, , , , , . , .













As is generally known, science and education are one of resources of the state, one of fundamental forms of culture of civilization, as well as competitive advantage of every individual. Basics of general theory of systems (GTS) and systemic analysis.


: . : . . : 13.10.2008. : 2008. antiplagiat.ru: --.





Author: Vladislav I. Kaganovskiy,
student of the Group # 02.313
of professional re-training
in sphere HR management

Wars are won by school teacher
Otto von Bismark
Selected aspects of stimulation of scientific thinking
As is generally known, science and education are one of strategic resources of the state, one of fundamental forms of culture of civilization, as well as competitive advantage of every individual. Global discoveries of modern life occur both deep in and at the junction of various sciences, and at that, often and often the more unusual the combination of sciences is, the wider range of scientific prospects is promised by non-standard conspectus of their combination, for example, biology and electronics, philology and mathematics, etc. Discoveries in one area stimulate development in other spheres of science as well. Scientific development of a society is a programmable and predictable phenomenon, and this issue is specifically dealt by the futurology science. Modern techniques of pedagogy, psychology, medicine and other sciences do not only enable orientation and informational pumping of human brain, but also the formation of an individual's character optimally suitable for the role of scientist. Unlike a computer, any human being has intuition - the element of thinking so far in no way replaceable (although some developments in this sphere are coming into being). Narrow specialization of scientists tapers the scope of their activity and is explained by an immense volume of information required for modern scientist. This problem is being solved (partially though) through a variety of actions - intellectualization of computers, simplification of information (its reduction to short, but data intensive/high-capacity formulas and formulations), application of psycho-technologies. Psycho-technologies (mnemonics, educational games, hypnopaedia, (auto-) hypnosis, propaganda and advertising methods and techniques, including technotronic and pharmacological /nootropic preparations/, etc.) make it possible to solve the following problem. A black box concept applied in computer science designates a system into which the chaotic information is entered, and in a little while a version, hypothesis or theory is produced. A human being represents (with some reservations though) such a system. Information processing occurs consciously and subconsciously based on certain rules (program). The more information processing rules we enter, the fewer number of degrees of freedom remains in the system. Hence, it is desirable to enter the very basic axioms. Differences in programs (even mere default - but without lack of key information) form differences in opinions and argumentation. The longer the period of program operation is (including based on internal biological clock), the greater the effect one can expect. The provability of success is directly proportional to the quantity of samples/tests, hence it is desirable to build in basic mechanisms of scientific thinking at the earliest age possible in a maximum wide audience and to stimulate their active work, and in certain time intervals make evaluation and update of programs of thinking. Comprehension by an individual of new skills occurs only step-wise. Transition between two following mental conditions takes place: I'll never understand how this can be done and I'll never be able to do it and it is so obvious that I can't understand what needs to be explained here. Except for early childhood, the leaps of this kind occur when mastering reading and mastering writing, mastering all standard extensions of set of numbers (fractional, negative, rational numbers, but not complex numbers), when mastering the concept of infinitesimal value and its consequences (the limits), differentiation, when mastering integration, complex of specific abilities forming the phenomenon of information generating (in other words, in the course of transition from studying science or art to purposeful/conscious professional creative work). We hereby note that at any of these stages, for the reasons not quite clear to us, the leap may not occur. It means that certain ability has not turned into a stage of subconscious professional application and cannot be used randomly by an individual for the solution of problems he/she faces. At that, the required algorithm may be well known. In other words, an individual knows letters. He/she knows how to write them. He/she can form words from them. He/she can write a sentence. But! This work would require all his/her intellectual and mainly physical effort. For the reason that all resources of the brain are spent for the process of writing, errors are inevitable. It is obvious that despite formal literacy (the presence of knowledge of algorithm) an individual cannot be engaged in any activity for which the ability to write is one of the basic or at least essential skills. Similar state of an individual is widely known in modern pedagogy and is called functional illiteracy. Similarly, one can speak of functional inability to integrate (quite a frequent reason for the exclusion of the 1st and 2nd grade students from physical and mathematical departments). Curiously enough, at higher levels the leap does not occur so often, to the extent that it is even considered normal. The formula: An excellent student, but failed to make proper choice of vocation. Well, he's not a physicist by virtue of thinking - well, that's the way (the leap allowing to mechanically employ specific style of thinking / physical in this case / did not occur). As to automatic creativity, these concepts in general are considered disconnected, and individuals for whom the process of creation of new essentialities in science and culture is the ordinary professional work not demanding special strain of effort are named geniuses. However, a child sick with functional illiteracy would perceive his peer who has mastered writing to the extent of being able of doing it without looking into a writing-book, a genius, too! Thus, we arrive at the conclusion that creativity at the level of simple genius is basically accessible to everyone. Modern education translates to pupils' knowledge (of which, according to research, 90 % is being well and almost immediately forgotten) and very limited number of skills which would in a step-wise manner move the individual to the following stage of intellectual or physical development. One should know right well that endless school classes and home work, exhausting sports trainings are no more than eternal throwing of cube in the hope that lucky number will come out - in the hope of a click. And the click may occur at the first dash. It may never occur as well. Accordingly, the philosophy repetition is the mother of learning in effect adds up to a trial-and-error method which has been for a long time and fairly branded as such by TRIZists (the followers of Inventive Problems Solution Theory). As a matter of fact, the uneven nature of transition between in-and out- states at the moment of click suggests that it is a question of structural transformation of mentality. That is, click requires destruction of a structure (a pattern of thought, a picture of the world) and creation of another one in which a new skill is included hardwarily to be used automatically. Restrictions stimulate internal activity. It is proven that creative task Draw something without setting pre-determined conditions with restrictions is carried out less productively and less originally than the task: Draw an unusual animal with a pencil during 30 minutes (Sergey Pereslegin). Required personal qualities - traits of character /temperamental attributes/ may be divided into four conventional groups: necessary, desirable, undesirable and inadmissible. Knowledge can be divided into two groups: means and ways of information processing (including philosophy, logic, mathematics, etc.), the so-called meta-skills or meta-knowledge/ which are universal and applicable in any field of activity), and the subject (subjects) matter per se. From the view point of methodology all methods of scientific knowledge can be divided into five basic groups: 1. Philosophical methods. These include dialectics and metaphysics. 2. General scientific (general logical) approaches and research methods - analysis and synthesis, induction and deduction, abstraction, generalization, idealization, analogy, modeling, stochastic-statistical methods, systemic approach, etc. 3. Special-scientific methods: totality of techniques, research methods used in one or another field of knowledge. 4. Disciplinary methods, i.e. a set of methods applied in one or another discipline. 5. Methods of interdisciplinary research - a set of several synthetic, integrative methods generated mainly at the cross-disciplinary junction of branches of science. Scientific cognition is characterized by two levels - empirical and theoretical. Characteristic feature of empirical knowledge is the fact fixing activity. Theoretical cognition is substantial cognition /knowledge per se/ which occurs at the level of high order abstraction. There two ways to attempt to solve a problem: search for the necessary information or investigate it independently by means of observation, experiments and theoretical thinking. Observation and experiment are the most important methods of research in the process of scientific cognition. It is often said that theory is generalization of practice, experience or observations. Scientific generalizations often imply the use of a number of special logical methods: 1) Universalization /globbing/ method which consists in that general points/aspects/ and properties observed in the limited set of experiments hold true for all possible cases; 2) Idealization method consisting in that conditions are specified at which processes described in laws occur in their pure form, i.e. the way they cannot occur in reality; 3) Conceptualization method consisting in that concepts borrowed from other theories are entered into the formulation of laws, these concepts acquiring acceptably /accurate/ exact meaning and significance. Major methods of scientific cognition are: 1) Method of ascending from abstract to concrete. The process of scientific cognition is always connected with transition from extremely simple concepts to more difficult concrete ones. 2) Method of modeling and principle of system. It consists in that the object inaccessible to direct research is replaced with its model. A model possesses similarity with the object in terms of its properties that are of interest for the researcher. 3) Experiment and observation. In the course of experiment the observer would isolate artificially a number of characteristics of the investigated system and examine their dependence on other parameters. It is necessary to take into account that about 10 - 25 % of scientific information is proven outdated annually and in the near future this figure can reach 70%; according to other sources, the volume of information doubles every 5 years. It means that the system of education/teaching and non-stop retraining applied in some cases will become a universal and mandatory phenomenon, whereas the boundary between necessary and desirable knowledge will become more vague and conventional. In modern conditions active and purposeful studying of someone's future sphere (spheres) of activity should start 4-5 years prior to entering the university. Considerable development will be seen in preventive (pre-emptive, anticipatory) education taking into account prospects of development of science for 3-5-10 years from no on. Masterful knowledge of methods of scientific-analytical and creative thinking is becoming the same social standard and a sign of affiliation to elite social groups as, for example, the presence of higher education diploma. The law of inverse proportionality of controllability and the ability to development says the more the system is controllable, the less it is capable of development. Controllable development may only be overtaking/catching up/. Now, a few thoughts about errors in the course of training. Traditional approach tends to consider an error as the lack of learning, assiduity, attention, diligence, etc. As a result the one to blame is a trainee. Error should be perceived as a constructive element in the system of heuristic training. An educational institution is just the institute where the person should make mistakes under the guidance of a teacher. An important element of cognitive system is professional terminology. The lack of knowledge of terms would not release anyone from the need to understand Each term contains the concentrated mass of nuances and details distinguishing the scientific vision of the matter in question from the ordinary, unscientific understanding It should be mentioned that the process of teaching/educating/ is a stress which has pluses and minuses, whereas the process of studying is a much smaller stress. One of the main tasks in terms of (self-) education may be the formation of active desire (internal requirement) to study and be engaged in (self-) education with independent search of appropriate means and possibilities. Special consideration should be given to teaching/training means and methods, i.e. what is comprehensible to one group of trainees may be useless for others. Major differentiation would be seen in age categories plus individual features. Training games are quite a universal tool used for a wide range of subjects and development of practical skills, since the game reflects the trainee's behavior in reality. It is a system that provides an immediate feedback. Instead of listening to a lecture the trainee is given the individual lesson adapted for his/her needs. Game is modeling of reality and method of influencing it by the trainee. Some minuses of game include conventionality and schematic nature of what is going on and the development of the trainee's behavioral and cogitative stereotypes. Major strategic consequences of wide spread of scientific thinking skills may include systemic (including quantitative - qualitative) changes in the system of science, education and industry, sharp increase of labor force mobility (both white and blue collar) and possible global social-economic and social-political changes.
Part 1. Meta-skills:
Pass preliminary test by means of Kettel's 16-factor questionnaire (form C), test your IQ (Intelligence Quotient) using Aizenc's test. Undergo testing for operative and long-term memory, attention distribution, noise immunity and will. Plan the development of these qualities in your character.
Methods of work with the text
(W. Tuckman Educational Psychology. From Theory to Application. Florida. State University. 1992):
1. Look through the text before reading it in detail to determine what it is about.
2. Focus your attention on the most significant places (semantic nodes) in the text.
3. Keep short record (summary/synopsis) of the most significant facts.
4. Keep close watch of understanding of what you read. If something appears not quite understood, re-read the paragraph once again.
5. Check up and generalize (analyze) what you have read in respect to the purpose of your reading.
6. Check up the correctness of understanding of separate words and thoughts in reference literature.
7. Quickly resume the work (reading) if you have been interrupted.
Training of fast reading - Fast Reader 32 Program. Download the program: nodevice.ru/soft/windows/education/trenning/5072.html kornjakov.ru/index.htm, freesoft.ru/? id=670591 - for handheld computer. Plan 2-week result-oriented trainings - your current maximum is + 50%.
Methods of critical and creative thinking
Critical thinking:
1. Analytical thinking (information analysis, selection of necessary facts, comparison, collation of facts, phenomena). Useful questions in this connection are who?, what?, where?, when?, why?, where?, what for?, how?, how many/much?, what?(which?) to be asked in the most unusual combinations, while trying to find (to suppose) all options of answers.
2. Associative thinking (determination of associations with the previously studied familiar facts, phenomena, determination of associations with new qualities of a subject, phenomenon, etc.).
3. Independence of thinking (the absence of dependence on authorities and/or stereotypes, prejudices, etc.).
4. Logic thinking (the ability to build the logic of provability of the decision made, the internal logic of a problem being solved, the logic of sequence of actions undertaken for the solution of the problem, etc.).
5. Systemic thinking (the ability to consider the object, the problem in question within the integrity of their ties/relations and characteristics).
Creative thinking:
1. Ability of mental experimentation, spatial imagination.
2. Ability of independent transfer of knowledge for the decision of new problem, task, search of new decisions.
3. Combinatory abilities (the ability to combine the earlier known methods, ways of task/problem solution in a new combined, complex way - the morphological analysis).
4. Prognostic abilities (the ability to anticipate possible consequences of the decisions made, ability to establish cause-and-effect relations).
5. Heuristic way of thinking, intuitive inspiration, insight. The above stated abilities can be supplemented by specific abilities to work with information, for which purpose it is important to be able to select required (for specific goals) information from various sources to analyze it, systematize and generalize the data obtained in accordance with the cognitive task set forth, the ability to reveal problems in various fields of knowledge, in the surrounding reality, to make grounded hypotheses for their solution. It is also necessary to be able to put experiments (not only mental, but also natural), make well-reasoned conclusions, build the system of proofs, to be able to process statistically the data obtained from test and experimental checks, to be able to generate new ideas, possible ways of search of decisions, registration of results, to be able to work in the collective, while solving cognitive, creative tasks in cooperation with others, at that playing different social roles, as well as to be master of art and culture of communication.
Research and search methods of information processing:
1. Independent search and selection of information on specific problem.
2. Information analysis for the purpose of selection of facts, data necessary for the description of the object of study, its characteristics, qualities; for selection of facts conducive to the provability and/or refutation of the vision of the task/problem solution; building of facts, data analyzed in the logical sequence of proofs, etc.
3. Definition, vision of problems that need examination and solution.
4. Making hypotheses with definition of ways to check (solve) them.
5. Determination of methods, ways of solution of the investigated problem, stages of its solution by an individual or joint, group effort.
6. Registration of results of research or search activity.
7. Argumentation of the results achieved.
8. Projecting the occurrence of new problems in the given area of knowledge, practical activities.
Universal plan of scientific management (SM)
1. Statement of an overall goal (task) - minimum, optimum and maximum.
2. Setting of intermediate goals (tasks), their prioritization, time-frames of implementation.
3. Mechanisms (methods, schemes) of their achievement.
4. Required logistical, informational and financial support.
5. Personnel (including statement of problem before each employee following detailed instructional advice and determination of implementation time-frames).
6. Ways and means of control, possible failures and disturbances, methods, time-frames, personnel, materials, equipment, information and finance to rectify the latter.
7. Task adjustment in case of changes of situation, adaptation of the work performed (at all stages) to a new problem.
TRIZ - Inventive Problems Solution Theory (IPST)
Algorithm of activity:
1. A. Set a task. B. Imagine ideal result (is there a problem at all?). C. What prevents from the achievement of a goal (find contradiction), why does it prevent from its achievement (reveal cause-and-effect relations). D. On what conditions prevention will not occur?
2. A. Required (possible) internal changes (the sizes: larger, smaller, longer, shorter, thicker, thinner, deeper, shallower, vertically, horizontally, sloping, in parallel, in ledges, in layers/slices, transpose/rearrange, crosswise, convergence, to surround, to mix/stir, borders; the quantity: more, less, proportions, to divide, attach, add, remove; form: usual, unusual, rounded, straight, jags, unevenness, rough, equal, even/smooth, damage proof, delays, accidents, foolproofing and protection from larceny, to add; movement: to accelerate, slow down, stir up/revive/brighten up, stop, direction, deviation, pulling, pushing away, to block, lift, lower/pull down, rotate, fluctuate, arouse; condition: hot, cooler, firmer, softer, opened, closed, pre-assembled, disposable, combined, divided, hardening, liquid, gaseous, powder-like, wearability, to grease, moist, dry, isolated, gelatinous, plasmic, elastic, resists, superposes/matches). B. Division of an object (and/or subject) into independent parts: a. Segregation of weak (including potentially weak) part (parts). b. Segregation of required and sufficient part (parts). c. Segregation of identical (including duplicating, similar) parts (including in other systems). d. Division into parts with different functions. C. External changes. D. Changes in the adjacent objects. a. Establishment of links between the previously independent objects performing one work (including a network). b. Removal of objects because of transfer of their functions to other objects. c. Increase in the number of objects at the expense of the reverse side of the area. E. Measurement of time: faster, more slowly, longer, eternal, single-step, cyclic, time-wise marked, update, variable. F. Ascertainment of ties with other fields of knowledge (how is this contradiction solved there? what can be borrowed from there at all?). Prototypes in nature. G. Read the dictionaries for verbal associations (including non-standard). H. In case of failure revert to the initial problem to expand its situation/formulation.
3. A. Introduce necessary changes in the object (work). B. Introduce changes in other objects connected with the given one. C. Introduce changes in methods and expand the sphere of use of the object. D. Ask questions how can we achieve the same result without using this product (using it partially) or without doing this work (doing it partially)?, how can we make the product (work) easier, more durable, safer, cheaper, in a more accelerated manner, pleasant, useful, universal, convenient, friendly, more ergonomic, harmless, pure, reliable, effective, attractive and bright, portable, valuable, status ranking, etc. E. Conduct preliminary tests, finish off, if necessary. Develop IGM (income generation mechanism). F. Check the applicability of the solution(s) found in respect of other problems. G. Take out a patent for the idea. See also: www.triz-journal.com, altshuller.ru/
Concepts, substance and laws of dialectics
1) The world (the being, reality) exists objectively, i.e. irrespective of the will and conscience of a human being. 2) The world has not been created by anybody and cannot be destroyed by anybody. It exists and develops in accordance with natural laws. There are no supernatural forces in it. 3) The world is unique and there are no extra-mundane spheres and phenomena in it (standing above the world or beyond the world) that are absolutely abjoint from each other. Diverse objects and the phenomena of the reality represent various kinds of moving matter and energy. 4) The world is coherent and is in eternal, continuous movement, development. Objects of the reality interact with each other, influence upon each other. In the process of development qualitative changes in objects, including natural transition from the lowest forms to the higher, take place. 5) Natural development of a matter through a number of natural steps (the inorganic/inanimate nature/abiocoen/ - life - society) has led to the origin of human being, intellect, conscience. The crucial role in the segregation of human being from animality and the formation of its conscience was played by labor, its social nature, transition of the human being's animal ancestors to regular production and application of instruments of labor. 6) Society being the higher step of development of substance includes all lowest forms and levels (mechanical, physical, chemical, biological) on the basis of which it has arisen, but is not reduced to them only. It exists and develops on the basis of social laws which qualitatively differ from the laws of the lowest forms. The paramount law of social development is the determinant role of production in the life of the society. Mode of production of material life conditions social, political and spiritual processes of life in general. 7) The world is knowable. Human knowledge is unlimited by nature, but is limited historically at each stage of its development and for each separate individual. The criterion for the verity of thinking and cognition is public practice. In recent years the need arose for the formation of higher form of dialectic-materialistic outlook - spiritual materialism. Spiritual materialism extends the line of classical materialism in terms of recognition of objective character of existence, its cognoscibility, natural evolution of substance from the lowest to the higher forms, exclusion of notions of supernatural from scientific beliefs/notions, etc. At the same time, spiritual materialism overcomes absolutization of superiority of material over the spiritual, contraposition and discontinuity of these fundamentals inherent in the former forms of materialism, and directs towards the revelation of their unity, complex interrelation, interpenetration, definite fixation of relations in which the material and spiritual determine each other in the process of functioning and development of objects. Three main laws of dialectics are: the law of transition from quantity to quality, the law of unity and conflict of opposites and the law of negation of negation. There is more to it than these three major laws in dialectics. Abscque hoc, there are a number of other dialectic laws concretizing and supplementing organic laws of dialectics expressed in categories substance and phenomenon, content and form, contingency and necessity, cause and effect, possibility and reality, individual, special and general, the dialectic triad: thesis, antithesis and synthesis. Categories and laws of dialectics exist within a certain system in which the substance/essence of dialectics proper is expressed.
Analysis of the decision-making methods without use of numerical values of probability (exemplificative of the investment projects).
In practice situations are often found when it is difficult enough to estimate the value of probability of an event. In such cases methods are often times applied which do not involve using numerical values of probabilities: maximax - maximization of the maximum result of the project; maximin - maximization of the minimum result of the project; minimax - minimization of maximum losses; compromise - Gurvitz's criterion: weighing of minimum and maximum results of the project. For decision-making on realization of investment projects a matrix is built. Matrix columns correspond to the possible states of nature, i.e. situations which are beyond of control of the head of an enterprise. Lines of the matrix correspond to possible alternatives of realization of the investment project - strategies which may be chosen by the director. The matrix cells specify the results of each strategy for each state of nature. Example: The enterprise analyzes the investment civil-engineering design of a line for the production of new kind of product. There are two possibilities: the construction of a high power capacity line or to construct low power line. Net present value of the project depends on the demand for production, whereas the exact volume of demand is unknown, however, it is known that there are three basic possibilities: absence of demand, average demand and great demand. The matrix cells (see table 1) show net present value of the project at a certain state of nature, provided that the enterprise will choose the appropriate strategy. The last line shows what strategy is optimum in each state of nature. The maximax decision would be to construct a high power capacity line: the maximum net present value will thus be 300 which correspond to the great demand situation. The maximum criterion reflects the position of the enterprise director - the optimist ignoring possible losses. The maximin decision, i.e. to construct a low power line: the minimum result of this strategy is the loss of 100 (which is better than possible loss of 200 in case of construction of a high power capacity line). The maximin criterion reflects the position of the director who is in no way disposed towards taking risk and is notable for his/her extreme pessimism. This criterion is quite useful in situations where risk is especially high (for example when the existence of an enterprise depends on the results of the investment project). Threat is determined by two components: possibilities and intention of the contestant.
Table 1.
Example of construction of the matrix of strategy and states of nature for the investment project.
State of nature : absence of demand
State of nature : medium demand
State of nature : great demand
Construct a low power line
Construct a high power capacity line
Optimum strategy for the given state of nature
Construct a low power line
Construct a high power capacity line
Construct a high power capacity line
To apply the minimax criterion let us construct a matrix of regrets (see table 2). The cells of this matrix show the extent/value of regret, i.e the difference between actual and the best results which could have been achieved by the enterprise at the given state of nature. Regret shows what is being lost by the enterprise as a result of making wrong decision. The minimax decision corresponds to the strategy, whereby the maximum regret is minimal. In our case of low power line maximum regret makes 150 (in great demand situation) and for a high power capacity line - 100 (in the absence of demand). As 100 <150, the minimax decision would be to construct a high power capacity line. The minimax criterion is oriented not so much towards actual as possible damages or loss of profit.
Table 2.
Example of structure of the matrix of regrets for minimax criterion
State of nature: absence of demand
State of nature: medium demand
State of nature: great demand
Construct a low power line
(-100) - (-100) =0
200 - 150=50
300 - 150=150
Construct a high power capacity line
(-100) - (-200) =100
200 - 200=0
300 - 300=0
Optimum strategy for the given state of nature
Construct a low power line
Construct a high power capacity line
Construct a high power capacity line
Gurvitz's criterion consists in that minimum and maximum results of each strategy are assigned weight. Evaluation of result of each strategy equals to the sum of maximum and minimum results multiplied by corresponding weight.
Let's assume that the weight of the minimum result is equal to 0.5, the weight of the maximum result equals to 0.5 as well (it is the probabilistic characteristic; in this case probability of onset of any option of events = 50 %, as far as we have 2 options : 50 % + 50 % = 100 %; if there will be 3 options, then the ratio can be 33,33 (%) for each or, for example, 20 %, 25 % and 55 %). Then the calculation for each strategy will be the following:
Low power line: 0.5 (-100) + 0.5 150 = (-50) + 75 = 25;
High power capacity line: 0.5 (-200) + 0.5 300 = (-100) + 150 = 50.
Gurvitz's criterion testifies in favor of the construction of high power capacity line (as 50> 25). Advantage and simultaneously disadvantage of Gurvitz's criterion consists in the necessity of assigning weights to the possible outcomes; it allows taking into account specificity of situation, however, assigning weights always implies some subjectivity. As a result of the fact that in real situations there is often lack of information on the probabilities of outcomes the use of the above methods in engineering of investment projects is quite justified. However, the choice of concrete criterion depends on the specificity of situations and individual preferences of an analyst (the company's strategy).
Data mining, getting/acquisition of information (it should be noted that many modern data mining techniques focus mainly on search of information based on key parameters (words, images, matrixes, algorithms), but in that way we will only be able to bring out ties/links that have already been exposed by someone else). According to the theory of information (Stanislav Yankovsky), requisite condition of activity of intellectual (higher) system is the redundancy of incoming and generated information, read and think to lay up in store/as a reserve, accumulate assets which expands your possibilities and get rid of liabilities which reduce your potential. Any phenomenon should be analyzed from the view point of what it gives to you and what it takes from you. Even two most universal resources - money and information (sometimes time is added thereto) - also limit to some extent the possibilities of their holder. A very important point in the evaluation of information is reliability of the source of information and credibility of data itself. Specific code of marking information carriers is applied for this purpose. Reliability of source: A - absolutely reliable source; B - usually reliable source; C - quite reliable source; D - not always reliable source; E - unreliable source; F - reliability of source cannot be defined. Credibility of data: 1 - credibility of data is proven by data from other sources; 2 - data are probably correct; 3 - data are possibly correct; 4 - doubtful data; 5 - data are improbable; 6 - credibility of data cannot be established. It should be noted that many elements of scientific, research and analytical activity are weakly formalizable, in which connection practical experience in the concrete field of activity gains great importance.
Issues recommended for independent study: the Game theory, the theory of fields, the theory of crises, the chaos theory, the theory of relativity, the management, strategy and tactics theories, basics of logic and statistics - concepts, substance/essence, stereotypes, paradoxes. See also: Software Archivarius 3000 likasoft.com - highly effective searcher in database on the basis of keywords.
Now, be prepared, it is going to be a little bit difficult.
Part 2. Basics of general theory of systems (GTS) and systemic analysis
The world as a whole is a system which, in turn, consists of multitude of large and small systems. In the classical theory of systems one can single out three various classes of objects: the primitive systems, which structure is invariable (for example, the mathematical pendulum); analytical systems, which almost always have fixed structure, but sometimes undergo bifurcations - spasmodic changes of structure (simple ecosystem); chaotic systems continually changing their structure (for example, atmosphere of the Earth). Chaos is essentially an unstable structural system. In this sense chaos is a synonym of changeable, internally inconsistent, unstable developing system which cannot be referred to analytical structures. Having established the general principles of management in any systems, one can try to determine how the system should be organized to work most effectively. This approach to research of problems of management from general to particular, from abstract to concrete is named organizational or systemic. Such approach provides the possibility of studying of a considerable quantity of alternative variants, the analysis of limitations and consequences of decisions made. The system is a set of interacting elements, said Berthalanfie, one of the founders of the modern General Theory of Systems (GTS) emphasizing that the system is a structure in which elements somehow or other affect each other (interact). Is such definition sufficient to distinguish a system from non-system? Obviously, it is not, because in any structure its elements passively or actively somehow interact with each other (press, push, attract/draw, induce, heat up, get on someone nerves, feel nervous, deceive, absorb, etc.). Any set of elements always operates somehow or other and it is impossible to find an object which would not make any actions. However, these actions can be accidental, purposeless, although accidentally and unpredictably, they can be conducive to the achievement of some goal. Though a sign of action is the core, it determines not the concept of the system, but one of the essential conditions of this concept. The system is an isolated part, a fragment of the world, the Universe, possessing a special property emergence/emergent factor, relative self-sufficiency (thermodynamic isolation), said P. Etkins. But any object is a part or a Universe fragment, and each object differs from the others in some special property (emergence/emergent factor - a property which is not characteristic of simple sum of all parts of the given system), including a place of its location, period of existence, etc. And at that, each object is to a certain degree thermodynamically independent, although is dependent on its environment. Hence, this definition also defines not only a system itself, but some consequences of systemic nature as well. Adequate/comprehensive/ definition of the concept system is possibly, non-existent, because the concept goal/purpose has been underestimated. Any properties of systems are ultimately connected with the concept of goal/purpose because any system differs from other systems in the constancy of its actions, and the aspiration to keep this constancy is a distinctive feature of any system. Nowadays the goal/purpose is treated as one of the elements of behavior and conscious activity of an individual which characterizes anticipation/vision of comprehension of the result of activity and the way of its realization by means of certain ways and methods. The purpose/goal acts as the way of integration of various actions of an individual in some kind of sequence or system. So, the purpose is interpreted as purely human factor inherent only in human being. There's nothing for it but to apply the concept of purpose/goal not only to psychological activity of an individual, but to the concept of system, because the basic distinctive feature of any system is it designation for some purpose/goal. Any system is always intended for something, is purposeful and serves some definite purpose/goal, and the goal is set not only before the individual, but before each system as well, regardless of its complexity. Nevertheless, none of definitions of a system does practically contain the concept of purpose/goal, although it is the aim, but not the signs of action, emergence factor or something else, which is a system forming factor. There are no systems without goal/purpose, and to achieve this purpose the group of elements consolidates in a system and operates. Purposefulness is defined by a question What can this object do? The system is a complex of discretionary involved elements jointly contributing to the achievement of the predetermined benefit, which is assumed to be the core system forming factor. One can only facilitate the achievement of specific goal, while the predetermined benefits can only be the goal. The only thing to be clarified now is who or what determines the usefulness of the result. In other words, who or what sets the goal before the system? The entire theory of systems is built on the basis of four axioms and four laws which are deduced from the axioms: axiom #1: a system always has one consistent/invariable general goal/purpose (the principle of system purposefulness, predestination); axiom #2: the goal for the systems is set from the outside (the principle of goal setting for the systems); axiom #3: to achieve the goal the system should operate in a certain mode (the principle of systems' performance) - law #1: the law of conservation (the principle of consistency of systems' performance for the conservation of the consistency of goal/ purpose), law #2: the law of cause-and-effect limitations (the principle of determinism of systems' performance), law #3: the law of hierarchies of goals/purposes (the principle of breakdown of goal/purpose into sub-goals/sub-purposes), law #4: the law of hierarchies of systems (the principle of distribution of sub-goals/sub-purposes between subsystems and the principle of subordination of subsystems); axiom 4: the result of systems' performance exists independently from the systems themselves (the principle of independence of the performance result). Axiom #1: the principle of purposefulness. At first it is necessary to determine what meaning we attach to the concept system, as far as at first sight there are at least two groups of objects: systems and non-systems. In which case the object presents a system? It is not likely that any object can be a system, although both systems and non-systems consist of a set of parts (components, elements, etc.). In some cases a heap of sand is a structure, but not a system, although it consists of a set of elements representing heterogeneity of density in space (grains of sand in conjunction with hollows). However, in other cases the same heap of sand can be a system. So, what is the difference then between the structure-system and the structure-non-system, since after all both do consist of elements? All objects can be divided into two big groups, if certain equal external influence is exerted upon them: those with consistent retaliatory actions and those with variable and unpredictable response action. Thus, if we change external influence we then again will get the same two groups, but their structure will change: other objects will now be characterized by the consistency of response actions under the influence of new factors, while those previously characterized by such constancy under the former influencing factors will have no such characteristics under the influence of new factors any more. Let us call the systems those objects consisting of a set of elements and characterized by the constancy/consistency of actions in response to certain external influences. Those not characterized by the constancy of response actions under the same influences may be called casual sets of elements with respect to these influences. Hence, the concept of system is relative depending on how the given group of elements reacts to the given certain external influence. The constancy and similarity of reaction of the interacting group of elements in respect of certain external influence is the criterion of system. The constancy of actions in response to certain external influence is the goal/purpose of the given system. Hence, the goal/purpose stipulates direction of the system's performance. Any systems differ in constancy of performance/actions and differ from each other in purposefulness (predestination for something concrete). There is no system in general, but there are always concrete systems intended for some specific goals/purposes. Any object of our World differs from another only in purpose, predetermination for something. Different systems have different goals/purposes and they determine distinction between the systems. Hence, the opposite conclusion may be drawn: if there any system exists, it means it has a goal/purpose. We do not always understand the goals/purposes of either systems, but they (goals/purposes) are always present in any systems. We cannot tell, for example, what for is the atom of hydrogen needed, but we can not deny that it is necessary for the creation of polymeric organic chains or, for example, for the formation of a molecule of water. Anyway, if we need to construct a water molecule, we need to take, besides the atom of oxygen, two atoms of hydrogen instead of carbon or any other element. The system may be such group of elements only in which the result of their general interaction differs from the results of separate actions of each of these elements. The result may differ both qualitatively and quantitatively. The mass of the heap of sand is more than the mass of a separate grain of sand (quantitative difference). The room which walls are built of bricks has a property to limit space volume which is not the case with separate bricks (qualitative difference). Any system is always predetermined for some purpose, but it always has one and the same purpose. Haemoglobin as a system is always intended for the transfer of oxygen only, a car is intended for transportation and the juice extractor for squeezing of juice from fruit. One can use the juice extractor made of iron to hammer in a nail, but it is not the juice extractor system's purpose. This constancy of purpose obliges any systems to always operate to achieve one and the same goal predetermined for them.
The principle of goal-setting. A car is intended for transportation, a calculator - for calculations, a lantern - for illumination, etc. But the goal of transportation is needed not for the car but for someone or something external with respect to it. The car only needs its ability to implement the function in order to achieve this goal. The goal is to meet the need of something external in something, and this system only implements the goal while serving this external something. Hence, the goal for a system is set from the outside, and the only thing required from the system is the ability to implement this goal. This external something is another system or systems, because the World is tamped only with systems. Goal-setting always excludes independent choice of the goal by the system. The goal can be set to the system as the order/command and directive. There is a difference between these concepts. The order/command is a rigid instruction, it requires execution of just IT with the preset accuracy and only IN THAT MANNER and not in any other way, i.e. the system is not given the right to choose actions for the achievement of the goal and all its actions are strictly defined. Directive is a milder concept, whereby the IT is set only the given or approximate accuracy, but the right to choose actions is given to the system itself. Directive can be set only to systems with well developed management unit/control block which can make choice of necessary actions by itself. None of the systems does possess free will and can set the goal before itself; it comes to it from the outside. But are there any systems which are self-sufficient and set the goals before themselves? For example, we, the people, are sort of able of setting goals before ourselves and carry them out. Well then, are we the example of independent systems? But it is not as simple as it may seem. There is a dualism (dual nature) of one and the same concept of goal: the goal as the task for some system and the goal as an aspiration (desire) of this system to execute the goal set before it: the Goal is a task representing the need of external operating system (super system) to achieve certain predetermined result; the Goal is an aspiration (desire) to achieve certain result of performance of the given system always equal to the preset result (preset by order or directive). The fundamental point is that one super system cannot set the goal before the system (subsystem) of other super system. It can set the goal only before this super system which becomes a subsystem in respect of the latter. We can set the goal before ourselves, but we always set the goal only when we are missing/lacking something, when we suffer. Suffering is an unachieved desire. Any physiological (hunger, thirst), aesthetic and other unachieved desires makes us suffer and suffering forces us to aspire to act until desires are satisfied. The depth of suffering is always equal to the intensity of desire. We want to eat and we suffer from hunger until we satisfy this desire. As soon as we take some food, the suffering ceases immediately. At that, the new desire arises according to Maslow pyramid. Desire is our goal-aspiration. When we realize our wish we achieve the objective/goal. If we achieve the objective we cease to act, because the goal is achieved and the wish disappears. If we have everything we can only think of, we will not set any goals before ourselves, because there is nothing to wish, since we have everything. Therefore, even a human being with all its complexity and developmental evolution cannot be absolutely independent of other systems (of external environment). Our goals-tasks are always set before us by the external environment and it incites our desire (goal-aspiration) which is dictated by shortage of something. We are free to choose our actions to achieve the goal, but it is at this point where we are limited by our possibilities. We do not set the goal-task, we set the goals-aspirations. Then if it is not us, can there be other systems which can set goals before themselves regardless of whatsoever? Perhaps, starting from any certain level of complication the systems can do it themselves? Such examples are unknown to us. For any however large and difficult system there might be another, even higher system found which will dictate the former its goals and conditions. Nature is integrated and almost put in (good) order. It is almost put in order, because at the level of quantum phenomena there is probably some uncertainty and unpredictability, i.e. unconformity of the phenomena to our knowledge of physical laws (for example, tunnel effects). It is this unpredictability which is the cause of contingencies and unpredictability. Contingency /stochasticity and purposefulness are mutually exclusive. Principle of performance of action. Any system is intended for any well defined and concrete goal specific for it, and for this purpose it performs only specific (target-oriented) actions. Hence, the goal of a system is the aspiration to perform certain purposeful actions for the achievement of target-oriented (appropriate) result of action. The plane is designed for air transportation, but cannot float; for this purpose there is an amphibian aircraft. The result of aircraft performance is moving by air. This result of action is expectable and predictable. The constancy and predictability of functional performance is a distinctive feature of any systems - living, natural, social, financial, technical, etc. Consequently, in order to achieve the goal any object of our World should function, make any purposeful actions, operations (in this case the purposeful, deliberate inaction is in some sense an action, too). Action is manifestation of some energy, activity, as well as force itself, the functioning of something; condition, process arising in response to some influence, stimulant/irritant, impression (for example, reaction in psychology, chemical reactions, nuclear reactions). The object's action is followed by the result of action (not always expected, but always logical and conditioned). The purpose of any system is the aspiration to yield appropriate (targeted) result of action. At that, the given object is the donor of the result of action. The result of action of donor system can be directed towards any other system which in this case will be the recipient (target) for the result of action. In this case the result of action of the donor system becomes the external influence for the recipient system. Interaction between the systems is carried out only through the results of action. In that way the chain of actions is built as follows: ... > (external influence) > result of action (external influence) >... The system produces single result of action for single external influence. No object operates in itself. It cannot decide on its own Here now I will start to operate because it has no freedom of will and it cannot set the goal before itself and produce the result of action on its own. It can only react (act) in response to certain external influence. Any actions of any objects are always their reaction to something. Any influence causes response/reaction. Lack of influence causes no reaction. Reaction can sometimes be delayed, therefore it may seem causeless. But if one digs and delves, it is always possible to find the cause, i.e. external influence. Cognition of the world only falls to our lot through the reactions of its elements. Reaction (from Latin re - return and actio - action) is an action, condition, process arising in response to some influence, irritant/stimulant, impression (for example, reaction in psychology, chemical reactions, nuclear reactions). Consequently, the system's action in response to the external influence is the reaction of the system. When the system has worked (responded) and the required result of action has been received, it means that it has already achieved (quenched) the goal and after that it has no any more goal to aspire to. Reaction is always secondary and occurs only and only following the external influence exerted upon the element. Reaction can sometimes occur after a long time following the external influence if, for example, the given element has been specially programmed for the delay. But it will surely occur, provided that the force of the external influence exceeds the threshold of the element's sensitivity to the external influence and that the element is capable to respond to the given influence in general. If the element is able of reacting to pressure above 1 atmosphere it will necessarily react if the pressure is in excess of 1 atmosphere. If the pressure is less than 1 atmosphere it will not react to the lower pressure. If it is influenced by temperature, humidity or electric induction, it will also not react, howsoever we try to persuade it, as it is only capable to react to pressure higher than 1 atmosphere. In no pressure case (no pressure above 1 atmosphere), it will never react. Since the result of the system's performance appears only following some external influence, it is always secondary, because the external influence is primary. External influence is the cause and the result of action is a consequence (function). It is obvious that donor systems can produce one or several results of action, while the recipient systems may only react to one or several external influences. But donor elements can interact with the recipient systems only in case of qualitatively homogeneous actions. If the recipient systems can react only to pressure, then the systems able of interacting with them may be those which result of action is pressure, but not temperature, electric current or something else. Interaction between donor systems and recipient systems is only possible in case of qualitative uniformity (homoreactivity, the principle of homogeneous interactivity). We can listen to the performance of the musician on a stage first of all because we have ears. The earthworm is not able to understand our delight from the performance of the musician at least for the reason that it has no ears, it cannot perceive a sound and it has no idea about a sound even if (hypothetically) it could have an intelligence equal to ours. The result of action of the recipient element can be both homogeneous (homoreactive) and non-homogeneous, unequal in terms of quality of action (heteroreactive) of external influence in respect of it. For example, the element reacts to pressure, and its result of action can be either pressure or temperature, or frequency, or a stream/flow of something, or the number of inhabitants of the forest (apartment, city, country) etc. Hence, the reaction of an element to the external influence can be both homoreactive and heteroreactive. In the first case the elements are the action transmitters, in the second case they are converters of quality of action. If the result of the system's actions completely corresponds to the implementation of goal, it speaks of the sufficiency of this system (the given group of interacting elements) for the given purpose. If not, the given group of elements mismatches the given goal/purpose and/or is insufficient, or is not the proper system for the achievement of a degree of quality and quantity of the preset goal. Therefore, any existing object can be characterized by answering the basic question: What can the given object do? This question characterizes the concept of the result of action of an object which in turn consists of two subquestions: What action can be done by given object? (the quality of result of action); How much of such action can be done by the given object? (the quantity of result of action). These two subquestions characterize the aspiration of a system to implement the goal. And the goal-setting may be characterized by answering another question: What should the given object do? which also consists of two subquestions: what action should the given object do? (the quality of the result of action); how much of such action should the given object do? (the quantity of the result of action). These last two subquestions are the ones that determine the goal as a task (the order/command, the instruction) for the given object or group of objects, and the system is being sought or built to achieve this goal. The closer the correspondence between what should and what can be done by the given object, the closer the given object is to the ideal system. The real result of action of the system should correspond to preset (expected) result. This correspondence is the basic characteristic of any system. Wide variety of systems may be built of a very limited number of elements. All the diverse material physical universe is built of various combinations of protons, electrons and neutrons and these combinations are the systems with specific goals/purposes. We do not know the taste of protons, neutrons and electrons, but we do know the taste of sugar which molecular atoms are composed of these elements. Same elements are the constructional material of both the human being and a stone. The result of the action of pendulum would be just swaying, but not secretion of hormones, transmission of impulse, etc. Hence, its goal/purpose and result of action is nothing more but only swaying at constant frequency. The symphonic orchestra can only play pieces of music, but not build, fight or merchandize, etc. Generator of random numbers should generate only random numbers. If all of a sudden it starts generate series of interdependent numbers, it will cease to be the generator of random numbers. Real and ideal systems differ from each other in that the former always have additional properties determined by the imperfection of real systems. Massive golden royal seal, for example, may be used to crack nuts just as well as by means of a hammer or a plain stone, but it is intended for other purpose. Therefore, as it has already been noted above, the concept of system is relative, but not absolute, depending on correspondence between what should and what can be done by the given object. If the object can implement the goal set before it, it is the system intended for the achievement of this goal. If it cannot do so, it is not the system for the given goal, but can be a system intended for other goals. It does not mater for the achievement of the goal what the system consists of, but what is important is what it can do. In any case the possibility to implement the goal determines the system. Therefore, the system is determined not by the structure of its elements, but by the extent of precision/accuracy of implementation of the expected result. What is important is the result of action, rather than the way it was achieved. Absolutely different elements may be used to build the systems for the solution of identical problems (goals). The sum of US$200 in the form of US$1 value coins each and the check for the same amount can perform the same action (may be used to make the same purchase), although they consist of different elements. In one case it is metal disks with the engraved signs, while in other case it is a piece of a paper with the text drawn on it. Hence, they are systems named money with identical purposes, provided that they may be used for purchase and sale without taking into account, for example, conveniences of carrying them over or a guarantee against theft. But the more conditions are stipulated, the less number of elements are suitable for the achievement of the goal. If we, for example, need large amount of money, say, US$1.000.000 in cash, and want it not to be bulky and the guarantee that it is not counterfeit we will only accept US$100 bank notes received only from bank. The more the goal is specified, the less is the choice of elements suitable for it. Thus, the system is determined by the correspondence of the goal set to the result of its action. The goal is both the task for an object (what it should make) and its aspiration or desire (what it aspires to). If the given group of elements can realize this goal, it is a system for the achievement of the goal set. If it cannot realize this goal, it is not the system intended for the achievement of the given goal, although it can be the system for the achievement of other goals. The system operates for the achievement of the goal. Actually, the system transforms through its actions the goal into the result of action, thus spending its energy. Look around and everything you'll see are someone's materialized goals and realized desires. On a large scale everything that populates our World is systems and just systems, and all of them are intended for a wide range of various purposes. But we do not always know the purposes of many of these systems and therefore not all objects are perceived by us as systems. Reactions of systems to similar external influences are always constant, because the goal is always determined and constant. Therefore, the result of action should always be determined, i.e. identical and constant (a principle of consistency of correspondence of the system's action result to the appropriate result), and for this purpose the system's actions should be the same (the principle of a constancy of correspondence of actual actions of the system to the due ones). If the result fails to be constant it cannot be appropriate and equal to the preset result (the principle of consistency/permanency of the result of action). The conservation law proceeds/results/ from the principle of consistency/permanency of action. Let us call the permanency of reaction purposefulness, as maintaining the similarity (permanency/consistency) of reaction is the goal of a system. Hence, the law of conservation is determined by the goal/purpose. The things conserved would be those only, which correspond to the achievement of the system's goal. This includes both actions per se and the sequence of actions and elements needed to perform these actions, and the energy spent for the performance of these actions, because the system would seek to maintain its movement towards the goal and this movement will be purposeful. Therefore, the purpose determines the conservation law and the law of cause-and-effect limitations (see below), rather than other way round. The conservation law is one of the organic, if not the most fundamental, laws of our universe. One of particular consequences of the conservation law is that the substance never emerges from nothing and does not transform into nothing (the law of conservation of matter). It always exists. It might have been non-existent before origination of the World, if there was origination of the World per se, and it might not be existent after its end, if it is to end, but in our World it does neither emerge, nor disappear. A matter is substance and energy. The substance (deriving from the /Rus/ word thing, object ) may exist in various combinations of its forms (liquid, solid, gaseous and other, as well as various bodies), including the living forms. But matter is always some kind of objects, from elementary particles to galaxies, including living objects.Substance consists of elements. Some forms of substances may turn into others (chemical, nuclear and other structural transformations) at the expense of regrouping of elements by change of ties between them. Physical form of the conservation law is represented by Einstein's formula. A substance may turn into energy and other way round. Energy (from Greek energeia - action, activity) is the general quantitative measure of movement and interaction of all kinds of matter. Energy in nature does not arise from anything and does not disappear; it only can change its one form into another. The concept of energy brings all natural phenomena together. Interaction between the systems or between the elements of systems is in effect the link between them. From the standpoint of system, energy is the measure (quantity) of interaction between the elements of the system or between the systems which needs to be accomplished for the establishment of link between them. For example, one watt may be material measure of energy. Measures of energy in other systems, such as social, biological, mental and other, are not yet developed. Any objects represent the systems, therefore interactions between them are interactions between the systems. But systems are formed at the expense of interaction between their elements and formations of inter-element relations between them. In the process of interaction between the systems intersystem relations are established. Any action, including interaction, needs energy. Therefore, when establishing relations/links/ the energy is being input. Consequently, as interaction between the elements of the system or different systems is the relation/link between them, the latter is the energy-related concept. In other words, when creating a system from elements and its restructuring from simple into complex, the energy is spent for the establishment of new relations /links /connections between the elements. When the system is destructed the links between the elements collapse and energy is released. Systems are conserved at the expense of energy of relations/links between its elements. It is the internal energy of a system. When these relations/links are destructed the energy is released, but the system itself as an object disappears. Consequently, the internal energy of a system is the energy of relations/link between the elements of the system. In endothermic reactions the energy used for the establishment of connections/links/relations comes to the system from the outside. In exothermic reactions internal energy of the system is released at the expense of rupture of these connections between its internal own elements which already existed prior to the moment when reaction occurred. But when the connection is already formed, by virtue of conservation law its energy is not changed any more, if no influence is exerted upon the system. For example, in establishing of connections/links between the two nuclei of deuterium (2D2) the nucleus 14 is formed and the energy is released (for the purpose of simplicity details are omitted, for example, reaction proton-proton). And the 14 nucleus mass becomes slightly less than the sum of masses of two deuterium nuclei by the value multiple of the energy released, in accordance with the physical expression of the conservation law. Thus, in process of merge of deuterium nuclei part of their intra-nuclear bonds collapses and it is for this reason that the merge of these nuclei becomes possible. The energy of connection between the elements of deuterium nuclei is much stronger than that of the bond between the two deuterium nuclei. Therefore, when part of connections between elements of deuterium nuclei is destructed the energy is released, part of it being used for thermonuclear synthesis, i.e. the establishment of connection/bond between the two deuterium nuclei (extra-nuclear connection/bond in respect to deuterium nuclei), while other part is released outside helium nucleus. But our World is tamped not only with matter. Other objects, including social, spiritual, cultural, biological, medical and others, are real as well. Their reality is manifested in that they can actively influence both each other and other kinds of matter (through the performance of other systems and human beings). And they also exist and perform not chaotically, but are subjected to specific, though strict laws of existence. The law of conservation applies to them as well, because they possess their own kinds of energy and they did not come into being in a day, but may only turn one into another. Any system can be described in terms of qualitative and quantitative characteristics. Unlike material objects, the behavior of other objects can be described nowadays only qualitatively, as they for the present the have no their own thermodynamics, for example, psychodynamics. We do not know, for example, what quantity of Watt of spiritual energy needs to be applied to solve difficult psychological problem, but we know that spiritual energy is needed for such a solution. Nevertheless, these objects are the full-value systems as well, and they are structured based on the same principles as other material systems. As systems are the groups of elements, and changes of forms of substances represent the change of connections/bonds between the elements of substance, then changes of forms of substances represent the changes of forms of systems. Hence, the form is determined by the specificity of connections/bonds/ties between the elements of systems. Nothing in this world lasts for ever, the world is continually changing, whereby one kind of forms of matter turn into other, but it is only forms that vary, while matter is indestructible and always conserved. At the same time, alteration of forms is also subjected to the law of conservation and it is this law that determines the way in which one kind of forms should replace other forms of matter. Forms only alter on account of change of connections/ties between the elements of systems. As far as each connection between the system elements has energetic equivalent, any system contains internal energy which is the sum of energies of connections/bonds between all elements. The form: (Latin, philos.) is a totality of relations determining the object. The form is contraposed to matter, the content of an object. According to Aristotle, the form is the actuating force that forms the objects and exists beyond the latter. According to Kant, form is everything brought in by the subject of cognition to the content of the cognizable matter - space, time and substance of the form of cognitive ability; all categories of thinking: quantity, quality, relation, substance, place, time, etc., are forms, the product of ability of abstraction, formation of general concepts of our intellect. However, these are not quite correct definitions. The form cannot be contraposed to matter because it is inseparably linked with the latter, it is the form of matter itself. The form cannot be a force either, although it probably pertains to energy because it is determined by energy-bearing connections within the system. According to Kant, form is a purely subjective concept, as it only correlates with intellectual systems and their cognitive abilities. Why, do not the forms exist without knowing them? Any system has one or other shape/look of form. And the system's form is determined by type and nature of connections/relations/bonds between the system elements. Therefore, the form is a kind of connections between the system elements. Since the systems may interact, new connections/bonds between them are thus established and new forms of systems emerge. In other words, in process of interaction between the systems new systems emerge as new forms. The energy is always expended in the course of interaction between the systems. Logic form of the conservation law is the law of cause-and-effect limitations because it is corresponded by a logical connective if....., then. Possible choice of external influences (causes) to which the system should react is limited by the first part of this connective if..., whereas the actions of systems (consequences) are limited by the second part then.... It is for this reason that the law is called the law of cause-and-effect limitations. This law reads Any consequence has its cause /every why has a wherefore/. Nothing appears without the reason/cause and nothing disappears for no special reason/cause. There are no consequences without the reason/cause, there is no reaction without the influence. It is unambiguousness and certainty of reaction of systems to the external influence that lays the cornerstone of determinism in nature. Every specific cause is followed by specific consequence. The system should always react only to certain external influences and always react only in a certain way. Chemoreceptor intended for 2 would always react only to 2, but not to Na +, Ca ++ or glucose. At that, it will give out certain potential of action, rather than a portion of hormone, mechanical contraction or something else. Any system differs in specificity of the external influence and specificity of the reaction. The certainty of external influences and the reactions to them imposes limitations on the types of the latter. Therefore, the need in the following arises from the law of cause-and-effect limitations: execution of any specific (certain) action to achieve specific (certain) purpose; existence of any specific (certain) system (subsystem) for the implementation of such action, as no action occurs by itself; sequences of actions: the system would always start to perform and produce the result of action only after external influence is exerted on it because it does not have free will for making decision on the implementation of the action. Hence, the result of the system performance can always appear only after certain actions are done by the system. These actions can only be done following the external influence. External influence is primary and the result of action is secondary. Of all possible actions those will be implemented only which are caused by external influence and limited (stipulated) by the possibilities of the responding system. If, following the former external influence, the goal is already achieved and there is no new external influence after delivery of the result of action, the system should be in a state of absolute rest and not operate, because it is only the goal that makes the system operate, and this goal is already achieved. No purpose - no actions. If new external influence arises a new goal appears as well, and then the system will start again to operate and new result of action will be produced.
Major characteristics of systems. To carry out purposeful actions the system should have appropriate elements. It is a consequence of the laws of conservation and cause-and-effect limitations since nothing occurs by itself. Therefore, any systems are multi-component objects and their structure is not casual. The structure of systems in many respects determines their possibilities to perform certain actions. For example, the system made of bricks can be a house, but cannot be a computer. But it is not the structure only that determines the possibilities of systems. Strictly determined specific interaction between them determined by their mutual relation is required. Two hands can make what is impossible to make by one hand or solitary hands, if one can put it in that way. The hand of a monkey has same five fingers as a hand of a human being does. But the hand of a human being coupled with its intellect has transformed the world on the Earth. Two essential signs thereby determine the quality and quantity of results of action of any systems - the structure of elements and their relations. Any object has only two basic characteristics: what and how much work/many things/ it can do. New quality can only be present in the group of elements interacting in a specific defined mode/manner. Defined means target-oriented. Interacting in a defined mode/manner means having definite goal, being constructed and operating in a definite mode/manner for the achievement of the given goal. Defined mode/manner cannot be found/inherent in separate given elements and randomly interacting elements. As a result of certain interaction of elements part of their properties would be neutralized and other part used for the achievement of the goal. Transformation of one set of forms of a matter into others occurs for the account of neutralization of some properties of these forms of a matter. And neutralization occurs for the account of change of some connections/bonds between the elements of an object, as these connections/bonds determine the form of an object. For this reason we say would be neutralized rather than destroyed, because nothing in this world does disappear and appear (the conservation law). The whole world consists of protons, neutrons and electrons, but we see various objects which differ in color, consistence, taste, form, molecular and atomic composition, etc. It means that in the course of specific interaction of protons, neutrons and electrons certain inter-elementary connections are established. At that, some of their properties would be neutralized, while others conserved or even amplified in such a manner that the whole of diversity of our world stems from it. The goal of any system is the fulfillment of the preset (defined) condition, achievement of the preset result of action (goal/objective). If the preset result of action came out incidentally, then the next moment it might not be achieved and the designated/preset result would disappear. But if for some reason there is a need in the result of action being always exactly identical to this one and not to any other (goal-setting), it is necessary that the group of interacting elements retain this new result of action. To this end the given group of elements should continually seek to retain the designated/preset condition (implementation of goal/objective).
Simple systemic functional unit (SFU). The system may consist of any quantity of functional elements/executive component, provided that each of the latter can participate (contribute to) the achievement of the goal/objective and the quantity of such components is sufficient enough for realization of this goal. The minimal system is such group of k elements which, in case of removal of at least one of the elements from its structure, loses the quality inherent in this group of elements, but not present in any of the given k elements. Such group of elements is a simple systemic functional unit (simple, not composite SFU), the minimal elementary system having some property (ability to make action) which is not present in any of its separate elements. Any SFU reacts to external influence under the all-or-none law. This law is resulting from the definition of simple SFU (removal of any of its elements would terminate its function as a system) and discrecity of its structure. Any of its elements may either be or not be a part of simple SFU. And since simple SFU by definition consists of finite and minimal set of function elements and all of them should be within the SFU structure and be functional (operational), termination of functioning of any of these elements would terminate the function of the entire SFU as a system. Regardless of the force of external influence, but given the condition of its being in excess of a certain threshold, the result of its performance will be maximal, ( all). If there is no external influence, the SFU would nowise prove out (would not react, none). Simple SFU, despite its name, may be arbitrary complex - from elementary minimal SFU to maximal complex ones. The molecule of any substance consists of several atoms. Removal of any atom transforms this molecule from one substance into another. And even each atom represents a very complex constitution. Removal of any of its elements transforms it into an ion, other atom or other isotope. A soldier is a simple SFU of the system called the army. A soldier is a human being's body plus full soldier's outfit. The body of a human being is an extremely complex object, but removal of any of its parts would render the soldier invalid. At that, the soldier's outfit/equipment is multi-component as well. But the equipment cannot shoot without man and the man cannot shoot without the equipment. They can only carry out together the functions inherent in SFU named soldier. Despite the internal complexity which may be however big, simple SFU is a separate element which looks as a whole unit with certain single property (quality) to fulfill one certain action elementary in relation to the entire system, i.e. to grasp a ball, molecule, push a portion of blood, produce force/load of 0.03 grams, provide living conditions for the animal (for example, one specific unit of forest area) or to an individual (apartment), fire a shot, etc. Any SFU, once it is divided into parts, ceases to be an SFU for the designated goal. It is due to interaction of the parts only that the group of elements can show its worth as SFU. When something breaks a good owner would always think at first where in his household the fragments may be applied and only thereafter he would throw them out, because one broken thing (one SFU) can be transformed into another, more simple one (another SFU). Haemoglobin is an element of blood circulation system and serves for capturing and subsequent return of oxygen. Hence, haemoglobin molecules are the SFU of erythrocytes. Ligands of haemoglobin molecules are the SFU of haemoglobin, as each of them can serve a trap for oxygen molecules. However, further division of ligand brings to a stop the function of retention of oxygen molecules, etc. The SFU analogues in an inorganic nature/abiocoen are, for example, all material particles possessing ability to lose their properties when dividing - elementary particles (?), atoms, molecules, etc. Viruses may probably be the systemic functional units of heredity (FUH). Thus, it is likely that at first polymeric molecules of DNA type came into being in the claypan strata or even in the interplanetary dust or on comets, based on a type of auto-catalytic Butler's reaction, i.e. synthesis of various sugars including ribose from formaldehyde in the presence of Ca and Mg ions, ribose being a basis for the creation of RNA and DNA, and thereafter cellular structures emerged. These examples of various concrete SFU show that SFU is not something indivisible, since each of them is multicomponent and therefore can be divided into parts. Only intra-atomic elementary particles may pretend to be true SFU that are the basis of the whole of matter of our entire world as it is still impossible to split them into parts. It is for this reason that they are called elementary. It may well be that they are of a very complex structure, too, but formed not from the elements of physical nature, but of some different matter, and are the result of action of performance of systems of non-physical nature, or rather not of the forms of the World of ours. It is indicative of the existence of binate virtual particles, for example, positron and electron, emerging ostensibly from emptiness, vacuum and disappearing thereto after all. We cannot cut paper with scissors made of the same paper material. It's unlikely that we can cut elementary particles with the scissors made of the same matter either.
Elementary block of management (direct positive connection/bond, DPC). In order for any SFU to be able to perform it should contain certain elements for implementation of its actions according to the laws of conservation and cause-and-effect limitations. To implement target-oriented actions the system should contain performance /executive/ elements and in order to render the executive element's interaction target-oriented, the system should contain the elements (block) of management/control. Executive elements (effectors) carry out certain (target-oriented) action of a system to ensure the achievement of the preset result of action. The result of action would not come out by itself. In order to achieve it performance of certain objects is required. On the example of plain with a feeler /trial balloon/ such elements are plains themselves. But it (the executive element) exists on itself and produces its own results of action in response to certain influences external with respect to it. It will react if something influences upon it and will not react in the absence of any influence. Interaction with its other elements would pertain to it so far as the results of action of other elements are the external influence in respect of it per se and may invoke its reaction in response to these influences. This reaction will already be shown in the form of its own result of action which would also be the external influence in respect to other elements of the system, and no more than that. Not a single action of any element of the system can be the result of action of the system itself by definition. It does not matter for any separate executive element whether or not the preset condition (the goal of the system) was fulfilled haphazardly, whether or not the given group of elements produced a qualitatively new preset result of action or something prevented it from happening. It in no way affects the way the executive elements feel, i.e. their own functions, and none of their inherent property would force them to watch the fulfillment of the general goal of the system. They are simply not able of doing so. The elements of management (the control block) are needed for the achievement of the particular preset result, rather than of any other result of action. Since the goal is the reaction in response to specific external influence, at first there is a need to feel it, to segregate it from the multitude of other nonspecific external influences, make decision on any specific actions and begin to perform. If, for example, the SFU reacts to pressure it should be able to feel just pressure (reception), rather than temperature or something else. For this purpose it should have a special organ (receptor) which is able of doing so. In order to react only to specific external influence which may pertain to the fulfillment of the goal, the SFU should not only have reception, but also single it out from all other external influences affecting it (selection). For this purpose it should have a special organ (selector or analyzer) which is able to segregate the right signal from a multitude of others. Thereafter, having felt and segregated the external influence, it should make decision that there is a need to act (decision-making). For this purpose it should have a special or decision-making organ able of making decisions. Then it should realize this decision, i.e. force the executive elements to act (implementation of decision). For this purpose it should have elements (stimulators) with the help of which it would be possible to communicate decision to the executive elements. Therefore, in order to react to certain external influence and to achieve the required result of action it is necessary to accomplish the following chain of guiding actions: reception > selection > decision-making > implementation of decisions (stimulation). What elements should carry out this chain of guiding actions? The executive elements (for example, plains) cannot do it, because they perform the action per se, for example, the capturing action, but not guiding actions. For this reason they are also called executive elements. All guiding actions should be accomplished by guiding elements (the control block) and these should be a part of SFU. The control block consists of: X receptor (segregates specific signal and detects the presence of external influence); afferent channels (transfer of information from the receptor to analyzer); the analyzer-informant (on the basis of the information from the Ք receptor makes decisions on the activation of executive elements); efferent cannels (of a stimulator) (implementation of decision, channeling of the guiding actions to the effectors).
The Ք receptor, afferent channels, analyzer-informant (activator of action) and efferent channels (stimulator) comprise the control block. The receptor and afferent channels represent direct positive communication (DPC). It is direct because inside SFU the guiding signal (information on the presence of external influence) goes in the same direction as the external influence itself. It is positive because if there is a signal there is a reaction, if there is no signal, there is no reaction. Thus, the SFU control block reacts to the external influence. It can feel and detect/segregate specific signal of external influence from the multitude of other external influences and depending on the presence or absence of specific signal it may decide whether or not it should undertake its own action. Its own action is the inducement (stimulation) of the executive elements to operate. There exist uncontrollable and controllable SFU. The control block of uncontrollable SFU decides whether or not it should act, and it would make such decision only depending on the presence of the external influence. The control block of controllable SFU would also decide whether or not it should act depending on the presence of the external signal and in the presence of additional condition as well, i.e. the permission to perform this action which is communicated to its command entry point. The uncontrollable SFU has one entry point for the external influence and one outlet /exit point/ for the result of action. The logic of work of such SFU is extremely simple: it would act if there is certain external influence (result of action), and no result of action is produced in the absence of external influence. For uncontrollable SFU the action regulator is the external influence itself. It has its own management which function is performed by the internal control block. But external management with such SFU is impossible. It would decide on its own whether or not it should act. That is why it is called uncontrollable. This decision would only depend on the presence of external influence. In the presence of external influence it would function and no external decision (not the influence) can change the internal decision of this SFU. The uncontrollable SFU is independent of external decisions. It will perform the action once it made a decision. The example of uncontrollable SFU is, for instance, the nitroglycerine molecule (SFU for micro-explosion). If it is shaken (external influence is shaking) it will start to disintegrate, thereby releasing energy, and during this process nothing would stop its disintegration. The analogues of uncontrollable SFU in a living organism are sarcomeres, ligands of haemoglobin, etc. Once sarcomere starts to reduce, it would not stop until the reduction is finished. Once the ligand of haemoglobin starts capturing oxygen, it would not stop until the capturing process is finished. Unlike uncontrollable SFU, the controllable SFU have two entry points (one for the entry of external influence and another one for the entry of the command to the analyzer) and one outlet/exit point/ for the result of action. The logic of work of controllable SFU is slightly different from that of the uncontrollable SFU. Such SFU will produce the result of action not only depending on the presence of the external influence, but the presence of permission at the command entry point. Implementation of action will start in the presence of certain external influence and permission at the command entry point. The action would not be performed in the presence of the external influence and the absence of permission at the command entry point. For the controllable SFU the action regulator is the permission at the command entry point. That is why such SFU are called controllable. The analogues of controllable SFU in a living organism are, for example, pulmonary functional ventilation units (FVU) or functional perfusion units (FPU), histic functional perfusion units (FPU), secretion functional units (cells of various secretion glands, SFU), kidney nephrons, liver acinuses, etc. The control block's elements are built of (assembled from) other ordinary elements suitable in terms of their characteristics. It can be built both of executive elements combined in a certain manner and simultaneously performing the function of both execution and management, and from other executive elements not belonging to the given group and segregated in a separate chain of management. In the latter case they may be precisely the same as executive elements, but may be made of other elements as well. For example, muscular contraction functional units consist of muscular cells, but are managed by nervous centers consisting of nerve cells. At the same time, all kinds of cells, both nerve and muscular, are built of almost identical building materials - proteins, fats, carbohydrates and minerals. The difference between the controllable and uncontrollable FSU is only in the availability of command entry point. It is it that determines the change of the algorithm of its work. Performance of the controllable SFU depends not only on the external influence, but on the M disabling at the command entry point. The control block is very simple, if it contains only DPC (the Ք receptor and afferent channels), the analyzer-informant and a stimulator. SFU are primary cells, executive elements of any systems. As we can see, despite their elementary character, they represent a fairly complex and multi-component object. Each of them contains not less than two types of elements (management/control and executive) and each type includes more and more, but these elements are mandatory attributes of any SFU. The SFU complexity is the complexity of hierarchy of their elements. There is no any special difference between the executive elements and the elements of management/control. Ultimately all in this world consists of electrons, protons and neutrons. The difference between them lies only in their position in the hierarchy of systems, i.e. in their positional relationship. The composite SFU contains 4 simple SFU. In the absence of the external influence all simple SFU are inactive and no result of action is produced. In the presence of the external influence of Ք, if the command says no (disabling of /ban on action), all SFU would be inactive and no result of action produced. In the presence of external influence and if the command says yes (permission for action), all SFU would be active and the result of action produced. The capacity of the composite SFU is 4 times higher than the capacity of simple SFU. SFU is activated through the inputs of command of their control blocks. Every simple SFU has its own DPC and DPC common for all of them. Uncontrollable and controllable SFU may be used to build other (composite) SFU, more powerful than single SFU. In the real world there are few simple SFU which bring about minimal indivisible result of action. There are a lot more of composite SFU. For instance, the cartridge filled with grains of gunpowder is a constituent part of SFU (SFU for a shot), but its explosion energy is much higher that that of single grain of gunpowder. The composite SFU flow diagram is very similar to that of simple SFU. It is only quantity variance that stipulates the difference between the composite and simple SFU. Simple SFU contains only one SFU, just SFU itself, whereas the composite SFU contains several SFU, so there is a possibility of strengthening of the result of action. Thus, simple and composite SFU contain two types of elements: executive elements (effectors performing specific actions for the achievement of the system's preset ovearll goal) and the elements of management (block) (DPC, the analyzer-informant and the stimulator activating SFU). Composite SFU has the same control block as the separate SFU, i.e. the elementary one with direct positive (guiding) connection (DPC). Composite SFU perform based on the all-or-none principle, too, i.e. they either produce maximal result of action in response to external influence or wait for this external influence and do not perform any actions. Composite SFU only differ from simple SFU in the force or amplitude of reaction which is proportional to the number of simple SFU. If the domino dices are placed in a sequential row the result of their action would be the lasting sound of the falling dices which duration would be equal to the sum of series of drops of every dice (extension of duration of the result of action). If the domino dices are placed in a parallel row the result of their action would be the short, but loud sound equal to the total sound volume resulting from the drop of each separate dice (capacity extension). The performance cycle of an ideal simple and composite SFU is formed by micro cycles: perception and selection of external influence by the X receptor and decision-making; influence on the executive elements (SFU); response/operation of executive elements (SFU); function termination. The X receptor starts to operate following the onset of external influence (the 1st micro cycle). Subsequently some time would be spent for the decision-making, since this decision itself is the result of action of certain SFU comprising the control block (the 2nd micro cycle). Thereafter all SFU would be activated (joined in) (the 3rd micro cycle). The operating time of the SFU response/operation depends on the speed of utilization of energy spent for the SFU performance, for example, the speed of reduction of sarcomere in a muscular cell which is determined by speed of biochemical reactions in the muscular cell. After that all SFU terminate their function (the 4th micro cycle). At that, the SFU spends its entire energy it had and could use to perform this action. As far as the sequence of actions and result of action would always be the same, the measure of energy would always be the same as well (energy quantum). In order for the SFU to be able to perform a new action it needs to be recharged. It may also take some time (the time of charging). The way it happens is discussed in the section devoted to passive and active systems (see below). Any SFU's performance cycle consists of these micro cycles. Therefore, its operating cycle time would always be the same and equal to the sum of these micro cycles. Once SFU started its actions, it would not stop until it has accomplished its full cycle. This is the reason of uncontrollability of any SFU in the course of their performance (absolute adiaphoria), whereby the external influence may quickly finish and resume, but it would not stop and react to the new external influence until the SFU has finished its performance. In real composite SFU these micro cycles may be supplemented by micro cycles caused by imperfection of real objects, for example, non-synchronism of the executive elements' operation due to their dissimilarity. Hence, it follows that even the elementary systems represented by SFU do not react/operate immediately and they need some time to produce the result of action. It is this fact that explains the inertness/lag effect/ of systems which can be measured by using the time constant parameter. But generally speaking it is not inertness/lag effect/, but rater a transitory (intermittent) inertness of an object (adiaphoria), its inability to respond to the external influence at certain phases of its performance. True inertness is explained by independence of the result of action of the system which produced this result (see below). Time constant is the time between the onset of external influence and readiness for a new external influence after the achievement of the result of action. The analogues of composite SFU are all objects which operate similarly to avalanche. The domino principle works in such cases. One impact brings about the downfall of the whole. However, the number of downfalls would be equal to the number of SFU. Pushing one domino dice will cause its drop resulting just in one click. Pushing a row of domino dices will result in as many clicks as is the number of dices in the row. Biological analogues of composite SFU are, for example, functional ventilation units (FVU), each of which consisting of large group (several hundred) of alveoli which are simultaneously joining in process of ventilation or escape from it. Liver acynuses, vascular segments of mesentery, pulmonary vascular functional units, etc., are the analogues of composite SFU. Thus, simple SFU is the object which can react to certain external influence, while the result of its performance would always be maximal because the control block would not control it, i.e. it works under the all-or-none law. The type of its reaction is caused by the type of SFU. There are two kinds of simple SFU: uncontrollable and controllable. Both react to the specific external influence. But additional external permission signal at the command entry point is required for the operation of controllable SFU, whereas the uncontrollable SFU have no command entry point. Therefore, the uncontrollable SFU does not depend on any external guiding signals. The control block of controllable and uncontrollable SFU consists of the analyzer-informant and has only DPC (the Ք informant and afferent channels). The composite Systemic Functional Unit is a kind of an object similar to simple SFU, but the result of its action is stronger. It works under the all-or-none law, too, and its reaction is stipulated by type and number of its SFU. It can really be that the constituent parts of composite SFU may be controllable and uncontrollable, and the difference between them may only be stipulated by the presence of command entry point in the general control block through which the permission for the performance of action is communicated. The control block of a system is elementary, too, and has only DPC and analyzer-informant. Hence, any SFU function under the all-or-none law. SFU is arranged in such a way that it either does nothing, or gives out a maximal result of action. Its elementary result of action is either delivered or not delivered. There might be SFU which delivers the result of action, for example, twice as large as the result of action of another SFU. But it will always be twice as large. Each result of action of a simple SFU is quantum of action (indivisible portion), at that being maximal for the given SFU. It is indivisible because SFU cannot deliver part (for instance, half) of the result of action. And as far as it is the indivisible portion there can not be a gradation. For instance, SFU may be opened or closed, generate or not generate electric current, secrete or not secrete something, etc. But it cannot regulate the quantity of the result of action as its result always is either not delivered or is maximal. Such operating mode is very rough, inaccurate and unfavorable both for the SFU per se and its goal/objective. Let's imagine that instead of a steering wheel in our car there will be a device which will right away maximally swerve to the right when we turn a steering wheel to the right or will maximally swerve to the left if we turn it to the left. Instead of smooth and accurate trimming to follow the designate course of movement the car will be harshly rushing about from right to left and other way round. The goal will not be achieved and the car will be destroyed. Basically the composite Systemic Functional Unit could have delivered graded result of action since it has several SFU which it could actuate in a variable sequence. But such system cannot do so because it does not see the result of action and cannot compare it with what should be done/what it should be Quantity of the result of action. To achieve the preset goal the designation of the quality of the result of action only is not sufficient. The goal sets not only what action the object should deliver (quality of the result of action), but also how much of this action the given object should deliver (quantity of the result of action). And the system should seek to perform exactly as much of specific action as it is necessary, neither more nor less than that. The quality of action is determined by SFU type. The quantity is determined by the quantity of SFU. There are three quantitative characteristics of the result of action: maximum, minimum and optimum quantity of action. In the real world gradation of the results of action is required from the real systems. Therefore, the system performance should deliver neither maximum nor minimum, but optimum result. Optimum means performance based on the principle it is necessary and sufficient. It is necessary that the result of action should be such-and-such, but not another in terms of quality and adequate in terms of quantity, neither more nor less. Hence, the SFU cannot be the full-fledged systems. The systems are needed in which controllable/adjustable grading of the result of action would be possible. For example, it is required that the pressure of 100 mm Hg is maintained in the tissue capillaries. This phrase encompasses presetting of everything what is included in the concept necessary and sufficient at once. It is necessary... pressure, and it is enough... 10 mm Hg. It is possible to collate the SFU providing pressure, but not of 10 mm Hg, but, for instance, 100 mm Hg. It is too much. It is probably possible to collate the SFU which can provide pressure of 10 mm Hg and at the moment it might be sufficient. But if the situation has suddenly changed and the requirement is now 100 mm Hg rather than 10 mm Hg, what should be done then? Should one run about and search for SFU which may provide the 100 mm Hg? And what if it's impossible to make such system which would be able to provide any pressure in a range, for example, from 0 to 100 mm Hg, depending on a situation? In order to provide the quantity of the result of action which is necessary at the moment, the grading of the results of action of systems is required. It could have been achieved by building the systems from a set of homotypic SFU of a type of composite SFU flow diagram. It has what is needed for the graduation of the result of action as it contains numerous SFU. If it could be possible to do it so that it enables actuating from one to all of SFU, depending on the need, the result of action would have as much gradation as many SFU is present in the system. The higher the required degree of accuracy, the more of minor gradations of the result of action should be available. Therefore, instead of one SFU with its extremely large scale result of action it is necessary to use such amount of SFU with minor result of action which sum is equal to the required maximum, while the accuracy of implementation of the goal is equal to the result of action of one SFU. However, composite SFU has no possibility to control the result of action as it has no the unit able of doing it. To deliver the result of action precisely equal to the preset one, it (the result of action) needs to be continually measured and measuring data compared with the task (with command, with database). The database is a list of those due values of result of action which the system should deliver depending on the magnitude of external influence and algorithm of the control block operation. The goal of the system is that each value of the measured external influence should be corresponded by strictly determined value of the result of action (due value). To this effect it is necessary to see (to measure) the result of action of the system to compare it to the appropriate/due result. And for this purpose the control block should have a Y receptor which can measure the result of action and there should be a communication/transmission link (reciprocal paths) through which the information from a Y receptor would pass to the analyzer-informant, where the result of this measurement should be compared with what should be/occur (with database). The control block of the system should compare external influence with the due value, whereas the due value should be compared with own result of action to see its conformity or discrepancy with the due value. Composite SFU still can compare external influence with eigen result of action, because it has DPC, whereas it can not any longer compare due value with the result of eigen action just because it does not have anything able of doing it (there are no appropriate elements).
Simple control block (negative feedback - NF). In order for the control block of the system to see (to feel and measure) the result of action of the system, it should have a corresponding Y receptor at the outlet/exit point/ of system and the communication link between it and a Y receptor (reciprocal path). The logic of operation of such control consists in that if the scale of the result of action is lager than that of the preset result it is necessary to reduce it, having activated smaller number of SFU, and if it is small-scale it is necessary to increase it by actuating larger number of SFU. For this reason such link is called negative. And as the information moves back from the outlet of system towards its beginning, it is called feedback/back action. As a result the negative feedback (NF) occurs. A Y receptor and reciprocate path comprise NF and together with the analyzer-informant and efferent cannels (stimulator) form a NF loop. Depending on the need and based on the NF information the control block would engage or disengage the functions of controllable SFU as necessary. The difference of this system from the composite SFU lies only in the presence of a Y receptor which measures the result of action and reciprocal paths through which the information is transferred from this receptor to the analyzer. The number of active SFU is determined by NF. The NF is realized by means of NF loop which includes the Y receptor, reciprocal path, through which information from Y receptor is transferred to the analyzer-informant, analyzer proper and efferent channels through which the control block decisions are transferred to the effectors (controllable SFU). Thus, the system, unlike SFU, contains both DPC and NF. Direct positive (controllable) communication activates the system, while negative feedback determines the number of activated SFU. For example, if larger number of alveolar capillaries in lungs will be opened compared to the number of the alveoli with appropriate gas composition, arterialization of venous blood will be incomplete, and there will be a need to close a part of alveolar capillaries which wash by bloodstream the alveoli with gas composition not suitable for gas exchange. If the number of such opened capillaries will be smaller, overloading of pulmonary blood circulation would occur and the pressure in pulmonary artery will increase and there will be a need to open part of alveolar capillaries. In any case the informant of pulmonary blood circulation would snap into action and the control block would decide what part of capillaries needs to be opened or closed. Hence, the diffusion part of vascular channel of pulmonary bloodstream is the system containing simple control block. The goal of the system is that the result of action of Y should be equal to the command M (Y=M). Actions of system aimed at the achievement of goal are implemented by executive elements. Control block would watch the accuracy of implementation of actions. The control block containing DPC and NF loop is simple. The algorithm of simple control blocks operation is not complex. The NF loop would trace continually the result of performance of executive elements (SFU). If the result of action turns out to be of a larger scale than the preset result, it needs to be reduced, and if the result is of a smaller scale than the preset one it needs to be increased. Control parameters (the database) are set through the command; for example, what should be the correlation between external influence and the result of action, or what level of the result of action will need to be retained, etc. At that, the maximum accuracy would be the result of action of one SFU (quantum of action). Systems with NF, as well as composite SFU, also contain two types of objects: executive elements (SFU) (effectors which carry out specific actions for the achievement of the preset overall goal of the system) and the control block (DPC and NF loop). But besides the Ք informant, control block of the system also contains the Y informant (NF). Therefore, it has information both on the external influence and the result of action. Some complexification of the control block brings about a very essential result. The reason for such a complexification is the need to achieve optimally accurate implementation of the goal of the system. The NF ensures the possibility of regulation of quantity of the result of action, i.e. the system with NF may perform any required action in an optimal way, from minimum to maximum, accurate to one quantum of action. Generally speaking, any real system at that has the third type of objects: service elements, i.e. substructure elements without which executive elements cannot operate. For example, the aircraft has wings to fly, but it also has wheels to take off and land. The haemoglobin molecule contains haem which contains 4 SFU (ligands) and globin, the protein which does not participate directly in transportation of oxygen but without which haem cannot work. We have slightly touched upon the issue of existence of the third type of objects (service elements) for one purpose only to know that they are always present in any system, but we will not go into detail of their function. We will only note that they represent the same ordinary systems aimed at serving other systems. Systems with NF can solve most of the tasks in a far better manner than simple or composite SFU. The presence of NF almost does not complexicate the system. We have seen that even simple SFU is a very complex formation including a set of components. Composite SFU is as many times more complex compared to simple SFU as is the number almost equal to that of simple SFU. The system with NF is only supplemented by one receptor and the communication link between receptor and analyzer (reciprocal path). But the effect of such change in the structure of control block is very large-scale and only depends on the algorithm of the control block operation. Any SFU (simple and composite) can implement only minimum or maximum action. Systems with NF can surely deliver the optimal result of action, from minimum to maximum; they are accurate and stable. Their accuracy depends only on the value of quantum of action of separate SFU and the NF profundity/intensity/ (see below). Stability is stipulated by that the system always sees the result of action and can compare it with the appropriate/due one and correct it if divergence occurs. In real systems the causes for the divergence are always present, since they exist in the real world where there always exists perturbation action/disturbing influences. Hence, one can see that it is NF that turns SFU into real systems. How does the control block manage the system? What parameters are characteristic of it? Any control block is characterized by three DPC parameters and the same number of NF loop parameters. For DPC it is a minimal level of controllable input stimulus (threshold of sensitivity); maximal level of controllable input stimulus (range of input stimulus sensitivity); time of engagement of control (decision-making time). For NF loop it is minimal level of controllable result of action (threshold of sensitivity of NF loop - NF profundity/intensity); maximal level of controllable result of action (range of sensitivity of the result of action); time of engagement of control (decision-making time). Minimal level of controllable input signal for DPC is the sensitivity threshold of signal of the Ք receptor wherefrom the analyzer-informant recognizes that the external influence has already begun. For example, if 2 has reached 60 mm Hg the sphincter should be opened (1 SFU is actuated), if the 2 value is smaller, then it is closed. Any values of 2 smaller than 60 mm Hg would not lead to the opening of sphincter, because these are sub-threshold values. Consequently, 60 mm Hg is the operational threshold of sphincter. Maximum level of controllable entrance signal (range) for DPC is the level of signal about external influence at which all SFU are actuated. The system cannot react to the further increase in the input signal by the extension of its function, as it does not have any more of SFU reserves. For example, if 2 has reached 100 mm Hg all sphincters should be opened (all SFU are activated). Any values of 2 larger than 100 mm Hg will not lead to the opening of additional sphincters, because all of them are already opened, i.e. the values of 60-100 mm Hg are the range of activation of the system of sphincters. Time of DPC activation is a time interval between the onset of external influence and the beginning of the system's operation. The system would never respond immediately after the onset of external influence. Receptors need to feel a signal, the analyzer-informant needs to make the decision, the effectors transfer the guiding impact to the command entry points of the executive elements - all this takes time. The minimal level of the controllable exit signal for NF is a threshold of sensitivity of a signal of the Y receptor, wherefrom the analyzer-informant recognizes whether there is a discrepancy between the result of action of the system and its due value. The discrepancy should be equal to or more than the quantum of action of single SFU. For example, if one sphincter is to be opened and the bloodstream should be minimal (one quantum of action), whereas two sphincters are actually opened and the bloodstream is twice as intensive (two quanta of action), the Y receptor should feel an extra quantum. If it is able of doing so, its sensitivity is equal to one quantum. Sensitivity is defined by the NF profundity/intensity. The NF profundity/intensity is a number of quanta of action of the single SFU system which sum is identified as the discrepancy between the actual and appropriate/proper action. The NF profundity/intensity is preset by the command. The highest possible NF profundity/intensity is the sensitivity of discrepancy in one quantum of action of single SFU. The less the NF profundity/intensity, the less is sensitivity, the more it is rough. In other words, the less the NF profundity/intensity, the larger value of the discrepancy between the result of action and the proper result is interpreted as discrepancy. For example, even two (three, ten, etc.) quanta of action of two (three, ten, etc.) SFU is interpreted as discrepancy. Minimal NF profundity/intensity is its absence. In this case any discrepancy of the result of action with the proper one is not interpreted by the control block as discrepancy. The result of action would be maximal and the system with simple control block with zero NF profundity/intensity would turn into composite SFU with DPC (with simplest/elementary control block). For example, the system of the Big Circle of Blood circulation for microcirculation in fabric capillaries should hold average pressure of 100 mm Hg accurate to 1 mm Hg. At the same time, average arterial pressure can fluctuate from 80 to 200 mm Hg. The value 100 mm Hg determines the level of controllable result of action. The value from 80 to 200 mm Hg is the range of controllable external (entry) influence. The value of 1 mm Hg is determined by NF profundity/intensity. Smaller NF profundity/intensity would control the parameter with smaller degree of accuracy, for example, to within 10 mm Hg (more roughly) or 50 mm Hg (even more roughly), while the higher NF profundity/intensity would do it with higher degree of accuracy, for example to within 0.1 mm Hg (finer). Maximal NF sensitivity is limited to the value of quantum of action of SFU which are part of the system, and the NF profundity/intensity. But in any case, if discrepancy between the level of the controllable and preset parameters occurs to the extent higher than the value of the preset accuracy, the NF loop should feel this divergence and force executive elements to perform so that to eliminate the discrepancy of the goal and the result of action. Maximal level of controllable outlet/exit signal (range) for NF is the level of signal about the result of action of the system at which all SFU are actuated. The system cannot react to the further increase in entry signal by increase in its function any more, because it has no more of SFU reserves. The time of actuating of NF control is the time interval between the onset of discrepancy of signal about the result of action with the preset result and the beginning of the system's operation. All these parameters can be built in DPC and NF loops or set primordially (the command is entered at their birth and they do not further vary any more), or can be entered through the command later, and these parameters can be changed by means of input of a new command from the outside. For this purpose there should be a channel of input of the command. Simple control block in itself cannot change any of these parameters. Absolutely all systems have control block, but it cannot be always found explicitly. In the aircraft or a spaceship this block is presented by the on-board computer, a box with electronics. In human beings and animals such block is the brain, or at least nervous system. But where is the control block located in a plant or bacterium? Where is the control block located in atom or molecule, or, for example, the control block in a nail? The easier the system, the more difficult it is for us to single out forms of control block habitual for us. However, it is present in any systems. Executive elements are responsible for the quality of result of action, while the control block - for its quantity. The control block can be, for example, intra- or internuclear and intermolecular connections/bonds. For example, in atom the SFU functions are performed by electrons, protons and neutrons, and those of control block by intra-nuclear forces or, in other words, interactions. The intra-atomic command, for example, is the condition that there can be no more than 2 electrons at the first electronic level, 8 electrons at the second level, etc., (periodic law determined by Pauli principle), this level being rigidly designated by quantum numbers. If the electron has somewise received additional energy and has risen above its level it cannot retain it for a long time and will go back, thereby releasing surplus of energy in the form of a photon. At that, not just any energy can lift the electron onto the other level, but only and only specific one (the corresponding quantum of energy). It also rises not just onto any level, but only onto the strictly preset one. If the energy of the external influence is less than the corresponding quantum, the electron level stabilization system would keep it in a former orbit (in a former condition) until the energy of external influence exceeded the corresponding level. If the energy of external influence is being continually accrued in a ramp-up mode, the electron would rise from one level to other not in a linear mode but by leaps (which are strictly defined by quantum laws) into higher orbits as soon as the energy of influence exceeds certain threshold levels. The number of levels of an electron's orbit in atom is probably very large and equal to the number of spectral lines of corresponding atom, but each level is strictly fixed and determined by quantum laws. Hence, some kind of mechanism (system of stabilization of quantum levels) strictly watches the performance of these laws, and this mechanism should have its own SFU and control blocks. The number of levels of the electron's orbit is possibly determined by the number of intranuclear SFU (protons and neutrons or other elementary particles), which result of action is the positioning of electron in an electronic orbit. For example, in a nail system the command would be its form and geometrical values. This command is entered into the control block one-time at the moment of nail manufacture when its values (at the moment of its birth) are measured and is not entered later any more. But when the command is already entered the system should execute this command, i.e. in this case the nail should keep its form and values even if it is being hammered. In any control block type the command should be entered into at some point of time in one way or another. We cannot make just a nail in general, but only the one with concrete form and preset values. Therefore, at the moment of its manufacture (i.e. one-time) we give it the task to be of such-and-such form and values. The command can vary if there is a channel of input of the command. For example, when turning on the air conditioner we can give it a task to hold air temperature at 20 and thereafter change the command for 25. The nail does not have a channel of input of the order, while the air conditioner does. Consequently, the system with simple control block is the object which can react to certain external influence, and the result of its action is graduated and stable. The number of gradation is determined by the number SFU in the system and the accuracy is determined by quantum of action (the size, result) of single SFU and NF profundity/intensity. The result of action is accurate because the control block supervises it by means of NF. Type of control is based on mismatch/error plus error-rate control/. Control would only start after the occurrence of external influence or delivery of the result of action. Stability of the result of action is determined by NF profundity/intensity. System reaction is conditioned by type and number of its SFU. Simple control block has three channels of control: one external (command) and two internal (DPC and NF). It reacts to external influence through DPC (the Ք informant) and to its own result of action of the system (the Y informant) through NF, whereas it controls executive elements of the system through efferent channels. Analogues of systems with simple control block are all objects of inanimate/inorganic world: gas clouds, crystals, various solid bodies, planets, planetary and stellar systems, etc. Biological analogues of systems with simple control block are protophytes and metaphytes, bacteria and all vegetative/autonomic systems of an organism, including, for example, external gas exchange system, blood circulation system, external gaseous metabolism system, digestion or immune systems. Even single-celled animal organisms of amoebas and infusorian type, inferior animal classes (jellyfish etc.) are the systems with complex control blocks/units (see below). All vegetative and many motor reflexes of higher animals which actuate at all levels starting from intramural nerve ganglia through hypothalamus are structured as simple control blocks. If they are affected by guiding influence of cerebral cortex, higher type (complex) reflexes come into service (see below). Analogues of the Ք informant receptors are all sensitive receptors (haemo-, baro-, thermo- and other receptors located in various bodies, except visual, acoustical and olfactory receptors which are part of the C informant, see below). Analogues of the Y informant receptors are all proprio-sensitive receptors which can also be haemo-, baro-, thermo- and other receptors located in different organs. Analogues of the control block stimulators are all motor and effector nerves stimulating cross-striped, unstriated muscular systems and secretory cells, as well as hormones, prostaglandins and other metabolites having any effect on the functions of any systems of organism. Analogues of the analyzer-informant in the mineral and vegetative media are only connections/bonds between the elements of a type of direct connection of X and Y informants with effectors (axon reflexes). In vegetative systems of animals connections are also of a type of direct connection of X and Y informants with effectors (humoral and metabolic regulation), as well as axon reflex (controls only nervules without involvement of nerve cell itself) and unconditioned reflexes (at the level of intra-organ intramural and other neuronic formations right up to hypothalamus). Thus, using DPC and NF and regulating the performance of its SFU the system produces the results of action qualitatively and quantitatively meeting the preset goal.
Principle of independence of the result of action. As it was already repeatedly underlined, the purpose/goal of any system is to get the appropriate/due (target-oriented) result of action arising from the performance of the system. Actually external influence, having entered the system, would be transformed to the result of action of the system. That is why systems are actually the converters of external influence into the result of action and of the cause into effect. External influence is in turn the result of action of other system which interacted with the former. Consequently, the result of action, once it has left one system and entered into another, would now exist independently of the system which produced it. For example, a civil engineering firm had a goal to build a house from certain quantity of building material (external influence). After a number of actions of this firm the house was built (the result of action). The firm could further proceed to the construction of other house, or cease to exist or change the line of business from construction to sewing shop. But the constructed house will already exist independently of the firm which constructed it. The purpose of the automobile engine (the car subsystem) is burning certain quantity of fuel (external influence for the engine) to receive certain quantity of mechanical energy (the result of action of the engine). The purpose of a running gear (other subsystem of the car) is transformation of mechanical energy of the engine (external influence for running gear) into certain number of revolutions of wheels (result of action of running gear). The purpose of wheels is transformation of certain number of revolutions (external influence for wheels) into the kilometers of travel (result of action of wheels). All in all, the result of action of the car will be kilometers of travel which will already exist independently of the car which has driven them through. Photon released from atom which can infinitely roam the space of the Universe throughout many billions years will be the result of action of the exited electron. Result of a slap of an oar by water is the depression/hollow on the water surface which could have also remained there forever if it were not for the fluidity of water and the influence on it of thousand other external influences. However, after thousand influences it will not any more remain in the form of depression/hollow, but in the form of other long chain of results of actions of other systems because nothing disappears in this world, but transforms into other forms. Conservation law is inviolable.
System cycles and transition processes. Systems just like SFU have cycles of their activity as well. Different systems can have different cycles of activity and they depend on the complexity and algorithm of the control block. The simplest cycle of work is characteristic of a system with simple control block. It is formed of the following micro cycles: perception, selection and measurement of external influence by the X receptor; selection from database of due value of the result of action; transition process (NF multi-micro-cycle);
a) perception and measurement of the result of action by the Y receptor - b) comparison of this result with the due value - c) development of the decision and corresponding influence on SFU for the purpose of correction of the result of action - d) influence on SFU, if the result of action is not equal to the appropriate/due one, or transition to the 1st micro cycle if it is equal to the proper one - e) actuation of SFU - f) return to a).
After the onset of external influence the X receptor would snap into action (1st micro cycle). Thereafter the value of the result of action which has to correspond to the given external influence (2nd micro cycle) is selected from the database. It is then followed by transition process (transition period, 3rd multi-micro-cycle, NF cycle): actuation of the Y receptor, comparison of the result of action with the due value selected from the database, corrective influence on SFU (the number of actuated SFU mill be the one determined by control block in the micro cycle c) and again return to the actuation of the Y receptor. It would last in that way until the result of action is equal to the preset one. From this point the purpose/goal is reached and after that the control block comes back to the 1st micro cycle, to the reception of external influence. System performance for the achievement of the result of action would not stop until there new external influence emerges. The aforementioned should be supplemented by a very essential addition. It has already been mentioned when we were examining the SFU performance cycles that after any SFU is actuated it completely spends all its stored energy intended for the performance of action. Therefore, after completion of action SFU is unable of performing any new action until it restores its power capacity, and it takes additional time which can substantially increase the duration of the transition period. That is why a speed of movement (e.g., running) of a sportsman's body whose system of oxygen delivery to the tissues is large (high speed of energy delivery) would be fast as well. And the speed of movement of a cardiac patient's body would be slow because the speed of energy delivery is reduced due to the affection of blood circulation system which is a part of the body's system of power supply. Sick persons spent a long time to restore energy potential of muscular cells because of the delayed ATP production that requires a lot of oxygen. Micro cycles from 1st to 2nd constitute the starting period of control block performance. In case of short-term external influence control block would determine it during the start cycle and pass to the transition period during which it would seek to achieve the actual result of action equal to the proper one. If external influence appears again during the transition period the control block will not react to it because during this moment it would not measure Ք (refractory phase). Upon termination of the transition period the control block would go back/resort/ to the starting stage, but while it does so (resorts), the achieved due value of the result of action would remain invariable (the steady-state period). If external influence would be long enough and not vary so that after the first achievement of the goal the control block has time to resort to reception X again, the steady value of the result of action would be retained as long as the external influence continues. At that, the transition cycle will not start, because the steady-state value of the result of action is equal to the proper/due one. If long external influence continues and changes its amplitude, the onset of new transition cycle may occur. At that, the more the change in the amplitude of external influence, the larger would be the amplitude of oscillation of functions. Therefore, sharp differences of amplitude of external influence are inadmissible, since they cause diverse undesirable effects associated with transition period.
If external influence is equal to zero, all SFU are deactivated, as zero external influence is corresponded by zero activation of SFU. If, after a short while there would be new external influence, the system would repeat all in a former order. Duration of the system performance cycle is also seriously affected by processes of restoration of energy potential of the actuated SFU. Every SFU, when being actuated, would spend definite (quantized) amount of energy, which is either brought in by external influence per se or is being accumulated by some subsystems of power supply of the given system. In any case, energy potential restoration also needs time, but we do not consider these processes as they associated only with the executive elements (SFU), while we only examine the processes occurring in the control blocks of the systems. Thus, the system continually performs in cycles, while accomplishing its micro cycles. In the absence of external influence or if it does not vary, the system would remain at one of its stationary levels and in the same functional condition with the same number of functioning SFU, from zero to all. In such a mode it would not have transition multi-micro-cycle (long-time repeat of the 3rd micro cycle). Every change of level of external influence causes transition processes. Transition of function to a new level would only become possible when the system is ready to do it. Such micro cycles in various systems may differ in details, but all systems without exception have the NF multi-micro-cycle. With all its advantages the NF has a very essential fault, i.e. the presence of transition processes. The intensity of transition process depends on a variety of factors. It can range from minimal to maximal, but transition processes are always present in all systems in a varying degree of intensity. They are unavoidable in essence, since NF actuates as soon as the result of action of the system is produced. It would take some time until affectors of the system feel a mismatch, until the control block makes corresponding decision, until effectors execute this decision, until the NF measures the result of action and corrects the decision and the process is repeated several times until necessary correlation ... external influence > result of action... is achieved. Therefore, at this time there can be any unexpected nonlinear transition processes breaking normal operating mode of the system. For this reason at the time of the first actuation of the system or in case of sharp loading variations it needs quite a long period of setting/adjustment. And even in the steady-state mode due to various casual fluctuations in the environment there can be a minor failure in the NF operation and minor transition processes (noise of the result of action of real system). The presence of transition processes imposes certain restrictions on the performance and scope of use of systems. Slow inertial systems are not suitable for fast external influences as the speed of systems' operation is primarily determined by the speed of NF loop operation. Indeed, the speed of executive element's operation is the basis of the speed of system operation on the whole, but NF multi-micro-cycle contributes considerably to the extension of the system's operation cycle. Therefore, when choosing the load on the living organism it is necessary to take into consideration the speed of system operation and to select speed of loading so as to ensure the least intensity of transition processes. The slower the variation of external influence, the shorter is the transition process. Transition period becomes practically unapparent when the variation of external influence is sufficiently slow. Consequently, if external influence varies, the duration of transition period may vary from zero to maximum depending on the speed of such variation and the speed of operation of the system's elements. Transition period is the process of transition from one level of functional state to another. The smaller the steps of transition from one level on another, the less is the amplitude of transition processes. In case of smooth change of loading no transition processes take place. The intensity of transition processes depends on the SFU caliber, force of external influence, duration of SFU charging, sensitivity of receptors, the time of their operation, the NF intensity/profundity and algorithm of the control block operation. But these cycles of systems' performance and transition processes are present both in atoms and electronic circuitry, planetary systems and all other systems of our World, including human body.
If systems did not have transition processes, transition process period would have been always equal to zero and the systems would have been completely inertia-free. But such systems are non-existent and inertness is inherent in a varying degree in any system. For example, in electronics the presence of transition processes generates additional harmonics of electric current fluctuations in various amplifiers or current generators. Sophisticated circuit solutions are applied to suppress thereof, but they are present in any electronic devices, considerably suppressed though. Time constant of systems with simple control blocks includes time constants of every SFU plus changeable durations of NF transition periods. Therefore, constant of time of such systems is not quite constant since duration of NF transition periods can vary depending on the force of external impact. Transition processes in systems with simple control blocks increase the inertness of such systems. Inertness of systems leads to various phase disturbances of synchronization and balance of interaction between systems. There are numerous ways to deal with transition processes. External impacts may be filtered in such a way that to prevent from sharp shock impacts (filtration, a principle of graduality of loading). Knowing the character of external impacts/influences in advance and foreseeing thereof which requires seeing them first (and it can only be done, at the minimum, by complex control blocks) would enable designing of such an appropriate algorithm of control block operation which would ensure finding correct decision by the 3rd micro cycle (prediction based control/management). However, it is only feasible for intellectual control blocks. Apparently it's impossible for us to completely get rid of the systems' inertness so far. Therefore, if the external impact/influence does not vary and the transition processes are practically equal to zero the system would operate cyclically and accurately on one of its stationary levels, or smoothly shift from one stationary level to another if external influence varies, but does it quite slowly. If transition processes become notable, the system operation cycles become unequal due to the emergence of transition multi-micro-cycles, i.e. period of transition processes. At that, nonlinear effects reduce the system's overall performance. In our everyday life we often face transition processes when, being absolutely unprepared, we leave a warm room and get into the cold air outside and catch cold. In the warm room all systems of our organism were in a certain balance of interactions and everything was all right. But here we got into the cold air outside and all systems should immediately re-arrange on a new balance. If they have no time to do it and highly intensive transition processes emerge that cause unexpected fluctuations of results of actions of body systems, imbalance of interactions of systems occurs which is called cold (we hereby do not specify the particulars associated with the change of condition of the immune system). After a while the imbalance would disappear and the cold would be over as well. If we make ourselves fit, we can train our control blocks to foresee sharp strikes of external impacts to reduce transition processes; we then will be able even to bathe in an ice hole. Transition processes of special importance for us are those arising from sharp change of situation around us. Stress-syndrome is directly associated with this phenomenon. The sharper the change of the situation around us, the more it gets threatening (external influence is stronger), the sharper transition processes are, right up to paradoxical reactions of a type of stupor. At that, the imbalance of performance of various sites of nervous system (control blocks) arises, which leads to imbalance of various systems of organism and the onset of various pathological reactions and processes of a type of vegetative neurosis and depressions, ischaemia up to infarction and ulcers, starting from mouth cavity (aphtae) to large intestine ulcers (ulcerative colitis, gastric and duodenum ulcers, etc.), arterial hypertension, etc.
Cyclic recurrence is a property of systems not of a living organism only. Any system operates in cycles. If external influence is retained at a stable level, the system would operate based on this minimal steady-state cycle. But external influence may change cyclically as well, for example, from a sleep to sleep, from dinner to dinner, etc. These are in fact secondary, tertiary, etc., cycles. Provided constructing the graphs of functions of a system, we get wavy curves characterizing recurrence. Examples include pneumotachogram, electrocardiogram curves, curves of variability of gastric juice acidity, sphygmogram curves, curves of electric activity of neurons, periodicity of the EEG alpha rhythm, etc. Sea waves, changes of seasons, movements of planets, movements of trains, etc., - these are all the examples of cyclic recurrence of various systems. The forms of cyclic recurrence curves may be of all sorts. The electrocardiogram curve differs from the arterial pressure curve, and the arterial pressure curve differs from the pressure curve in the aortic ventricle. Variety of cyclic recurrence curves is infinite. Two key parameters characterize recurrence: the period (or its reciprocal variable - frequency) and nonuniformity of the period, which concept includes the notion of frequency harmonics. Nonuniformity of the cycle period should not be resident in SFU (the elementary system) as its performance cycles are always identical. However, the systems have transition periods which may have various cycle periods. Besides, various systems have their own cyclic periods and in process of interaction of systems interference (overlap) of periods may occur. Therefore, additional shifting of own systems' periods takes place and harmonics of cycles emerge. The number of such wave overlaps can be arbitrary large. That is why in reality we observe a very wide variety of curves: regular sinusoids, irregular curves, etc. However, any curves can be disintegrated into constituent waves thereof, i.e. disintegration of interference into its components using special analytical methods, e.g. Fourier transformations. Resulting may be a spectrum of simpler waves of a sinusoid type. The more detailed (and more labour-consuming, though) the analysis, the nearer is the form of each component to a sinusoid and the larger is the number of sinusoidal waves with different periods.
The period of system cycle is a very important parameter for understanding the processes occurring in any system, including in living organisms. Its duration depends on time constant of the system's reaction to external impact/influence. Once the system starts recurrent performance cycle, it would not stop until it has not finished it. One may try to affect the system when it has not yet finished the cycle of actions, but the system's reaction to such interference would be inadequate. The speed of the system's functions progression depends completely on the duration of the system performance cycle. The longer the cycle period, the slower the system would transit from one level to another. The concepts of absolute and relative adiaphoria are directly associated with the concept of period and phase of system cycle. If, for example, the myocardium has not finished its systole-diastole cycle, extraordinary (pre-term) impulse of rhythm pacemaker or extrasystolic impulse cannot force the ventricle to produce adequate stroke release/discharge. The value of stroke discharge may vary from zero to maximum possible, depending on at which phase of adiphoria period extrasystolic impulse occurs. If the actuating pulse falls on the 2nd and 3rd micro cycles, the myocardium would not react to them at all (absolute adiphoria), since information from the X receptor is not measured at the right time. Myocardium, following the contraction, would need, as any other cell would do following its excitation, some time to restore its energy potential (ATP accumulation) and ensure setting of all SFU in startup condition. If extraordinary impulse emerges at this time, the system's response might be dependent on the amount of ATP already accumulated or the degree in which actomyosin fibers of myocardium sarcomeres diverged/separated in order to join in the function again (relative adiphoria). Excitability of an unexcited cell is the highest. At the moment of its excitation excitability sharply falls to zero (all SFU in operation, 2nd micro cycle) - absolute adiphoria. Thereafter, if there is no subsequent excitation, the system would gradually restore its excitability, while passing through the phases of relative adiphoria up to initial or even higher level (super-excitability, which is not examined in this work) and then again to initial level. Therefore, pulse irregularity may be observed in patients with impaired cardial function, when sphygmic beats are force-wise uneven. Extreme manifestation of such irregularity is the so-called Jackson's symptom /pulse deficiency/, i.e. cardiac electric activity is shown on the electrocardiogram, but there is no its mechanical (haemodynamic) analogue on the sphygmogram and sphygmic beats are not felt when palpating the pulse. The main conclusions from all the above are as follows: any systems operate in cycles passing through micro cycles; any system goes through transition process; cycle period may differ in various systems depending on time constant of the system's reaction to the external impact/influence (in living systems - on the speed of biochemical reactions and the speed of command/actuating signals); irregularity of the system's cycle period depends on the presence of transition processes, consequently, to a certain degree on the force of external exposure/influence; irregularity of the system cycle period depends on overlapping of cycle periods of interacting systems; upon termination of cycle of actions after single influence the system reverts to the original state, in which it was prior to the beginning of external influence (one single result of action with one single external influence). The latter does not apply to the so-called generating systems. It is associated with the fact that after the result of action has been achieved by the system, it becomes independent of the system which produced it and may become external influence in respect to it. If it is conducted to the external influence entry point of the same system, the latter would again get excited and again produce new result of action (positive feedback, PF). This is how all generators work. Thus, if the first external influence affects the system or external influence is ever changing, the number of functioning SFU systems varies. If no external influence is exerted on the system or is being exerted but is invariable, the number of functioning system SFU would not vary. Based on the above we can draw the definitions of stationary conditions and dynamism of process.
Functional condition of system. Functional condition of the system is defined by the number of active SFU. If all SFU function simultaneously, it shows high functional condition which arises in case of maximum external influence. If none SFU is active it shows minimum functional condition. It may occur in the absence of external influence. External environment always exerts some kind of influence on some systems, including the systems of organism. Even in quiescent state the Earth gravitational force makes part of our muscles work and consequently absolute rest is non-existent. So, when we are kind of in quiescent state we actually are in one of the low level states of physical activity with the corresponding certain low level of functional state of the organism. Any external influence requiring additional vigorous activity would transfer to a new level of a functional condition unless the SFU reserve is exhausted. When new influence is set at a new invariable (stationary) level, functional condition of a system is set on a new invariable (stationary) functional level.
Stationary states/modes. Stationary state is such a mode of systems when one and the same number of SFU function and no change occurs in their functional state. For example, in quiescence state all systems of organism do not change their functional mode as far as about the same number of SFU is operational. A female runner who runs a long distance for quite a long time without changing the speed is also in a stationary state/mode. Her load does not vary and consequently the number of working (functioning) SFU does not change either, i.e. the functional state of her organism does not change. Her organism has already got used to this unchangeable loading and as there is no increase of load there is no increase in the number of working SFU, too. The number of working SFU remains constant and therefore the functional state/mode of the organism does not change. What may change in this female runner's body is, e.g. the status of tissue energy generation system and the status of tissue energy consumption system, which is in fact the process of exhaustion of organism. However, if the female runner has duly planned her run tactics so that not to find herself in condition of anaerobic metabolism, the condition of external gas metabolism and blood circulation systems would not change. So, regardless of whether or not physical activity is present, but if it does not vary (stationary physical loadings /steady state/, provided it is adequate to the possibilities of the organism), the organism of the subject would be in a stationary state/mode. But if the female runner runs in conditions of anaerobic metabolism the vicious circle will be activated and functional condition of her organism will start change steadily to the worse. (The vicious circle is the system's reaction to its own result of action. Its basis is hyper reaction of system to routine influence, since the force of routine external influence is supplemented by the eigen result of action of the system which is independent of the latter and presents external influence in respect to it. Thus, routine external influence plus the influence of the system's own result of action all in all brings about hyper influence resulting in hyper reaction of the system (system overload). The outcome of this reaction is the destruction own SFU coupled with accumulation of defects and progressing decline in the quality of life. At the initial stages while functional reserves are still large, the vicious circle becomes activated under the influence of quite a strong external action (heavy load condition). But in process of SFU destruction and accumulation of defects the overload of adjacent systems and their destruction would accrue (the domino principle), whereas the level of load tolerance would recede and with the lapse of time even weak external influences will cause vicious circle actuation and may prove to be excessive. Eventually even the quiescent state will be the excessive loading for an organism with destroyed SFU which condition is incompatible with life. Usually termination of loading would discontinue this vicious circle. Dynamic processes. Dynamic process is the process of changing functional state/mode/condition of the system. The system is in dynamic process when the change in the number of its actuated SFU occurs. The number of continually actuated SFU would determine stationary state/mode/condition of the system. Hence, dynamic process is the process of the system's transition from one stationary level to another. If the speed of change in external influences exceeds the speed of fixing the preset result of action of the system, transition processes (multi-micro-cycles) occur during which variation of number of functioning SFU also takes place. Therefore, these transition processes are also dynamic. Consequently, there are two types of dynamic processes: when the system is shifting from one stationary condition (level) to another and when it is in transient multi-micro-cycle. The former is target-oriented, whereas the latter is caused by imperfection of systems and is parasitic, as its actions take away additional energy which was intended for target actions. When the system is in stationary condition some definite number of SFU (from zero to all) is actuated. The minimum step of change of level of functional condition is the value determined by the level of operation of one SFU (one quantum of action). Hence, basically transition from one level of functional condition to another is always discrete (quantized) rather than smooth, and this discrecity is determined by the SFU caliber. Then umber of stationary conditions is equal to the number of SFU of the system. Systems with considerable quantity of small SFU would pass through dynamic processes more smoothly and without strenuous jerks, than systems with small amount of large SFU. Hence, dynamic process is characterized by an amplitude of increment of the system's functions from minimum to maximum (the system's minimax; depends on its absolute number of SFU), discrecity or pace of increment of functions (depends on the caliber or quantum of individual SFU) and parameters of the function's cyclic recurrence (speed of increase of actions of system, the period of phases of a cycle, etc.). It can be targeted or parasitic. It should be noted that stationary condition is also a process, but it's the steady-state (stationary) process. In such cases the condition of systems does not vary from cycle to cycle. But during each cycle a number of various dynamic processes take place in the system as the system itself consists of subsystems, each of which in turn consists of cycles and processes. The steady-state process keeps system in one and the same functional condition and at one and the same stationary level. In accordance with the above definition, if a system does not change its functional condition, it is in stationary condition. Consequently, the steady-state process and stationary condition mean one the same thing, because irrespective of whether the systems are in stationary condition or in dynamic process, some kind of stationary or dynamic processes may take place in their subsystems. For example, even just a mere reception by the Ք receptor is a dynamic process. Hence, there are no absolutely inert (inactive) objects and any object of our World somewise operates in one way or another. It is assumed that the object may be completely inactive at zero degrees of Kelvin scale (absolute zero). Attempts to obtain absolutely inactive systems were undertaken by freezing of bodies up to percentage of Kelvin degrees. It's unlikely though, that any attempts to freeze a body to absolute zero would be a success, because the body would still move in space, cross some kind of magnetic, gravitational or electric fields and interact with them. For this reason at present it is probably impossible in principle to get absolutely inert and inactive body. The integral organism represents mosaic of systems which are either in different stationary conditions, or in dynamic processes. One could possibly make an objection that there are no systems in stationary condition in the organism at all, as far as some kind of dynamic processes continually occur in some of its systems. During systole the pressure in the aorta increases and during diastole it goes down, the heart functions continuously and blood continuously flows through the vessels, etc. That is all very true, but evaluation of the system's functions is not made based on its current condition, but the cycles of its activity. Since all processes in any systems are cyclic, including in the organism, the criterion of stationarity is the invariance of integral condition of the system from one cycle to another. Aorta reacts to external influence (stroke/systolic discharge of the left ventricle) in such a way that in process of increase of pressure its walls' tension increases, while it falls in process of pressure reduction. However, take, for example, the longer time period than the one of the cardiocycle, the integrated condition of the aorta would not vary from one cardiocycle to another and remain stationary.
Evaluation of functional state of systems. Evaluation may be qualitative and quantitative. The presence (absence) of any waves on the curve presents quality evaluation, whereas their amplitude or frequency is their quantitative evaluation. For the evaluation of functional condition of any systems comparison of the results of measurements of function parameters to those that should be with the given system is needed. In order to be able to judge about the presence (absence) of pathology, it is not enough to measure just any parameter. For example, we have measured someone's blood pressure and received the value of 190/100 mm Hg. Is it a high pressure or it is not? And what it should be like? To answer these questions it is necessary to compare the obtained result to a standard scale, i.e. to the due value. If the value obtained differs from the appropriate one, it speaks of the presence of pathology, if it does not, then it means there is no pathology. If blood pressure value of an order of 190/100 mm Hg is observed in quiescent state it would speak of pathology, while at the peak maximum load this value would be a norm. Hence, due values depend on the condition in which the given system is. There exist standard scales for the estimation of due values. There exist maximum and minimum due values, due values of quiescence state and peak load values, as well as due curves of functions. Minimum and maximum due values should not always correspond to those of quiescence state or peak load. For example, total peripheral vascular resistance should be maximum in quiescence state and minimum when loaded. Modern medicine makes extensive use of these kinds of due values, but is almost unfamiliar with the concept of due curves. Due value is what may be observed in most normal and healthy individuals with account taken of affiliation of a subject to certain standard group of alike subjects. If all have such-and-such value and normally exist in the given conditions, then in order for such subject to be also able to exist normally in the same conditions, he/she should be characterized by the same value. For this purpose statistical standard scales are applied which are derived by extensive detailed statistical research in specific groups of subjects. These are so-called statistical mathematical models. They show what parameters should be present in the given group of subjects. However, the use of standard tables is a primitive way of evaluation of systems' functions. First, they provide due values characterizing only a group of healthy individuals rather than the given concrete subject. Secondly, we already know that systems at each moment of time are in one of their functional states and it depends on external influences. For example, when the system is in quiescence state it is at its lowest level of functional condition, while being at peak load it is at its highest level. What do these tables suggest then? They probably suggest due values for the systems of organism in quiescence state or at their peak load condition. But, after all, the problems of patients are not those associated with their status in quiescence state, and the level of their daily normal (routine) load is not their maximum load. For normal evaluation of the functional condition of the patient's organism it is necessary to use not tabular data of due values, but due curves of functions of the body systems which nowadays are almost not applied. Coincidence or non-coincidence of actual curves of the body systems' functions with due curves would be a criterion of their sufficiency or insufficiency. Hence, application of standard tables is insufficient and does not meet the requirements of adequate diagnostics. Application of due curves is more of informative character (see below). Statistical mathematical models do not provide such accuracy, howsoever exact we measure parameters. They show what values of parameters should be in a certain group of subjects alike in terms of certain properties, for example, males aged 20-30 years, of 165-175 cm height, smokers or non-smokers, married or single, paleface, yellow- or black-skinned, etc. Statistical models are much simpler than those determined, but less exact though, since in relation to the given subject we can only know something with certain degree (e.g. 80%) of probability. Statistical models apply when we do not know all elements of the system and laws of their interaction. Then we hunt for similar systems on the basis of significant features, we somewise measure the results of action of all these systems operating in similar conditions (clinical tests) and calculate mean value of the result of action. Having assumed that the given subject closely approximates the others, because otherwise he/she would not be similar to them, we say: Once these (people) have such-and-such parameters of the given system in such-and-such conditions and they live without any problems, then he/she should have these same parameters if he/she is in the same conditions. However, a subject's living conditions do always vary. Change or failure to account even one significant parameter can change considerably the results of statistical researches, and this is a serious drawback of statistical mathematical models. Moreover, statistical models often do not reveal the essence of pathological process at all. The functional residual capacity (FRC) of lungs shows volume of lungs in the end of normal exhalation and is a certain indicator of the number of functional units of ventilation (FUV). Hence, the increase in FRC indicates the increase in the number FUV? But in patients with pulmonary emphysema FRC is considerably oversized. All right then, does this mean that the number of FUV in such patients is increased? It is nonsense, as we know that due to emphysema destruction of FUV occurs! And in patients with insufficiency of pumping function of left ventricle reduction of FRC is observed. Does this mean that the number of FUV is reduced in such patients? It is impossible to give definite answer to these questions without the knowledge of the dynamics of external respiration system function and pulmonary blood circulation. Hence, the major drawback of statistical models consists in that sufficiently reliable results of researches can be obtained only in the event that all significant conditions defining the given group of subjects are strictly observed. Alteration or addition of one or several significant conditions of research, for example, stature/height, sex, weight, the colour of eyes, open window during sleep, place of residence, etc., may alter very much the final result by adding a new group of subjects. As a result, if we wish to know, e.g. vital capacity of lungs in the inhabitants of New York we must conduct research among the inhabitants of New York rather than the inhabitants of Moscow, Paris or Beijing, and these data may not apply, for example, to the inhabitants of Rio de Janeiro. Moreover, standards/norms may differ in the inhabitants of different areas of New York depending on national/ethnic/ identity, environmental pollution in these areas, social level and etc. Surely, one may investigate all conceivable variety of groups of subjects and develop specifications/standards, for example, for males aged from... to..., smokers or non-smokers of cigars (tobacco pipes, cigarettes or cigarettes with cardboard holder) with high (low) concentration of nicotine, aboriginals (emigrants), white, dark- or yellow-skinned, etc. It would require enormous efforts and still would not be justified, since the world is continually changing and one would have to do this work every time again. It's all the more so impossible to develop statistical specifications/standards for infinite number of groups of subjects in the course of dynamic processes, for example, physical activities and at different phases of pathological processes, etc., when the number of values of each separate parameter is quite large. When the system's details are completely uncertain, although the variants of the system's reaction and their probabilistic weighting factors are known, statistical mathematical model of system arises. Inaccuracy of these models is of fundamental character and is stipulated by probabilistic character of functions. In process of studying of the system details of its structure become apparent. As a result an empirical model emerges in the form of a formula. The degree of accuracy of this model is higher than that of statistical, but it is still of probabilistic character. When all details of the system are known and the mechanism of its operation is entirely exposed the deterministic mathematical model appears in the form of the formula. Its accuracy is only stipulated by the accuracy of measurement methods. Application of statistical mathematical models is justified at the first stages of any cognition process when details of phenomenon in question are unknown. At this stage of cognition a black box concept is introduced when we know nothing about the structure of this box, but we do know its reaction to certain influences. Types of its reactions are revealed by means of statistical models and thereafter, with the help of logic, details of its systems and their interaction are becoming exposed. When all that is revealed, deterministic models come into play ..................

* . , .