
, , - 3, {3), {3) {{3)), {3). {3) {3), {3).
4.1. -
, () * : X X ^ X X () {X), , , : X X
X = ( ^| * : , { } X)
^).
, {X, *) , {{X), ) .
4.1.1. * X , , {X).
. , { V) = { ) , V, .
{) , * 쒿 \} . ,


60
, ^ , X * 쒿 {}

V. , X V X * ,
0, ~^^* ^ . , V * * V ^ 17 ,

, * ( * *) (). * * * ,
(V ). () (V ).
, (V)
, ^ * 쒿 {}

V . , V, * , 쒿 \^,} . 2 = * .

2 , = * = ,. 2 V [] * ( V) . ,
?2
[] * ^ * * , , ( V) . ?
2 ^
4.1.2. , ( V = V , V ().
. V ( V, V , V. , :
= II * { }ժ V

= II * {} V.

. V V . , * , , , ( V).

61
( V V\ ( V)^. ,
= { X : -1 V-1}
( 1 = { X : * }). , \ , = 0. , -1 V , , V, -1 . V, = ^ * V , , . , * . * , -1 X \ , , . , ^ * -1 V?
4.1.3. г ( V) = ( ) (V ) , V, ().
. , ( V) ( ) (V ).
, ( ) (V ).
* *

, {}; , V, {,} . , V , V. = ϳ = , • ,
* , , ( V) . ?

ֳ 4.1.4. , V, () X (V ) = ( V) ( ) (V ) = ( V) ( ).
4.1.2 4.1.3

62
˲ 4.1.5. , V, () () = () (V ).
. ,
(V) = ((( V) )1 ^ = (( V )1 1 )1 =
=((1 V1) 1)1 = ((1 1) (V1 1))1 =
=(1 1 )1 (V 1 1 )1 = () (V ).
?
4.1.6. (X, *) (), , , X.
^²IJ^ ^ ^ , (^)
: () ^ (), : ^ , .
, () + - . {~ }? , X * . + , + +.

, - . ³, V () V - V1 V 1 + . , 1 1 = ()1 + . , 0(1 ), 0(1) 1 + . , 0(1)1 0(1^ -.
, , ^ : () >
(), : ^ , . + () , ܗ1 (+) , ܗ1(+) = (-1 )+, -1 = { : * }. , ؗ , 1 = ( ^ (ؗ ^ = +, ,
ܗ1 ( ) = ( ( + ))1

63
. ?
, () , .
4.1.7. (X, *) () (), :
1) () = () ( ),
2) () = () ( );
3) ( ) = ( ) ( );
4) ( ) = ( ) ( );
5) () : () ^ (), : ^
, ;
6) : () ^ (), : ^ , .
. * , . * = , (). , * = (). ^ * ^ , * = , ( *() (), . 3.5.2). 쒺 . = = {1,...,} , = = , , , ,

* = * | = | * = | , = , = .
=1 =1 =1 =1
= {1 ,...,} 쒺 , = = 1 ,

64


* = ^ ^ ^ = ^ * в = в = ^ = . =1 =1 =1 =1
, (), - , * = * (X), X. , * (X) () ^ ^ * * = (). ?
4.2.
, X () , . , () X (X) () .
4.2.1. : X1 ^ X2 :, - (X1, *1) (X2, *2) : ^1) ^ ^2) ^^ ^2).
. , V ^1),
( V) = (({] *1 : V , { } V)) =

= (^ * ) : V , { V) =
^
= Ҳ () *2 () : V , {V) =
^
= ( *2 () : V , {() (V)) =
()
= (() : )2 (() : V) = () 2 (V).

65
?
4.1.2 ,
4.2.2. X : () ^ () ().
4.3. ϳ ()
, X", 㳺, () (), 3.8, ().
, * : ^ : 0() () ^ () * (). 4.2.2,
4.3.1. 8 (), 8^ ().
().
4.3.2. , ҳ1(), <^() N (), > 2, ().
4.3.3. - () - () ().
. () (), () = 2() (2())^ (). , () = ҳ1() () (). ?
4.3.4. (), > 3 () (), , 5 =

66
{0,1, 2,3,4} (5) (ѧ) 3-
? = ({0,1, 2}, {0,1,4}, {0, 2,4}, {1, 2,4}),

? = ({1, 2,4, 5}, {0, 2,3,4}, {0,1,3,4}, {0,1, 2,4}, {0,1, 2,3})
3- .
(),
4.3.5. *() ().
, *, , - Ѱ() ().
4.3.6. , , \ -1 = { : * = } . Ѱ() () , , ҳ1(), (), () ().
. , () - , \ . , : = * 쒿 {} .
, . , , \ -1 = { : * } . ó , , = \ . , = \ -1 . \ ^ * , , \ . ?

67
4.3.7. X , () , , (). . , (X) - (X) = (X) \ X . г1() - X, x(X), * = { * : , }.
4.4. (X)
(X, *) (X) . , (X) , X * -1 = { X : * } .
4.4.1. ó (X) (X) , .
. , (X) - . = (X). { } , * . (X) , | * , ,
ժ
. . , X 1 , , * _1 .
^
, (X).
(X). ³, X | = , * .
, {X} = , {} * . , X -1 = {% X : * } , , . ?

68
() -

(). 4.4.1 , = , (). , () .

4.4.2. () (), () / / (), . , () , , ().

. () \ (), , * -1 .
() = { () : ( * -1 )}
, () , ,
() ().
= , (), () - ().
, () , ,

() 2 () 21 = (1 2)^ = 21,

, 21 () , , (), 4.4.1.

, () () , () ᒺ. , ᒺ
, ,
2 () 쒿 {2}? (). () ,
2 = ( 2 ( )1 = ().
^ ^

() , (), . I ()

69
. , 2 () , 2 = 2 , ª, () . ?
4.4.3. X () ,

() - ().

() . 0() 0() . , * -1 . , , ,
= *

쒿 {} . ? ,
* = * * = 2 * () ,
? *
() { : * = 2} 2 * . , -1 , , = - 2 * 2 * 2 -1 . * * 2 * , , -1 , -1 ?
* : ^ , ,
() . = {} = { : = 0} (),
4.4.4. (, *) :
1) ();
2) ();
3) , * = .

70
. (1) ^ (3) , (). 4.4.1 X | {X} = {X} , X * = .
(3) ^ (1) , X * = ,
* X = X , , {X} = {X} ((^X). ,

{X} = (X) (X) , , (X) 4.4.1.

(2) ^ (3) , (X) (X) - , X | (X) = (X) {}, X (X) * X {^. X * = .
(3) ^ (2) , , X * =
. (X) = (X), , (X) (X). (X) . X, * . * {}
(X), (X) (X). ?
- ΰ (X) .
4.4.5. , (X, *) -, X X, X \ -1 = { X : * = } -.
1) ΰ (X) (X );
2) ΰ (X) (X), , , X -1 ;
3) ΰ (X) = (X)0(X) 0(X);

71
4) Ѱ() () / / (), .
4.4.6. 4.4.2 5.6.1 , () Ѱ () . , () () = () \ , . [55, 4.4].
4.5. ()
() .
4.5.1. - . () () () (), .
. ò 4.4.4, () () () , , () = () = () () = () = (). , {5} () = () , * {} . * =
, , = {}. , {), - . , , \ {} . , * = 0 . * = = , 0 * ( \ {}) \ {}. = {} \ {0} = \ {} = 0, , \ {} ^ * () = () = (), - . ?
4.5.2. () .

72
. (), , X. , X , , X.
, X X, X )
? X = { * X : X X} = {X * : X X} = X ? ,
, ^ ^ ^^^^, ^^ ^ ^ ^ (X). ?
4.5.3. , ^X (X) X, . 6.54 [55].
4.6. (X)
(X).
(X) , (X) X .
, ѕ(X) - ת .
4.6.1. X (X) - ѕ (X).
. ò 4.1.6, (X) - (X) (X). , (X) ѕ (X) (X), X.

73
, , () - , , * (X). 3.7.1, , ^ , .
, X, = { X : * }. / / * = X, , {} ? 1^, 0() , {} ? 0(). , 0() ,
() = V- V;-
. , VI, ..., V
-1 = { X : * }, ֳ, < , = () , + !/+. -1 {} V) 쒿 , V < . , V^, < , -1 , , V V^-. 3 {}, {}^ , ٰ []? * {}. , -1 = { X : = } . , . , * = . -1 , = * ^^, = , X , = . , 1^, . " . " ࿪, ^ ^೪ ^^^" ѯ^ײ^ ^^^.
4.1.2 . , ,

74
^ . , 3.7.1, , * (X). ?
4.7. ()
() X.
4.7.1. X - . ó () () , -.
. , (). -, . , - 0 ²̲, * ( \ {}) = . , , , , , * = * = . , = . , 0. = 0, = * * ( \ {0}). = 0, = * * ( \ {0}). , = { \ {0}) = (), = () = (), ().
, {}. , , . , \ {} . = { \ {})^ - -
= (). ^ , = () = (), . , {} (), : = * ,
* = = , {} , ,

75
{} = * {} . = * , X \ {} X * = X, , = , , {} . {} = * {} .
, = () , . , () X. , , ^) , () = () . , , * () = () , , * = * . X , = , <^.
^. ?
4.7.2. 4.7.1 , X (X) X. , () (X) (X), . 8.34 [55].
4.8. (X)
11\ ^^^, ^ (X) . . .
4.8.1. д X . (X) (X), { : X} (X), , 0(), , X \ {}.
. (X) 풺- : (X) ^ (X). (X) (X), \(X) : (X) ^ (X) .

76
X (X) , ?(X) = \ : X} .
, .
4.8.2. X . ó X (X) (X), , {8}( X X 8 8 = 0 , X.
. , ? X = X , (X). , . , ^1^^ 8 X = X. , {} X,
14 8.
< <
8 X ^, 8 .
8 8 . , X5
( 8) ^1 8
, , , .
, .
4.8.1 4.8.2 (X), (X), . [55, . 8.11].
˲ 4.8.3. X . X :
1) (X );
2) (X);
3) { : X} (X);
4) { }^ , , X .

77
, , X (X) , . [55, . 8.10]. , Ѱ().
4.8.4. X, Ѱ() - .
. X = { : } - 풺 X. X Ѱ(X) 0() Ѱ(X). 0(). , 0() ,
0() = 0^) + --- + -+1 ---
,..., . ֳ , X . = { : } X,
Ѳ^1"^Ѳү 11 (|}(^ ү ̯ƿX̿ ֿ , , 1 ^^ 13
, X . ^ , , :
, = ;
0? 0
= { X : dz, < Dz < (ղ = ^)}.
, = { : } ֲ, < . X , < = { X : = ^} . > , ^ ղ(2, : < }) .
, - X, ѳ [,..., /. , 0()

78
ʲ
0() = 0() + ( + )
Ѱ (X).
, 0() (). 4.8.2 {˲ ^, ˲ ^^ = 0 < ^ , ^^^^ ^^^^^ = \ ,
= { : dz < , = }
. ?
4.9. ()
5.10 , - () ᒺ () (). () .
, () < 3 = 5 ( (5), 5.11). , () () < 3.
X X , . V ().
(2). 2 = {, } (2) : ,, , V , :

79
V






(2) -
(2) = { ,, V }
: , V . (, , ), ( ).
(3) 3 = {,,-1} 18 :
V V -1,
V -1, V , V -1,
V ( -1), V ( -1), -1 V ( ),
, , -1,
( V ) ( V -1) ( V -1),
( V -1), ( V -1), -1 ( V ),
-1, , -1,
-1
8 䳿 3.
(3) 9 - ,
:

80
V V -1
V -1
V ( -1)
( V ) ( V -1) ( V -1)
( V -1)

-1

()

(3) , : -1, V V -1 ( V ) ( V -1) ( V -1). (3) : V ( -1) ( V -1). ()-
3- (3) ( - (3)/3)
4.1
(3) \ {}
- -2 -1 1 2
- - - -
-2 - - -2 1
-1 - - -1 2
- -
1 - -2 1
2 - -1 2
-

81
(3) \ {}, 7 :
-3 = -1, -2 = , -1 = ( V -1), 0 = ( V ) ( V -1) ( V -1), 1 = V ( -1), 2 = V , 3 = V V -1.
4.9.1. , , - (3) , ( 2 ) ( ).
, 5.11 , (5) .

82
4
- 0(8) 0(8). , , 8, /3(8), 0(8) ((8)), (8). , 0(8) - , (8) . (8), 0(8) - : (8) 8, N(8) ^- , ʳ1(8) 8 ( - (8) 8), .. - 0(8). , 0(8) 0(8) , 0(8). 0(8). , 0(8) 0(8), 0(8) - 0(8), . , 0(8) 0(8). 0(8)
, , 8 * = & 8.
() 0(8). , 8 0(8) 8. ֳ , 8 (8) 8, . 6.54 [55]. 8 0(8) 0 (8) - Ѳ.
0(8), . , 8 . ó-

83
0(3) 0(3) IJ ^ . , () (3) 0(3) , . 8.34 [55]. ó 0(3) 0(3), , {3}^5 \ 3 3 = 0 , 3. 4.8.3 0(3), (3), . [55, . 8.11], , 3 0 (3) , . [55, . 8.10]. , 00 (3): 3, 00 (3) - .

84
IJ 5

ϒ () - .
5.1.
. -, , = 0 . -.
ϳ X - X , = 0 . , , -1 = .
- X 8() \\ - X. 8() .

\] = { % : > } [] = { % : < }.
5.1.1. - .

1) 8() > (1 + /4\\ 3)/2;
2) 8() < 8() 8(/) < 8() \(\/\ + 1)/2].
3) 8() < \\ + \/\.
. 1. - \\ = 8() / : ^ Ѳ : (,) ^ -1. /(,) = -1 = (,) = {(,) 2 :

85
= }, , \\ = \\{}| + 1 < \2\ + 1 = 8()2 8() + 1, 8() > (1 + \/ 4\\ 3)/2.
2. . ͳ / = { : } \\ = 8() \\ = 8(/). , \\ = \\ { : } = . , = . , . , = , . , -1 = -1. , . , -1 = -1 , . 3 = , , = 0.
8() < \\ < \\ \\ = 8() 8(/).
2. , , 8(/) < \(\/\ + 1)/2]. / \\ = \(\/\ + 1)/2] , \\ > \/\/2. \\ = \\ > \/\/2. \\ + \\ > \/^ . , 8(/) < \\ = \(\/\ + 1)/2].
3. \\ = \/ = , = \\ < \ \ + \ \ 1 ( ). ?
5.1.2.
(i) 8() = \(\\ + 1)/2] > \\/2 , : 2, $, 4, 2 2, , (2)3;
(ii) 8() = \\/2 , : , %, 4 2, &, -

86
, . () < \\/2 , , (), (). , ,
\\ < \\/2.
9 .
1) \\ = 3 \/\ = 3. () = 2 , 5.1.1(2),
() < () (/) < 2 2 < 9/2 = \\/2.
2) \\ 3 = \/ \ > 3. + 1 < /2 () < \ \ + \/ \ 1 = + 1 < /2 5.1.1(3).
3) = \\ > 9. , (ղ)2<4) \\ = 7. , = {, , 3} 3- , , () < 3 < \\/2.
5) \\ > 7. , () < \\/2 , , () < () (/) <
= \\/2.
6) \\ > 6 \\ . {8,10,12}. \\ \\ = 1^^
\\ > 7 , , () < \\/2 (3), (4). \\ = 2 , > 7 , , () < \\/2 (5). \\ = 4 > 4, ^ (. [15, . 74]),
\\ = 4 \/\ > 4. () < \\/2
(2). , \\ = = 15

87
, > dz, (1) (2), , 8() < \\/2.
7) \\ = 8, : 8, 2 4, (2)3, 08, ^8. (), () , , .
8) \\ = 10, . , 8() < \\/2 (3). ,
0 5 2, -1 = -1. , 4- = {, , , 2} , , 8() < 4 < \\/2.
9) \\ = 12. ³1, 5 12: 12, 6 2, 12, 4,
1 3 ^, (, \ 4 = 3 = 1, -1 = -1).
12, 6 2 ^^
4- . ^ , 3. , 2 ^ ͳ -1 = -1, ,
5- = {} ֲ , , 8() < 5 < \\/2.
3 4,
3 , 2 , 12. 6 2, -1 = -1. 5- = {,,3,,} , -1 = {,,3,,} {, ,3,,} = . 8() < 5 < 6 = \\/2.
4. ̳;://1;1(.11./1;.ܳ;1

88
, 8() < \\/2 , (),() .
II. , ().
5.1.1(1) , 8() = |"(\\ + 1)/2] > \\/2 \\ < 5.
, 8() > \\/2, (2)3. = 3- . , 8() < \\/2 = 3, 3- . , -, ( ). , -1 = , , , , \ . 2. .
-1 = {, , } {, , -1} = {, , , , , , -1, , } = , .
, (2)3. 3- 2. , 8() < 4 = \\/2, 4- , , -1 = ,,.
1 = {, , , } {, , , } = {, , , , , , } = , .
III. , 8() = \\/2 , ().
= 6, 5.1.1(1) 8() > 3. , ,

89
3- = {, , 3} , , 8() = 3 = ||/2.
Ѳ = 8, 8() > 4 5.1.1(1).
8 , = {, , 3,4} , , 8(8) = 4.
4 2, , , 4 = 2 = 1. , = {,,2 ,} , , 8(4 2) 4.
08 . \ 11 \ 11 ^, ^^²,[^6][. 4 = 2 = 1 1 = 1.
, 4- = {, , , 2} .
^8 = {1, , , }, , 4- = {1,1, , } , , 8^8) = 4. ?
5.1.2 8() Ѳ Ѳ 13-
5.1.3. 8() Ѳ 13 :
2 5 4 2 2 2 4 ^8 23
8() 2 2 3 3 3 3 4 4 4 4 4 5
11 ѳ 9 ѳ ³ ѳ2 2 ׳2 4 4
8() 3 4 4 4 4 4 4 4 5 5 5 5
. Ѳ 10 8() ί ֲ 8() > 1 + 5.1.1(1)
5.1.2.
11 13.
1. 11 13, , , 4- = {, 4, 5, 7} , , 8() = 4.

90
2. 12, , , , 4- = {, , 3, 7} , , 8() = 4.
12. 5.1.2 - 8() < 5. , , 8() > 4 - \\ = 12.
3. 6 2 4, , 2 2. , 8() = 4, 4- . -1 = , , . , , , . , \ . - / 3, -1 = 0.
\{, , } : , -1, . , = -1 = ( )-1 3 - . -1 , = -1 = {,}, . , = . = -1, , -1 = -1 = -1 -1 = -1. = -1 = {,,-1, -1} \\ = \{,,-1 = -1 }\ < 3 . ֳ 8() > 4 6 2 4.
4. , 012. 6, \ , 2 = -1 = -1. , 8(012) = 4, 4- - . -1 = , , , = -1. -1 . -\ , , , . , \ . 4 \{,,}

91
: . , = = {,,} ~ -1, , ~ = -1 = -1 = -1 = . , \\ =4 > 3 = \ \. IJ , , = -1 = {, , -1, -1 ,-1} - , \ \ = 6 > 5.
5. , 3 4 , , (, \ 4 = 3 = 1,-1 = -1). ,
- / - 4. , 8() = 4, 4- .
, , , . , \ . , \ {, , } -1 . , -1 -1 = . , , , 2 , 1. , . = 2\ = , {-1,0,1}. ,
= -1 = {, -1 ,-1} = {,-1 ,2-^-1} = {,-1 ,-},
, = 1 , , = 2-1. ,
2 -1
{, 1, 1
1} = {2 1 ,2 2,2,22 2.
?
5.2.
()
.

92
5.3 , ? () ? (). .
, . ó X , = X.
X (). 4.4.2 4.4.3,

() (), ().
N2 (X) = 2 (X) () -

X (X) = N2(X) -
N2(X). ѳ (X) , , (, {X}) . (X) .
5.2.1. ?
^ = {? () : ?^?}
().
. , () ? . ? ,
= (-1 ) ?

, .
³, ? ? = ?^ ?$ ? ª- , ?$ \ ? (, , ? \ ?) ( = % !).

93
5.2.2. 0 - , ?$ \ ?0 , = \ , , = 2 .
. ?$ \ 0. ,
= 0 (5.2.1)
. , , { : } ?0 { : }, ?0. , ?0 - .
, ,
= . (5.2.2)
, , , , ᒺ = . ( \ ) ( \ ) = \ ( ) = 0, , { \ : } . , \ . , , \
?0. , , ?0, . \ , , {\ : } ?$ , ?$ . { \ : } , ?0, 0 , \ 0
, , \ = = . ³, (5.2.1) (5.2.2) , , -1 . , (5.2.1) (5.2.2) -1 = 0 -1 = , , -1 -1 , , -1 . ᒺ -1 = -1 , , -1 = , , = . , (5.2.1) (5.2.2), , \ = = ?
5.2.3. X (X) ().

94
. , () (. 4.4.2) (X) () , (X) .
, X (, {X}) X. , (X) . , -
-^
, (X) (X). N2 (X) =

N2(X) (X) (X), , (X)
N2 (X). ? N2 (X) \ (X).
? ,
,
\ ?. , { :
X} . ³ , ? 3> ? ,

X \ ?^ ?\ , 0(?) = - (X \ )- N2(X)

? N2 (X), (X). , 0(?), , , ^. ³, X , 1 , , - 1 . , ^ X. , { : X}, , , . ?
, (X).
5.2.4. X (X) | (X)| = 22
21
11 Ӳ | () | ^ 2 [^^],5^]ʳ, ]].()

(X) ) ((X)).

, | (X)| > 22 . X| = X = { : < } - 풺- X <

95
X. < = [,-1 : < }. - , ()<, 0 = 0
<^
< = [ : < }.
= [ : < }. [55, . 3.58], () - \ ()| = 22 . , -, ^ ʲ < \ 1.
- 1 () - = պ - - , = - , V . , . = V , V. V = \ . , V -, \ | = [V = .
< = [ : > } 1 V = [ V : > } V.
,
= = V .
< <
, = 0. , 7, V = V. = V , = , V = 7 V = - > 5 > - = -. 3 = V , = 5. , , 5 > .
5 = -1 7 - 1-<-,
-.

96
, = 0. , ^ , , , = . . ^,
| (X)| > \{ : ()}| = ,()\ = .
?
, \ ()| = 2 . , () .
,
= { X : 2|| > \\}

^ = { (): }.
5.2.5. д - . () > ||/2, () = ^-
. , () - . , () > ||/2 , , || > ||/2 , , ( || + > ||). , ,
{ : } . , , , ?
5.2.5 . || , , , - . || .

5 = { : -1 = , = 2}

97
\\ = \\/2. 쒿 5 , , , , = X \ = . 5/ - - 5 8 = \5/ \.
5.2.6. \ ()\ ^ \^\ = 28.
. , - - 5. , , 5 = 0. , \ 5 5. = \ . , 5, , = 0 . \\ = \\ = \\/2, , = \ = = -1 . -1 = 0 , -1 -1 = , .
, = 5, , 5. , X, = \ = . , = -1 X \ = -1 , . ,
5. , . , , , = \ = = \ = . , = X \ = .
5, - . ³, \\ = \5/\ = 8. , / : > 2 = {0,1}
= { : , /-1 (0)} {( \ ) : , /-1 (1)}. ,
\?\ = \{, : / 2}\ = 2 = 28.
?
() \\ < 8:

98
5.2.7. X () \\ < 8 :
2 4 2 2 5 7 3 4 2 8 ^8
8() 2 2 3 3 3 4 3 3 5 4 4 4 4
() 1 1 1 1 1 1 2 3 1 2 4 8 8
1. 8() > \\/2, 0 , , \ X () \ = 1. 5.1.2, 8() > \\/2 , \\ < 5 2.
2. 8() = \\/2, \ X () \ = 2, 8 = \5/^\. , 8 , ^8, 4 2, 8,
2. 6, ,
5 = {,( \ ) : },
= {,,3}. , 8 = \5/^ \ = 1 , ,
\ ()\ = \| \ = 2 = 2.
2. 8, , ,
5 = {, \ , , \ , , \ : },
= {,,2,4}, = {,,2,5}, = {,,3,}. , 8 = \5/^ \ = 3 , ,
\ ()\ = \| \ = 2 = 8.
2. , 4 2 2 = { : = } - . , 4- - , \ 2 \ .
, , \ 2 \ = 3. , . 2 = 2, ,

99
2 = 22 1 \ \2\ = 3 > 2 = \2\/2. , \ 2, , -1 ^ 21 2-1. , = ^ 2 1 = 12 3- 4- 2. ֳ 3- . , , = 2 ^ , 22 = 2, , \2 \ = 3 . , 2 = 1 ֲ 21 1 , ,
0 = 1.
\ 2 \ = 1, \ 2 1, \1 2 \ = 3. , 1 , , .
, \ 2 \ . \ 2 \ = 4, = 2 1 = 2-1 = 2 = . \ 2 \ = 0,
= 2 , , 1 = 21 Η1 = 2 = . \ 2\ = 2, \2 1 \ < 3 1 = .
,
5 = { : \\ = 4 \ 2 \ }.
5 , 2 = {}. 5 2 = {}, , 8 = 2
\ ()\ = \ = 28 = 4.
26. , . 4, . 2 .
, 4- \ \ = 2. , \ \ 0 4, = , , 1 = ܗ11 = = \ \
1 3, , , = {} , , = {} ֲ 3- \ . , \ = 1 \ = ( —1) = = \ . ,

100
\ \ = 2. , , = {, 2} ( , -1, , , -1 = 2). , \ . , , = 3. ³, 2 ( = {,,2, 2} -1 = = ). , 4- \{, 2, } = = 3 = . ³, 1 = {, 2, , } 2 = {, 2, , } , ,
3( \ 1) = 3 {, 3, 2, 3} = {, 2,, } = 2.

, 8 = \$\ = 1 \ X ()\ = 28 = 2.
2. , , = {1, , , }. = {1,1} . = { 8 : ( } , 0 5 5. 5 \{1, 1}. ³, 4- \{1, -1, } ( , ).
, , = {1, 1,, }, ,
0 \ = , . ,
5 = {{ 1,1,,} : = \, \ }
, , \5 \ = 6 3 = 12. ³, 52 52
1 \ , 52. , - [ 5 52 . , 8 = \5/^\ = \5\/4 = 12/4 = 3
\ ()\ = \? \ = 28 = 8.
4>
3. \\ = 7, 0 X(). .
1 = { : \\> 5}

101
, 1 . . () . , , ^ \ , , = \ \ \ \ < 2, \ 11 . , ^ 1, ^ ^ ^^ ^ . , \ .
³, \ 0 3,
= { : \\ = 3, -1 = }.
, 3- - = {, 2,4} , -1 = -1 = 0. ,
3 = {, -1 : }.
-1 , -1. ,-1, = 0. ̲ ,
=( { : }) \ {( \ ): }.
-1 ,
=( {-1 : }) \ {( \ -1): }.
-
3 () ?
, - .
5.2.8. :
1) ()\ = 1;
2) 8.() > ||/2;
3) \\ < 5 23.

102
. (2) ^ (1). 8() > ||/2, 0 = { : || >
||/2} ( -) .
(1) ^ (2) , 8() < ||/2 -
, || < ||/2. || , 0

, 0, 
| () | > 1.
, , , , || = ||/2. , = \ . , -1 , = 0, , = \ = , , -1 = . , -1 - , -1 -1 = , -1 = , , { : } . || = 2|| , ᒺ = { : } 0 = { : } 0 , ?, .
, , = ?

, , | ()| > 2.
(2) (3) 5.1.2(). ?
5.3.
X, () . , X - () .
4.4.1 () () , . ,

103
() () .

().
5.3.1. ? () , ? .
. ? , 4.4.1, ? () , , ().
, , ? (). ? = , ? . ?
(), , () . , , . , > 1, .
5.3.2. :
1) () ;
2) - ( () () = 0
3) ( () ());
4) = -1 = -1 = ;
5) .
(2) ^ (4) , () . = 1 2, , {1,2} . ,

104
- 1 = X. , X , , , = 0, ~1.
(4) ^ (3) , X = ֲ -1 = X -1 = X. , - & . , \ . ^ , , , -1.
Ͳ Ͳ Ͳ , 1 = X,
{ : X} . , , ?, = 0 , ?, X \ = . \ . ,
{ X : X ( )}
, . , , ?, , , \ = 0, , (X) , , .
(3) ^ (2) .
(5) ^ (4) , X \ {} , . = { : 1}, 1 = { : 21 + 1} 2 = { : 21}, 1 = 2. 8 X, , X, . 1 = 1 dz 2 = 28 ²̲, 1 = 2 = X \ 2 = X \ 2, , -1 {1, 2}. 1 2 = X, (4).
(5) ^ (4) , X X 䳺 X = , -1 -1

105
, X. X \ = X \ = . ³,

1 , () > 0. X , () = N ()-1
= () , , = .
X = = =
, = . , , .
= { : 2} X - , . . , = = -1 , , ( ) = . , . ?
5.4. (˳) ()
5.4.1. . - () :
1) ();
2) ();
3) .
. (1) ^ (3) , 2 ().
2 = 2 ѳ, ,
2-1 = {2-1 : 2 2}
, , 5.3.2. ³,

106
()
= = ,
, ^ ! ^^ ^ ^(^) ^^ 5.3.1 .
(3) ^ (2) , . , (). , , = , , . 5.3.1, , , = , . , , , ().
(2) ^ (1) . ?
5.4.2. () , \, 3 5.

. \\ < 5, ()

(), \()\ = 1 5.2.8. , () , () 5.4.1.
, , () . 5.3.1 5.3.2, , , () (). () , , \ () \ < 1. 5.2.8, \\ < 5 2 , ѳ, 3 5. ?
5.5.
X,
.

107
5.5.1. () X , \ \ < 4.
. () X \\ < 4 5.11.
, X (). X . , \\ < 4. , (X )\ = 1.
, (X)

. , , (X) ()
() () (. 4.4.1) ,
= = = .
, \ . () ,
= = = .
, ᒺ = , . . , \ (X)\ = 1. 5.2.8, , \\ < 5 X
, (5) (^) . (5) 5.11.
, (3) , , , | = {, , , }, \ = {, , , }, 2 = {, , , }. ³, ͳ ,2 2. {1, 2} = {{ͳ,2} ֲ { : Ͳ}) 2.

108
, \ 2 .
^1 1,
2 1 3 * (-1 ) = = {,,,},
ͳ
1 2 3 * (-1 ) = = {,,,}.
ժ2
= 0 , 1 2 = 2 ?
5.6. ()
().

= { X : { X : -1 } }, (5.6.1)
-1 = {% X : * 2 }, () , , . ,
5.6.1. X () \ X - (X).
5.6.2. X - . (X) - , .
^ , ^1 , . . ʴ * ^ ^^ " * 11 \ (
(X) \ X . , : (X) ^ (X), : ^ , 풺. 5.6.1, ^) \ X (X). , ((X)) = (X) (X) \ X. (X) , 풺. ?
, ^) X. [55, . 8.11]

109
(X) , { : X} - (X) , X , { * : X} .
䳺 (X). 4.8.1 (X) (X), { * : X} (X). , , X ^, { * : X } . , ** = 0 , X. (X) XX).
5.6.3. X ? XX) - X.
1) ? XX), {? : X} - XX) ? = ? , X.
2) ? XX), , X 8 ?, { * 8 : X} .
2. , {8}^ ? 쒺, { * 8 : X} . , ? , Ͳ 00Ͳ 0 , XX), ? = ?. , . - , \^ 8 = . , . {}^ ?,
\^) 8.
ܪ
8 ? , 8 .

110
, X5 )
ܪ ܪ
, , , ?
ֳ , , () ( (X)).
5.6.4. 5.11, (4) 4-- 4 4 ^, 2, = 2 {} 2- ( , = = - , (4) \ 4 , 4- { : 4}. ( ) (4) , . 5.6.2.
[55, . 8.10], X () . , (X) \ X. (X) X: ) ΰ (X). 5.6.3 XX).
5.6.5. X հ(X) XX).
. X = { : } 풺 X. հ (X) () հ (X). (). ,

() :
() = X0 (X) --- !
111
, ~ X. ֳ ,
? . = { : } X, , < , , X . , , , :
= ;
0? 0
= {% X : dz, < Dz < (ղ% = ^)}.
, = { : } ֲ, < . > , ^ { : < }) .
- X, , \ ,..., , ().
() = () ѱ
0 (X).
, () XX). 5.6.3 {}^^ , ^ ^ = 0 < . ^ , = \ ,

= { : dz < , = } .
?

112
5.7. ()
() X.
4.24 6.54 [55] X (X) X. , - () Ε(X), . 4.6.1. XX): XX)
* (X).
, - .
5.7.1. ³ X -, [ : X} >, ( X
1) V = : = X X;
2) { X : } .
5.7.2. X .
. X = { : } 풺 X, X. = {ղ ,~1 : < }. = ,
X ,
< Ī < { : < }
> = { : > }. = {2 : }.

113
, , > > . > ] > , = 3 = , = . , > . = 3 ,
3 <3 5
3.
(X) - , -. , - ϲ б () \ X. -, { : } , . , * ( , \ ) .
= > 0. , () 5.7.1.
= ^1 Ϫ -
, 1 ~ = X X. , -1 = > . , V Ѳ &- , Ѳ 1 . , = = 1 > . > , -1 < 3 {,}. < ,
З г< 3 {-1 ,-^}.
, ~ = X.
, , 8 = { : } . , 8 . , 8 \ . ( )

114
= , , ᒺ , 8 . , , 8 . (), = { : 0 * } . , 8 . , 8. = ]^ > |= = 0 ,
( ) ( >)
, , . ?
5.7.3. д X - , V. () :
1) : () ^ (), : ^ , ;
2) : () ^ (), : ^ , ;
3) : () ^ () - V;
4) *().
. (1) ^ (2) ^ (3) , (4) ^ (1) 4.6.1, , () * (). (3) ^ (4), , : () ^ () V.
, *(). 3.7.1, , .
V , { : } V, V { : ^} .
= ֲժ , V. 3 - : () ^ () V , V, (б) , 1,7 -^1 1 X 17^ X X XX X (?.^ XIX
? (), .

115
V {} ,
5 = { X : }
, . , (), ѳ -1 ^ 8.
= {, \ -1 : X \ 8}.
8 = { X : -1} (1) 쒿 () ^ ^ 1111 ^
, ,
{ X : - } = { X : - } = 8 .
, , , = () , , 8 = { X : -1 ?} .. 8 , ,.
5.7.3 5.7.2, .
5.7.4. X - XX) X(X).
5.8. XX)

XX).
5.8.1. X - . XX) XX) , 8, X,

116
1) \Ҳ =3;
2) 8 \ 8\ > 2;
3) , 8-1 -1 {}.
. , - = { X : \ \ > 2}. (3), , 8-1 -1 {}. (2), , 8 , .
(2). \\ > 2.
{} 2- , = . , \ \ > 2.
ᒺ [] = , , {} , ^ . (2), , 8. , , , ҳ \\ = 2. , = = .
, . , , = ܳ. -1 -1 = -1 -1 8-1. , -1 8-1 {}, , -1 = -1 X. , = = . , 3 . , = . , = , . \\ = \ \ = 2, , = = . , = ^ = , (1). ?
6.54 [55], X (X) X. , (X) \ X . (^^),

117
5.8.2. X () X.
. , (). , () - (). ³, : () ^ (), : X ^ X , : () ^ (), : X ^ X . , (). 5.7.4, , Օ (). , .
, . Օ (), 0 , , ᒺ 3 = 0. 0 , \\ > 2 ( ).
, 3- , -1 3-1 {}. , , 5.8.1 , , (), . ?
ֳ , () - , .
5.8.3. - , 2 - - , = , 2. ? *() () (2) () , = ?.
. , ?. (] * . , = {1,..., } , ҳ 2. V = ... .
1) * = * V * ?.
^ ^
, (] * ? . ?

118
5.9. ̳ ()
, () .
- ,
= { : \ \ > \\/2}
. , 䳺 , - , . 5.3.2. () , () , - {} (). , (), .
5.9.1. , - () . (()) () , .
/ = { : } : ^ / . : () ^ (/) .
5.9.2. - , () () : () ^ (/) () 풺.
. 8 : / ^ . () = () (/) = 8() ().
, = . , , .

119
* ? ? , ? {}^ .
= 8 () . , = 8() , = () = () = , , -1 , , -1 , -.
^| (-1 * ) = * * ,
:?
, \^) * .
, , : () ^ (/) 풺. ?\ = ?2 (). {1, 2} = (?) = (? ) ̲ = 8(?). \ = ?\ = ?2 = 2 , ̳ = 2 , ,
(? ) = ? = ?2 = (?2 ).
?
˲ 5.9.3. : () ^ (/) 풺 (). , - () (/).
. ò 2.2.1, , - . , 䳺 - () (). 5.9.2 풺 () , , 풺 , () ( , () - ). ?

120
5.10. ̳ (%)
, (%). , (%2) %2 . , %2 = 2 ,
> 2- ^ > ^ 4 ^ 2
2- 2. : % ^ %2 (풺) % %2 ( - 2 : % ^ %/2% =
2 ).
(. [66, . 2.3.2]), (%2)
> (2) ^ > () ^ (4) ^ (2)
(2). , (%2) - .
5.10.1. : (%) ^ (%2) 풺 - (%). , (%) .
. ò 2.2.1, , 풺 (%). 0 % ( ). 5.2.1 ] = { (%) : } , I (%). , : (%) ^ (%2)

121
1 I. ² Ͳ 00Ͳ 0 ., I 00, () = ().
(2) 0 00
> (2) ^ > () ^ (4) ^ (2),
() = () , 2 () = 2 (), 2 : () ^ (2) , - 2 : ^ 2.
\ . \ 0, 5.2.2 , = 2 + , . , = -1(2()) 2() - 2 : ^ /2 = 2. , 2() 2() \ 2() , , 2() = 2().
2 2 = 2 () 2 \\ = . - 2/ 2- 2 , 2 = 2, : 2 ^ 2/ = 2 -. 5.9.3 , : (2) ^ (2) 풺 (2). , 풺 2(). , 2 () = () = () = 2 ). 풺 : () ^ (2) I , , ./ ().
() , ^ (3) (2). (2) , (3) ./. ?
̳ () - , . [55]. ,

122
)\^ . & ^ .>. . (//) * ^^^ 3"^ . , 0 (/) !
5.10.2. X : X ^ 3, 3 -1() (-), I () ( 0 (X)) (X).
. : ^) ^ (3) - . , () (3). ³, (3) . , ? = ({0,1}, {0, 2}, {1, 2}), 3 = {0,1, 2}. , {?} (3). , ()() = {?}, , (X) = 0.
, , 3 -1() -. , (0(X)) = (3). ? (3). ? , 3, X, -1 () , () = ?. ? = ? . 0, 1, 2& X, -1 (0) -1(1), -1 (2), . ? = (01 )?>(02)\?(1 2) , (?) = ?.
0(X). () (3), {?} (3). , (X). ?
5.11.
() - ( , \\ < 5). ³,

123
() , \\ . \()\ , () - , . [39]. - () \\ < 6. () :
5.1
() \\ < 6
\\ 1 2 3 4 5 6
\()\ 1 2 4 12 81 2646
\()/\ 1 1 2 3 17 447
, . , \\ < 5 : ѳ, 2, 3, 4, 2 2, 5. { : = 1} .
5.11.1. (ѳ) (2). , {1, 2}, - () , ()/ .
5.11.2. (3). 3 ^^^ (3) 1,, , = 2/3 > = {{1,}, {1, }, {, }), (3). (3) 3 = { : 4 = } . 0 1, .
(3)/3 2 = {0,1}, -.
5.11.3. (4^ (2 2) (4) 12 , (4)/4 3 . (4)

124
(4) = {1, , ?}, 1 4 = {1, 1, , },
= ({1,}, {1, }, {, }) ? = ({1,}, {1, }, {1, ,})-
(4) 2 = 2 {} 2 Ͳ 2 (, = = 2). ij 4 (4) , , (4) (4) 4.
(2 2) . (22) = {, , ?} (22), , (1,1) 2 2, ? 4:
= ({(1,1), (1, -1)}, {(1,1), (-1,1)}, {(1, -1), (-1,1)}) ? = ({(1,1), (1,-1)}, {(1,1), (-1,1)}, {(1,1), (-1,-1)}, {(1,-1), (-1,1), (-1,-1)}).
(2 2) ^, (2 2) 2 2 2.
(4) (2 2) .
5.11.1. - \\ = 4.
1) () 2, , , ;
2) () ;
3) () () \ , 2 .
5.11.4. (5). (4), (5) . 81 .
= { 5 : \\> 3},

125
ᳺ 5. 80 5-- 䳿 5, , (5)/5 17 . : (5) ^ (5)/5 .
5 {0,1, 2,3,4} - 5 = {1, 1, 2, 2} ( 1 2 - 4 3, ). ,, 5 {,,}.
(5) 5 :
=(0), 2,
4 =(01, 02,03,04,1234),
=(02, 03,123,014, 234),
2 =(04, 01,124,023,143),
, , ((5)). ((5)) , ^^^ ^ : < / , / = . 2 < , 2 < 4 < ((5)) :



2



(5)
((5)) = {Ѫ (5) : ((5))} =
= { (5) : = }.

126
, 5-
).
. ) . , ? ((5)) ? ? = , 5 \ {0}
(? + ) (? + ) (? + ) (? + ) = ??????? + 4 =
= ? ? + 4 = ? ? + 2 = (? + ) (? + ),
, ? + \/(5).
, (5) - :
=(02,03, 23),
3 =(02,03,04, 234),
0 =(14,012,013,123, 024, 034, 234),
=(02,04,013,124, 234).

= = ,
3 3 = 3 3 3 = ,
0 = = (5) \ 5.
(5) , 0, , 3 䳺 - 5.
/, : ^ + 5,
{1, 1, 2, 2} = 5 5. ? (5) 䳺 ? + .
, 4 = 4 |, = 0 = 0. /,0 : 5 ^ 5, 5, - 5, /,0 : (5) ^ (5)

127
(5). , - ((5)) \/((5)). ,
/ ((5) ̲ Ͳ 00Ͳ 0 Ȳ
,0,, , 5,
17-
ҳ7 = ((5)) ֳ {, 0 : {1, 2}} ֲ {3, : 5},
ᳺ (5)/5. 17 ( X 17 17 ,
? = ):
-
-


2 - 2 -2
\/((5)) 24 ᒺ- 17 ^
/ = {0 + , + : Ѳ, 5}.
(5) + 17 5, - (5) 17:

128
5.2
17
4 2 2 2 2 0,
4 4 2 2 2 2 2
2 2 2 2 2
20 20 20 20 2
20 + 2 20 + 2 20 + 2 20 + 2 2
20 2 20 2 20 2 20 2 2
2 2 2 2 2 2 2 2 2 2 2
2 2 0 0 0 0 2 2 2 2 2
2 2 0 1 0 1 0 1 0 1 2 2 2 2 2
2 2 0 + 1 0 + 1 0 + 1 0 + 1 2 2 2 2 2
0 0 0 0 0 0 2 2 2 2 2
20 20 2 2 2 2 20 20 20 20 2
0 + 1 0 + 1 0 + 1 0 + 1 20 + 2 20 + 2 20 + 2 20 + 2 2
0 1 0 1 0 1 0 1 20 2 20 2 20 2 20 2 2
2 2 0 1 0 1 0 1 0 1 20 + 2 20 + 2 20 + 2 20 + 2 2
2 2 0 + 1 0 + 1 0 + 1 0 + 1 20 2 20 2 20 2 20 2 2
, , @ (5), 0 @ = 2 = 0 (5). , (5) (5) . , 17 (5) , , (5). .
5.11.2. (5) - .
. , (5) , ᳺ (5)/5. ((5)), \/((5)) \/2. ,
2 {, 2, , , , 2, , , 2, 2

129
23 = 0 1 = 0 = 2 , ( + 5) , , .
?
17, (5).
5.11.3.
1) (5).
2) (5) 5 : , , ˱, 2, .
3) (5) 5 {}.
4) (5) 5.
5) (5) (5) .
5.11.5. ϳ . - \\ < 5 , (()) ().
5.3
() \\ < 5
\\ \() () \ ()) (()) = >
2 2 2 1 2 2
3 4 2
4 12 2 2 2 2
5 81 17 5 5 {} 5

130
5
() X. , . - 5.2 (X) X. 5.2.4 , X (X) 22 . 5.2.5 5.2.8 (X)
X IX \ < 8,

X \(X)\ = 1. 5.4 5.5 X, -. 5.3.1 , ? (X) (X) , ? , ? ? X. 5.3.2 , X (, (X) ) , X . () ^^ ^^ , * ^ ? ^) (X) , ? (X) , ? X. (X) () , X IX\ < 5 (, X - \, 3 5). (X) , X IX \ < 4.
5.6 (X). , -, X (X) . , X , 0 (X) (X) , . 5.6.5. (X), (. [55, . 8.10]),

131
(), , (X) .
[55], X /3() X. , () ѕ (X) (), , . 4.6.1. ^): X ^) * (X), . 5.7.4.
ϳ 5.8 ^). 5.8.2 , X - ^) X. ֳ , X (X) (X) X, . [55, . 6.54] 4.5.2. X 3 < X \ < 5 ^) X, . 5.11.
5.9.1, , X , ^) . ()) ^) , .
5.10.1, -, (>) , - (Ʋ2) Ƴ2 2- .

132
Ͳ
. . .. , . , -. - & .
:
() , 8, () 0(8) 0(8);
0(8);
() , , - () , () , - ;
^
,
() (^) (Ƴ2), ^2 - 2- ;
- 0() () .
, - -. : -

133
() , (3) 0(3) , |31 , , , , 3.
, , - , -, , 㳿, -, - . 5 , . , , 1 ? 賳鳿 ҳ . . .

134

1. . / . . - .: , 1985. -
97 .
2. . . / . . - // . . . - 1987. - . 39, 3. - . 303-309.
3. . . / . . // . : . - 1989. - . 70-76.
4. . . / . . // . . - 1991. - . 182, 9. - . 1061-1080.
5. . . - / . . . - .: , 1993. - 108 .
6. . . / . . - // . .-. . - 1999. - . 42, 4. - . 138-141.
7. . . / . . // . .-. . - 2000. - . 43, 1. - . 19-22.
8. . . - - / . . // . . - 1981. - . 259, 2. - . 275-278.
9. . / . , . . - .: , 1972. - 285 .
10. . . - / . . // . . ., . - 1988. - 6. - . 14-17.
11. . . - - / . . // . . ., . - 1989. - . 84-89.

135
12. . . / . . // . - 1988. - 3. - . 54-57.
13. . . / . . // . - 1990. - 2. - . 80-83.
14. . . 㳿 / . . - . - -: , 2001. - 172 .
15. / [ . ., 볳 . 11., . . .]; . . . . - .: , 1990. - . 2. - 479 .
16. . . - / . . // . . . - 1995. - . 47, 4.
- . 506-511.
17. . . - / . . // . . - 1998. - . 63, 3. - . 437-441.
18. . . ( / . . // . . - 1999. - . 66, 6. - . 951-953.
19. . / . // . . . - 1990. - . 42, 6. - . 806-811.
20. . . . / . . , . . . - . . ., 1988. - 251 .
21. . X. / X. . - .: , 1981. - 702 .
22. . / . . - .: , 1986.
- 752 .
23. . Ҳ ܳ ࿳ / . // . . ࿿. 8. - 1951. - \1. 2. - . 839-848.
24. . 1 / . , ³ // . ಲ. ϲ. . - 1990. - . 31, 1. - . 7-11.

136
25. . dz 㳳 888 <> 8 88 / . , . // . . . 8. - 1997. - . 349, 5. - . 1697-1724.
26. . 1 8188 8, : / >8 ೳ / . , V. , . ^ // 1 )8 . - 2008. - 3. - . 1-29.
27. . 1 8, II: ೳ 8 / . , V. // 1 ³ . - 2008. - 4. - . 1-14.
28. . 1 888 8, III: 18 / . , V. // . ³. - 2009. - 31. - . 142-148.
29. . -88 / . , V. . - (- ).
30. . 1 888 8 / . , V. // : ̳. . . (, 2-7 2008 .). - . - 2008. - . 21-24.
31. . ̳ 88 Ӫ 8 / . , . 11 / / Ӫ8ಲ8 . ࿳ . - 2007. - 48, 2. - . 3-18.
32. . 2 ѳ 88 賳 -88 / . , . , . , . // ࿳. - ().
33. . 8س8 [ ]/ . , . :
̳://.1.Ӳ./111//18/1/81.ܳ1
34. . 888 8- ೳ / . , N. , .1. // . . . 8. - 1994. - 116. - . 99-118.
35. . ^88 : ೳ /. , . . ?1, . . 8. - 㳳.: 1, 1990. - 8. - 568 .

137
36. \. \. ˳س: Ϫ 賳 /
\\\ \\\ // 迿. . . 8. - 1977. - . 83. - . 417-455.
37. 㳳 . \. Ӳ ﳳ / . \. 㳳 // . . . 8. - 1978. - \1. 238. - . 271-283.
38. 㳳 . \. ﳳ ͳ / . \\\ , . . 8 // . . - 1978. - . 101. - . 19-38.
39. . 21 21 ^ - 峳 / . // \\. - 1897. - . 1. - . 103-148.
40. . ܲ , / . // س. .1. . - 1957. - 1. - . 509-544.
41. . / . ȳ. - \\--: , 1969. - 211 .
42. 8. ! 1 ()* 1 / 8. , . , // . . - 2007. - 244, 1. - . 154-171.
43. 1 . / . 1, . / // .1. . - 1989. - 68. - . 257-270.
44. V. ʳܳ-111 ^ ࿳ / V. // VI ̳. , . (-, 1-7 2007 .). - -- . - 2007. - . 82-83.
45. V. ʳܳ-111  ࿳ - / V. // , : . V . (, 6-18 2007 .). - -. - 2007. - . 38-40.
46. V. Ӫ / V. // . 8(. - 2007. - 28, 1. - . 92-110.
47. V. ʳܳ-111 ^ ࿳ / V. // . 8(. - 2008. - 29, 1. - . 18-34.

138
48. V. 28 ೳ ^ / V. // : - . ̳. , ., . 80- , . . ϳ (, 25-29 2008 .). - . - 2008. - . 210-211.
49. V. 1 [ -] V. // 81 ҳ, 1 : ೳ 1 (ʳ, 7-11, 2008). -
̳: / / ... / ;!/
50. V. ̳ 1 ϳ / V. // : ̳. . . (, 27 - 1 2009 .). - -. - 2009. - . 46-48.
51. . .1. // 賳 ϳ : 8. (㳳, 1967). - 㳳: 1 ӳ., 1969. - . 89-90.
52. . / . , . .
. . - : ೳ. . 2 \Ӳ8., 1968. 33 .
( 2\\-07).
53. ͳ N. ųﳳ 88 88 ೳ 18 ! 㳳 ? N / N. ͳ // . ܳ. ҳ 8. . - 1974. - 17. - . 1-11.
54. ͳ N. ˳س ܳ / N. ͳ- // N0108 ೳ., 1979. - 751. - . 49-184.
55. ͳ N. 1 8-1 ೳ / N. ͳ, ). ³ೳ88. - 㳳, .\\- : , 1998. - 485 .
56. . 8 ҳ / . , . . - \ : ., 1999. - 291 .
57. 18 . 1881 )8 8 ҳ / . . - 8, 1995. - 402 .

139
58. . 곳 - (ʑ / . // . 8 ., 2007. - . 27, 1. - . 3-18.
59. Ӳ^ .1. ܲ 2494 / .1. Ӳ^ // . . ܲ - 1974. - \1. 81. - . 902.
60. ?1 . ^ : / . ?1. - 㳳: 1. - 1990. - . 7. - 147 .
61. . ܳ . / . . - Ӳ: , 1997. - . 2. - 70 .
62. . dz 18 / . . . . - Ӳ: , 2003. - 11. - 148 .
63. \. 8111 8: / \\\ // . - 1984. - . 1079. - . 1-260.
64. . ͳ ! ೳ / . // . 8. - 1997. - . 7, 2. - . 205-210.
65. . ʳ糳 ! / . // . . - 1998. - 24, 3-4. - . 283-288.
66. . 11 11 . / . , . 2. - Ӳ: , 1999. - 5.
- 264 .
67. ̳ . 8188 \ / . ̳ // : . , 1977. - 85. - 238 .
68. . 111 / . // : . , 1972. - 41. - 155 .
69. . / . // 11 ೳ 1 ^, IV: . 11 ., (, 1976).
- : 8. / ࿳ , 1977. - . 477-480.


*-, 52 ^-, 19
1.1 X , 1.
, 20 , 18 , 20 , 20 , 20 , 18 , 18
, 10 25
, 22 ^-, 39 , 11, 33 , 67 , 33
^-, 41 , 39 , 18 , 12
, 23 , 92 , 103 , 23, 42 , 92
, 19
, 12, 18 , 22
, 18
^-, 19 , 19 , 19 , 18 , 19 , 20 , 19 , 20 , 103 , 1^^ , 18 , 18
, 18
, 84 , 19 , 37 , 18 , 18 , 27 , 42
³, 22 , 35
, 31, 41 -, 95 , 41 , 112
,
-, 14
, 18 , 18
140





90% antiplagiat.ru, etxt.ru advego.ru