Здесь можно найти образцы любых учебных материалов, т.е. получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ и рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


реферат Сильные и слабые электролиты

Информация:

Тип работы: реферат. Добавлен: 13.12.2012. Сдан: 2012. Страниц: 18. Уникальность по antiplagiat.ru: < 30%

Описание (план):


?Введение
 
   Электрохимия - раздел физической химии, который изучает системы, содержащие ионы (растворы, расплавы и твердые электролиты), а также процессы и явления с участием заряженных частиц (ионов и электронов), имеющие место на границе раздела двух фаз. Обычно одной из фаз является металл или полупроводник, другая фаза - раствор или расплав электролита либо твердый электролит. Для таких двухфазных систем термин "электрохимия" имеет более узкий смысл как наука, изучающая взаимодействие зарядов металла или полупроводника с ионами и молекулами раствора (расплава, твердого электролита). Часто это взаимодействие сопровождается возникновением в цепи электрического тока, тогда электрохимию можно определить как науку, изучающую физико-химические процессы, которые сопровождаются появлением электрического тока или, наоборот, возникают под действием электрического тока на химических соединениях. Последнее определение широко распространено, хотя и является наиболее узким.
     Электрохимические методы широко используются в различных отраслях промышленности. В химической промышленности это электролиз — важнейший метод производства хлора и щелочей, многочисленных окислителей, получение фтора и фторорганических соединений. Возрастающее значение приобретает электросинтез самых различных химических соединений. На электрохимических методах основано получение алюминия, магния, натрия, лития, бериллия, тантала, титана, цинка, рафинирование меди. Водород получают электролизом воды в относительно ограниченных масштабах, однако по мере использования запасов природного топлива и увеличения производства электроэнергии значение этого метода получения водорода будет возрастать. В различных отраслях техники применяются защитные и декоративные гальванические покрытия, а также гальванические покрытия с заданными оптическими, механическими и магнитными свойствами. Анодное растворение металлов успешно заменяет механическую обработку твёрдых и сверхтвёрдых металлов и сплавов. В технике всё шире применяются электрохимические преобразователи информации . Большое значение имеет скорейшее решение проблемы электромобиля. Быстро растущий спрос на автономные источники электроэнергии для техники, освоения космоса и бытовых применений стимулирует поиски новых электрохимических систем повышенной удельной мощности, энергоёмкости и сохранности. Всё более широкое распространение получают различные электрохимические методы анализа, электрофизические и электрохимические методы обработки.
     Понимание важнейших биологических процессов, например усвоения и использования энергии пищи, распространения нервного импульса, восприятия зрительного образа, невозможно без учёта электрохимических звеньев, связанных в первую очередь с функционированием биологических мембран. Решение этих проблем ставит перед теоретической электрохимией новые задачи, а в будущем должно оказать существенное влияние и на медицинскую практику.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1 Теория растворов электролитов. Сильные и слабые электролиты.
 
     Электролиты - это вещества, в которых в заметной концентрации присутствуют ионы, обусловливающие прохождение электрического тока (ионную проводимость). Электролиты также имеют название проводников второго рода.
     В узком смысле слова электролиты - вещества, молекулы которых в растворе, вследствие электролитической диссоциации, распадаются на ионы. Среди электролитов различают твердые, растворы электролитов и ионные расплавы. Растворы электролитов часто также называют электролиты. В зависимости от вида растворителя электролиты делятся на водные и электролиты неводные.
     При растворении в воде электролиты распадаются (диссоциируют) на положительно и отрицательно заряженные ионы. Положительно заряженные ионы называются катионами;  например, ионы водорода и металлов. Отрицательно заряженные ионы называются анионами;   к   ним   принадлежат   ионы   кислотных   остатков,   гидроксид-ионы.  Диссоциация   НС1   и   NaCl  выразится уравнением:
 
HCl = H?  +   Cl?
 
NaCl =Na?+ Cl?
 
     Процесс диссоциации. В зависимости от структуры растворяющегося вещества в безводном состоянии  ( ионная или полярная связь) его диссоциация протекает по-разному.
     Когда кристалл соли, например, хлорида калия, попадает в воду, то расположенные на его поверхности ионы притягивают к себе полярные молекулы воды (ион-дипольное взаимодействие). К ионам калия молекулы воды притягиваются своими отрицательными полюсами, а  к хлорид-ионам — положительными:
 
 
                        
 
                                                                                                               рис. 1
 
     Иначе протекает диссоциация полярных молекул (рис. 1). Молекулы воды, притянувшиеся к концам полярной молекулы (диполь-дипольное взаимодействие), вызывают расхождение ее полюсов — поляризуют молекулу. Такая поляризация в сочетании с колебательным тепловым движением атомов в молекуле, а также с тепловым движением окружающих ее молекул воды приводит к распаду полярной молекулы на ионы. Как и в случае растворения ионного кристалла, эти ионы гидратируются. Ион водорода Н+  (протон) оказывается прочно связанным с молекулой воды в ион гидроксония Н3О+. Так, при растворении в воде хлороводорода и азотной кислоты происходят процессы, которые можно выразить уравнениями:
 
Н2О   + НСl  = Н3О+ + Сl?
 
Н2О  +   HNO3   =Н3О+   +   NO?3
 
     В результате этого процесса молекула НСl расщепляется таким образом, что общая пара электронов остается у атома хлора, который превращается в ион Сl?, а протон, внедряясь в электронную оболочку атома кислорода в молекуле воды, образует ион гидроксония Н3О+ .
 
     Перешедшие в раствор ионы остаются связанными с молекулами воды и образуют гидраты ионов. В результате диссоциации образуются не свободные ионы, а соединения ионов с молекулами растворителя. В общем случае любого растворителя эти соединения называются сольватами ионов. Но в уравнениях диссоциации обычно пишут формулы ионов, а не их гидратов или сольватов, тем более, что число молекул растворителя, связанных с ионами, изменяется в зависимости от концентрации раствора и других условий.
     В соответствии с природой ионов, образующихся при электролитической диссоциации водных растворов, выделяют солевые электролиты (в них отсутствуют ионы Н+ и ОН-), кислоты (преобладают ионы Н+) и основания (преобладают ионы ОН-). Если при диссоциации молекул электролитов число катионов совпадает с числом анионов, то такие электролиты называют симметричными (1,1 - валентными, например, КСl, 2,2-валентными, например, CaSO4, и т.д.). В противном случае электролиты называют несимметричными (1,2-валентные электролиты, напр. H2SO4, 3,1-валентные, например, А1 (ОН)3, и т.д.). В зависимости от способности к электролитической диссоциации электролиты условно разделяют на сильные и слабые. Слабые электролиты характеризуются, прежде всего, константой и степенью диссоциации, а сильные активностью ионов.
     Чаще всего в растворе лишь часть электролита диссоциирует на ионы, поэтому существует понятие  степени диссоциации.
     Степенью диссоциации электролита называется отношение числа его молекул, распавшихся в данном растворе на ионы, к общему числу его молекул в растворе.
     К сильным электролитам принадлежат почти все соли; из кислот и оснований к ним относятся HNO3, HCIO4, НСI, HBr, HI, КОН, NaOH, Ba(OH)2  и  Са(ОН)2.
     К слабым электролитам относится большинство органических кислот, а из важнейших неорганических соединений к ним принадлежат Н2СО3, H2S,   HCN, H2SiО3и  NH4OH.
 
2 Отличие сильных электролитов от слабых
 
     Принципиальное отличие сильных электролитов от слабых состоит в том, что равновесие диссоциации сильных электролитов полностью смещено вправо:              
             

 
а потому константа равновесия (диссоциации) оказывается величиной неопределенной. Снижение электропроводности при увеличении концентрации сильного электролита обусловлено электростатическим взаимодействием ионов.
     Дебай и Хюккель, предложив модель, которая легла в основу теории сильных электролитов, постулировали:
- электролит полностью диссоциирует, но в сравнительно разбавленных растворах (C = 0,01 моль·л –1).
- каждый ион окружен оболочкой из ионов противоположного знака. В свою очередь, каждый из этих ионов сольватирован. Это окружение называется ионной атмосферой.
     Очевидно, что при электростатическом взаимодействии ионов противоположных знаков необходимо учитывать влияние ионной атмосферы. При движении катиона в электростатическом поле ионная атмосфера деформируется; она сгущается перед ним и разрежается позади него. Эта асимметрия ионной атмосферы оказывает тем более тормозящее действие движению катиона, чем выше концентрация электролитов и чем больше заряд ионов. В этих системах само понятие концентрации становится неоднозначиным и должно заменяться активностью. Для бинарного одно-однозарядного электролита KatAn > Kat + + An + активности катиона (a +) и аниона (a –) соответственно равны:              
             

 
где C + и C – – аналитические концентрации соответственно катиона и аниона, ? + и ? – – их коэффициенты активности.
     Определить активности каждого иона в отдельности невозможно, поэтому для одно-однозарядных электролитов пользуются средними геометрическими значений активностей и коэффициентов активностей:              
             
 
 
     Коэффициент активности по Дебаю–Хюккелю зависит по крайней мере от температуры, диэлектрической проницаемости растворителя (?) и ионной силы (I); последняя служит мерой интенсивности электрического поля, создаваемого ионами в растворе.
     Для данного электролита ионная сила выражается уравнением Дебая–Хюккеля:                            
 
             
 
     Ионная сила в свою очередь равна                            
 
                                              
 
     Здесь C – аналитическая концентрация, z – заряд катиона или аниона. Для одно-однозарядного электролита ионная сила совпадает с концентрацией. Таким образом, NaCl и Na2SO4 при одинаковых концентрациях будут иметь разные ионные силы. Сопоставление свойств растворов сильных электролитов можно проводить только тогда, когда ионные силы одинаковы; даже небольшие примеси резко изменяют свойства электролита.
На рис. 3 сопоставляются вычисленные и экспериментальные значения lg ? ± при различных ионных силах. Из него видно, что уравнение Дебая–Хюккеля выполняется только для разбавленных растворов.
 

 
 
 
Рис. 3
                                             
Зависимость
 
 
Пунктирные прямые рассчитаны по уравнению Дебая–Хюккеля. Знание коэффициентов активностей позволяет оценить реальные свойства сильных электролитов.
 
3 Закон Рауля для растворов электролитов. Коэффициент диссоциации (i) и его связь со степенью диссоциации. Элементы современной теории сильных электролитов (теория Дебая-Хюккеля). Ионная сила, активность и коэффициент активности.
 
     Понижение давления пара растворителя над раствором определяется в основном количеством растворенных частиц. Однако количество растворенных частиц в растворах электролитов, в отличие от растворов неэлектролитов, определяется не только концентрацией раствора, но и степенью диссоциации электролита, поскольку все молекулы или часть молекул электролита в растворе распадаются на ионы. Применяя закон Рауля к растворам электролитов Вант-Гофф ввел поправочный коэффициент i в уравнение для осмотического давления Р = С R Т.
    Коэффициент i , учитывает увеличение числа частиц в растворе в результате электролитической диссоциации: dр/р0i  = i Х2  (Р = i С R Т).
     Коэффициент диссоциации i показывает, во сколько раз число частиц в растворе электролита больше числа частиц в растворе неэлектролита той же концентрации, (для растворов неэлектролитов i=1, а для растворов электролитов i> 1). При диссоциации уксусной кислоты количество образовавшихся ионов n=2.
(СН3СООН DСН3СОО- + Н+).
Число ионов в 1л раствора Nион = anСNА  ,
А число недиссоциированных молекул растворенного вещества Nнедисс = (1-a)СNА ,
Где a = Nдис/N0 -  степень диссоциации электролита (N0 = Nдисс + Nнедисс), с – молярная концентрация раствора (моль/л).
     Таким образом, коэффициент диссоциации i связан со степенью диссоциации  a электролита соотношением: a = (i - 1) /(n-1).и, значит по относительному изменению давления пара растворителя над раствором известной концентрации можно определить степень диссоциации электролита.
Растворы сильных электролитов обнаруживают особенности в поведении, не соответствующие их полной диссоциации на ионы. Так, реальная концентрация ионов оказывается значительно меньше концентрации, задаваемой при приготовлении раствора. Кажущаяся (определяемая экспериментально) степень диссоциации сильных электролитов в соответствии с опытными данными меньше 1 даже в разбавленных растворах. Это связано с тем, что в растворах электролитов наблюдается некоторая степень упорядоченности взаимного расположения ионов, вызванная электростатическим взаимодействием катионов и анионов. На небольших расстояниях от каждого иона преимущественно располагаются ионы противоположного знака, т.е. вокруг каждого иона в растворе создается ионная атмосфера.
     Таким образом, для процессов диссоциации и химических  реакций, протекающих в растворах с участием сильных электролитов, а также в концентрированных растворах слабых электролитов, нельзя рассчитывать константы равновесия на основании концентраций свободных ионов, которых нет в реальных системах. Кроме того, различная степень сольватации веществ, участвующих в реакции, по-разному изменяет скорости прямой и обратной  реакций, что также приводит к зависимости константы равновесия от общего содержания ионов в растворе. Поэтому для описания свойств реальных растворов, как и других реальных систем используют метод активностей Льюиса, в котором для учета межионных и межмолекулярных взаимодействий введено понятие эффективной концентрации или активности. Подстановка активности вместо концентрации в термодинамические соотношения, справедливые для идеальных растворов, позволяет применять их для описания любых систем. Активность a электролита суммарно отражает все эффекты взаимодействия ионов между собой и с молекулами растворителя: a = g Сm, где Сm – моляльная концентрация электролита; g - коэффициент активности, который можно рассматривать как  меру различия поведения электролита в данном растворе и в растворе, который принимают за идеальный. Для идеальных растворов g = 1. Бесконечно разбавленные растворы по своим сойствам приближаются к идеальным, поэтому в таких растворах полагают g»1.
Коэффициенты активности и, следовательно, сами активности определяют экспериментально, измеряя различные свойства раствора, например, давление пара растворителя, температуру кипения  или кристаллизации раствора и др.
     Электростатическая теория сильных электролитов, развитая в трудах Дебая, Хюккеля, позволяет вычислить средний коэффициент активности g± -сильного бинарного электролита в разбавленных растворах. Сила электростатического взаимодействия ионов с их окружением (ионной атмосферой) определяется плотностью заряда в этом окружении, а плотность заряда, в свою очередь, зависит от того, сколько ионов находится в единице объема раствора, т.е. от их концентрации, и от того, какой заряд несут эти ионы. Мерой этого взаимодействия является ионная сила раствора I, рассчитываемая по формуле: I = 0,5 S Сm,iZi 2 
где    Сm,i  -  моляльная концентрация i –иона; Zi – зарядовое число i –го компонента. В очень разбавленных растворах (I<0,1) средний коэффициент активности электролита зависит только от ионной силы раствора и не зависит от природы присутствующих в растворе ионов.
 
4 Произведение растворимости
 
 
При растворении твердого тела в воде растворение прекращается, когда получается насыщенный раствор, т.е. когда между растворяемым веществом и находящимися в растворе молекулами того же вещества установится равновесие. При растворении электролита, например, соли, в раствор переходят не молекулы, а ионы; следовательно, и равновесие в насыщенном растворе устанавливается между твердой солью и перешедшими в раствор ионами. Например, в насыщенном растворе сульфата кальция устанавливается равновесие
 
CaSO4 -Са?? + SO4??
 
Константа равновесия для этого процесса выразится уравнением:
К = [Са??] [SO4??]
           [CaSO4]
Знаменатель дроби - концентрация твердой соли - представляет собою постоянную величину, которую можно ввести в константу.
Тогда, обозначая
К = [CaSO4] = К' получим [Са2?] [SO4??] = К'
     Таким образом, в насыщенном растворе электролита произведение концентраций его ионов есть величина постоянная при данной температуре. Эта величина количественно характеризует способность электролита растворяться; ее называют произведением растворимости электролита и обозначают буквами ПР. Заменив величину К' на ПРCaSO4, получим:
ПР CaSO4 = [Са??] [SO4??]
     Численное значение произведения растворимости электролита нетрудно найти, зная его растворимость. Например, растворимость сульфата кальция при 20°С равна 1,5•10-2 моль/л. Это значит, что в насыщенном растворе концентрация каждого из ионов Са??и SO4?? равна 1,5•10-2 моль/л.
Следовательно, произведение растворимости этой соли:
ПР CaSO4 = [Са??] [SO4??] = (1,5•10-2) 2 = 2,25•10-4
     В тех случаях, когда электролит содержит два или несколько одинаковых ионов, концентрации этих ионов при вычислении произведения растворимости должны быть возведены в соответствующие степени. Например:
ПР РbCl2 = [Pb??] [Сl?] ?
     Знание произведения растворимости позволяет решать вопросы, связанные с образованием или растворением осадков при химических реакциях, что особенно важно для аналитической химии. Надо, однако, иметь в виду, что произведение растворимости, вычисленное без учета коэффициентов активности, является постоянной величиной только для малорастворимых электролитов и при условии, что концентрации других находящихся в растворе ионов невелики. Это объясняется тем, что коэффициенты активности близки к единице только в очень разбавленных растворах. Для хорошо растворимых электролитов значение произведения концентраций ионов в насыщенном растворе может сильно изменяться в присутствии других веществ. Это происходит вследствие изменения коэффициентов активности ионов. Поэтому расчеты, производимые по произведению растворимости без учета коэффициентов активности, приводят в этих случаях к неверным результатам.
 
5 Гидратация ионов. Кристаллогидраты..
 
 
     Гидратация (греч. «хюдор» – вода) – присоединение воды к ионам, атомам или молекулам. Продукты такого процесса называются гидратами. Гидролиз (греч. «лисис» – разложение, растворение) – химическая реакция разложения вещества водой.
     В течение многих лет химики считали растворение веществ в воде чисто физическим процессом. И сейчас в школьных учебниках к таковым относят, например, растворение в воде сахара. Действительно, при испарении воды из раствора сахара при пониженном давлении легко получить исходное вещество в неизменном виде.
     В то же время накапливались данные о том, что процесс растворения нельзя считать чисто механическим смешением компонентов, как, например, гексана и гептана. Так, растворы хлорида натрия и многих других соединений обладают электропроводностью, а сам процесс растворения нередко сопровождается значительными тепловыми эффектами). Более того, некоторые соединения при растворении изменяют даже цвет. Например, сульфат меди бесцветный, а его разбавленный раствор – голубой, хлорид кобальта(II) голубой, а его водные растворы розовые. Все эти факты показывают, что растворение в воде – физико-химический процесс, вызванный гидратацией, то есть взаимодействием вещества с водой.
     В ходе гидратации в ряде случаев происходит обратимое присоединение воды к ионам, атомам или молекулам растворяемого вещества с образованием гидратов. Так, при растворении в воде кристаллических ионных соединений (солей, щелочей, а также некоторых кислот, например, лимонной и щавелевой), молекулярных соединений (хлороводорода, серной кислоты, спирта, глюкозы и др.) происходит гидратация катионов и анионов, из которых состоит растворяемое вещество, либо гидратация ионов, образующихся в процессе растворения. При этом молекулы воды сохраняются как целое.
     В процессе гидратации ионов участвует множество молекул воды, которые, благодаря электростатическим силам, окружают ионы со всех сторон гидратной «шубой», при этом лишь несколько молекул воды образуют первый, наиболее прочно связанный с центральным ионом слой. В целом же при гидратации ионов выделяется значительная энергия, так, при гидратации катионов Н+ выделяется 1076 кДж/моль – это в 2,5 раза больше энергии диссоциации молекул Н2 на атомы. Энергия гидратации тем больше, чем меньше размер иона и чем больше его заряд. Например, энергия гидратации большого по размерам иона Cs+ в 4 раза меньше, чем для иона Н+. Энергию гидратации ионов трудно определить экспериментально, но можно рассчитать на основании электростатических моделей. Энергии гидратации некоторых ионов приведены в таблице №1
 
Ион              Энергия гидратации,   кДж/моль Ион   Энергия гидратации,   кДж/моль
H+                        1076                                       Sr2+                       1477
H3O+                        460                                                  Ba2+                       1339
Li+                        502                                                   Zn2+                       2130
Na+                        410                                                  Al3+                       4548
K+                        329                                                  F–                       473
NH4+                330                                                 Cl–                       330
Rb+                        314                                                   Br–                       296
Cs+                        264                                                   I–                       264
Mg2+                        1887                                                    OH–                       339
Ca2+                        1569                                                    MnO4–         247
 
                                                                                                                 таблица №1
     Алгебраическая сумма энергии кристаллической решетки (или энергии разрыва связей) растворяемого вещества и энергии гидратации ионов определяет суммарный тепловой эффект растворения. В случае ионных соединений процесс может быть существенно экзотермическим (растворение в воде серной кислоты, гидроксидов натрия и калия может вызвать даже вскипание раствора), существенно эндотермическим (стакан с водой, в котором быстро растворяют нитрат аммония, примерзает к влажной подставке) или термонейтральным (растворение бромида натрия практически не сопровождается изменением температуры).
     Гидратация многих безводных солей дозированным количеством воды (например, из газовой фазы) приводит к образованию твердых гидратов определенного состава, которые называются кристаллогидратами. Этот процесс всегда сопровождается выделением теплоты. Гидратация может быть ступенчатой, в зависимости от количества доступной воды и температуры. Одновременно может изменяться и цвет ионов. Например, при гидратации бесцветного сульфата меди(II) последовательно образуются различные окрашенные кристаллогидраты, из которых выделены в чистом виде моногидрат CuSO4·H2O, тригидрат CuSO4·3H2O и пентагидрат (медный купорос) CuSO4·5H2O.
     При кристаллизации многих солей из их водных растворов молекулы воды входят в состав кристаллической решетки с образованием кристаллогидратов различного состава, например, LiCl·H2O, CuCl2·2H2O, Ba(ClO4)2·3H2O, CdBr2·4H2O, Na2S2O3·5H2O, AlCl3·6H2O, FeSO4·7H2O, MgI2·8H2O, Fe(NO3)3·9H2O, Na2SO4·10H2O, Na2HPO4·12H2O, Al2(SO4)3·18H2O и др. При нагревании, а также при хранении на воздухе (особенно при низкой влажности) многие кристаллогидраты выветриваются, теряя частично или полностью молекулы воды.
     Гидратация молекулярных соединений происходит обычно за счет водородных связей и, как правило, не сопровождается существенным тепловым эффектом. Примером может служить растворение сахара. Молекулы воды легко образуют водородные связи с гидроксильными группами, поэтому даже вещества с большими молекулами хорошо растворяются в воде, если содержат много гидроксильных групп (сахароза, поливиниловый спирт). Соединения с небольшими полярными молекулами также легко гидратируются полярными молекулами воды, поэтому такие соединения обычно хорошо растворяются в воде. Примером может служить ацетонитрил СН3CN, который смешивается с водой в любых отношениях.
     Необычные гидраты с некоторыми соединениями образует вода, находящаяся в твердом состоянии. В этих гидратах атомы, молекулы ряда веществ включаются в пустоты кристаллической решетки льда. Эти пустоты могут заполняться небольшими молекулами, такими как О2, N2, H2S, СН4, атомами благородных газов. Такие соединения «без химической связи» называют газовыми гидратами. Другие их название – клатраты (соединения включения). Отсутствие химических связей приводит к самым необычным соотношениям молекул воды и включенного вещества. Например, при низких температурах устойчивы соединения, содержащие на 46 молекул Н2О восемь атомов аргона, криптона, ксенона или радона. А вот маленькие атомы гелия и неона таких клатратов не образуют, так как они «ускользают» из слишком больших для них пустот. Клатрат состава Сl2·8H2O получил еще Дэви в 1811 из насыщенного при 0° С водного раствора хлора.
     Клатраты, образованные водой и метаном, а также другими газами, часто называют газовыми гидратами. Внешне они похожи на снег или рыхлый лет, но под давлением могут существовать и при плюсовых температурах. Поэтому газовые гидраты могут закупорить газопровод и привести к аварии. Гидраты метана широко распространены в природе, в особенности на шельфе океанов; запасы природного газа в виде газовых гидратов значительно превышают его запасы в свободном состоянии.
     Гидратация как химическое взаимодействие с водой может сопровождаться разрушением молекул воды, в этом случае происходит необратимая химическая реакция, которую обычно называют гидролизом – разложением водой. Реакции гидролиза известны как в неорганической, так и в органической химии. Примерами гидролиза неорганических соединений могут служить следующие процессы:
 
SO3 + H2O ® H2SO4, СаО + Н2О ® Са(ОН)2, SOCl2 + H2O ® SO2 + 2HCl, СаС2 + 2Н2О ® Са(ОН)2 + С2Н2, PCl3 + 3H2O ® H3PO4 + HCl, BF3 + 3H2O ® H3BO3 + 3HF.
 
     Гидролиз солей, образованных сильным основанием (щелочью) и слабой кислотой или слабым основанием и сильной кислотой сопровождается изменением кислотности среды: Na2S + H2O ® NaHS + NaOH, AlCl3 + H2O ® Al(OH)Cl2 + HCl. В случае таких солей как Al2S3 (их можно получить только сухим путем) гидролиз идет до конца с выделением гидроксида металла и слабой кислоты.
В органической химии реакции гидролиза сопровождаются либо разрушением органической молекулы (гидролиз сложных эфиров, белков): CH3COOC2H5 + H2O ® CH3COOH + C2H2OH, либо заменой в молекуле какой-либо группы на остаток молекулы воды, обычно гидроксил (гидролиз алкилгалогенидов): C2H5Br + H2O ® C2H5OH + HBr. В обоих случаях гидролизу способствует присутствие щелочи, которая связывает выделяющуюся кислоту. В случае белков и других биологически активных молекул реакцию гидролиза направляют в нужном направлении специальные ферменты – гидролазы. Например, фермент амилаза способствует гидролизу крахмала; фермент трипсин направленно гидролизует в белках пептидные связи, образованные аминокислотами аргинином и лизином.
     Примерами реакции гидратации в органической химии может служить каталитическая гидратация алкенов с образованием спиртов:
 
С2Н4 + Н2О ® С2Н5ОН
     Реакции гидратации широко используются в промышленном органическом синтезе. Например, каталитической гидратацией из этилена получают этиловый спирт, из пропилена – пропиловый спирт, из ацетилена – уксусный альдегид, из метилацетилена – ацетон. Реакция гидратации с образованием гидратов является ключевой при формовании изделий из гипса, при «схватывании» цемента. Образование газовых гидратов используют для разделения многокомпонентных газовых смесей. Наличие запасов гидратов метана в недрах Земли перспективно для будущей добычи природного газа. Реакции гидролиза широко используются в лабораторной практике и в промышленности. Гидролизом целлюлозы получают называемый гидролизный этиловый спирт, гидролизом сахарозы – глюкозу и фруктозу, гидролизом жиров – глицерин и соли карбоновых кислот – мыла. Ферментативный гидролиз органических соединений широко применяется в пищевой, текстильной и фармацевтической промышленности.
 
6 Значение растворов сильных электролитов в химии и химической технологии
 
 
     Электролиты играют важную роль в науке и технике. Они участвуют в электрохимических и многих биологических процессах, являются средой для органического и неорганического синтеза и электрохимического производства.
Устройства с твердыми оксидными электролитами. Главное предназначение твердых оксидных электролитов виделось в создании топливных элементов - химических источников тока, в которых энергия газа непосредственно превращается в электрическую. Топливные элементы - близкие родственники гальванических элементов. Но те служат, пока в их электролите и электродах есть активные вещества, а топливные элементы могут работать сколь угодно долго, пока к ним подводится горючее. Систематические исследования твердых оксидных электролитов начались в Германии в начале 50-х годов, а с конца 50-х развернулись в СССР, США и Канаде. В нашей стране эти работы с самого начала вел Институт химии Уральского филиала АН СССР (Свердловск, ныне Екатеринбург), и школа высокотемпературной электрохимии твердых электролитов, созданная на Урале, стала уникальной по широте охвата проблемы и глубине ее изучения.
     Конструкций, в основе которых лежат твердые оксидные электролиты, запатентовано очень много, но принцип их действия одинаков и довольно прост. Это пробирка с парой электродов на стенке, снаружи и внутри. Она помещена в нагреватель; внутрь пробирки и в пространство, ее окружающее, можно подводить газ. Посмотрим, какие функции могут выполнять такие устройства.
     Потенциометрические датчики состава газа. Наверное, они наиболее просты. Электроды в разных газах приобретают разные потенциалы. Если, скажем, внутри пробирки находится чистый кислород, а снаружи - газ с неизвестной его концентрацией, то по разности потенциалов электродов можно эту концентрацию определить.
     Потенциометрические датчики позволяют определять состав и более сложных газовых смесей, содержащих углекислый и угарный газы, водород и водяной пар. Если стерженек из твердого электролита с электродами на торцах нагрет неравномерно, он начнет терять кислород и между электродами возникнет разность потенциалов. По ее величине можно определить, например, состав выхлопных газов автомобильного двигателя. На Западе, где требования к чистоте выхлопных газов очень строги, такие датчики выпускаются миллионами. У нас же на такие "пустяки" пока не обращают внимания.
Кислородные датчики пока единственные устройства с твердыми оксидными электролитами, нашедшие практическое применение.
     Кислородные насосы. Пусть во внешнее пространство пробирки подается воздух или газ, содержащий кислород. Если вн
и т.д.................


Перейти к полному тексту работы


Скачать работу с онлайн повышением уникальности до 90% по antiplagiat.ru, etxt.ru или advego.ru


Смотреть полный текст работы бесплатно


Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.