На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


доклад Ионообменная хроматография

Информация:

Тип работы: доклад. Добавлен: 14.12.2012. Сдан: 2012. Страниц: 10. Уникальность по antiplagiat.ru: < 30%

Описание (план):


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Ионообменная  хроматография
 
 
 

Основы метода
 
В ионообменной хроматографии разделение компонентов  смеси достигается за счет обратимого взаимодействия ионизирующихся веществ  с ионными группами сорбента. Сохранение электронейтральности сорбента обеспечивается наличием способных к ионному обмену противоионов, расположенных в непосредственной близости к поверхности. Ион введенного образца, взаимодействуя с фиксированным зарядом сорбента, обменивается с противоионом. Вещества, имеющие разное сродство к фиксированным зарядом, разделяются на анионитах или на катионитах. Аниониты имеют на поверхности положительно заряженные группы и сорбируют из подвижной фазы анионы. Катиониты соответственно содержат группы с отрицательным зарядом, взаимодействующие с катионами.
В качестве подвижной  фазы используют водные растворы солей  кислот, оснований и растворители типа жидкого аммиака, т.е. системы растворителей, имеющих высокое значение диэлектрической проницаемости и большую тенденцию ионизировать соединения. Обычно работают с буферными растворами, дозволяющими регулировать значение рН.
При хроматографическом разделении ионы анализируемого вещества конкурируют с ионами, содержащимися  в элюенте, стремясь вступать во взаимодействие с противоположно заряженными группами сорбента. Отсюда следует, что ионообменную хроматографию можно применять для разделения любых соединений, которые могут быть каким-либо образом ионизированы. Можно провести анализ даже нейтральных молекул сахаров в виде их комплексов с борат-ионом.
Ионообменная хроматография незаменима при разделении вы-сокополярных веществ, которые без перевода в производные не могут быть проанализированы методом ГЖХ. К таким соединениям относятся аминокислоты, пептиды, сахара.
Ионообменную хроматографию  широко применяют в медицине, биологии, биохимии, для контроля окружающей среды, при анализе содержания лекарств и их метаболитов в крови и моче, ядохимикатов в пищевом сырье, а также для разделения неорганических соединений, в том числе радиоизотопов, лантаноидов, актиноидов и др. Анализ биополимеров (белков, нуклеиновых кислот и др.), на который обычно затрачивали часы или дни, с помощью ионообменной хроматографии проводят за 20–40 мин с лучшим разделением. Применение ионообменной хроматографии в биологии позволило наблюдать за образцами непосредственно в биосредах, уменьшая возможность перегруппировки или изомеризации, что может привести к неправильной интерпретации конечного результата. Интересно использование данного метода для контроля изменений, происходящих с биологическими жидкостями. Применение пористых слабых анионообмеников на силикагелевой основе позволило разделить пептиды. Механизм ионного обмена можно представить в виде следующих уравнений: для анионного обмена
 
X- + R+Y- - Y- + R+X-для катионного обмена
X+ + R-Y+ - Y+ + R-X+
 
В первом случае ион образца X конкурирует с ионом подвижной фазы Y за ионные центры R+ ионообменника, а во втором в конкуренцию с ионами подвижной фазы Y+ за ионные центры R вступают катионы образца Х+.
Естественно, что  ионы образца, слабо взаимодействующие с ионообменником, при этой конкуренции будут слабо удерживаться на колонке и первыми вымываются с нее и, наоборот, более сильно удерживаемые ионы будут элюировать из колонки последними. Обычно возникают вторичные взаимодействия неионной природы за счет адсорбции или водородных связей образца с неионной частью матрицы или за счет ограниченной растворимости образца в подвижной фазе. Трудно выделить «классическую» ионообменную хроматографию в «чистом» виде, и поэтому некоторые хроматографисты исходят из эмпирических, а не теоретических закономерностей при ионообменной хроматографии.
Разделение  конкретных веществ зависит в  первую очередь от выбора наиболее подходящего сорбента и подвижной  фазы. В качестве неподвижных фаз  в ионообменной хроматографии применяют ионообменные смолы и силикагели с привитыми ионогенными группами.
Полистирольные  ионообменные смолы для ВЭЖХ зернением 10 мкм и менее обладают селективностью и стабильностью, но сетчатая структура  их, характеризующаяся расстоянием между узлами сетки 1,5 нм, что значительно меньше размера пор применяемого для адсорбционной хроматографии силикагеля (10 нм), замедляет массообмен и, следовательно, значительно снижает эффективность. Применяемые в ВЭЖХ ионообменные смолы представляют собой в основном сополимеры стирола и дивинилбензола. Обычно добавляют 8–12% последнего. Чем больше содержание ди-винилбензола, тем больше жесткость и прочность полимера, выше емкость и, как правило, селективность и тем меньше набухаемость.
Катиониты получают сульфированием матрицы. Протон, ионносвязанный с сульфо-группой, может перемещаться и даже уходить за пределы смолы в раствор. При этом чтобы молекула была в целом электронейтральной, место протона занимает положительно заряженный ион, который из раствора переходит в смолу. Например, при действии Na+Cl на катионо-обменную смолу в Н+-форме происходит реакция обмена:
Смола – SO4-H+ + Na- > Смола – SO3-Na+ + H+
Если реакция  протекает до конца, то смола находится  в натриевой (ионной) форме.
Анионообменные смолы получают хлорированием матрицы и последующим алкили-рованием алифатическим амином.
Наиболее распространены аниониты, имеющие четвертичные аммонийные группы, полученные при алкилировании  триметиламином.
В этих смолах подвижен анион хлора, который может замещаться другим анионом, например ОН- Катиониты обычно поставляются в Н+-форме или Nа+-форме, а аниониты – в ОН--форме или Сl--форме. Таким образом указывается противоион ионо-обменника. Полученные материалы, содержащие сульфатные или триалкиламмонийные группы, являются сильными катионнообменниками и сильными анионообменниками и называются соответственно SCX и SAX. Слабые катионообменники и анионообменники получают на основе карбоксилата СOO- или амина NH+3 соответственно. Существуют также жидкие органические ионообменники – неомешивающиеся с водой жидкости, физически нанесенные на пористые или поверхностно-пористые материалы. Жидкие анионообменники – высокомолекулярные амины или их соли, а катионообменники–эфиры фосфорной или фосфиновых кислот.
Для улучшения условий разделения в ионообменной хроматографии иногда получают лигандные комплексы ионов, изменяя при этом их полярность
Fe3+ + 4Cl- - FeCl4-и делят на анионообменном носителе анионы железа. Так как селективность смолы зависит от характера противоиона, часто необходимо изменить форму смолы. Противоионы связаны кулоновскими силами взаимного притяжения с ионообменными группами и экранируют их заряд. Это притяжение зависит от физической природы противоиона, размеров, формы, плотности электронных оболочек. Одни противоионы при равенстве концентраций могут вытеснять другие из связи с ионными группами ионообменника. Ниже приведены ряды противоионов в порядке убывающей активности и уменьшения сродства к ионообменной смоле.
Знать эти ряды полезно для выбора системы элюирования. Наиболее быстрый метод превращения анионита в форму, которая в ряду селективности стоит выше исходной, состоит в промывании ее четырехкратным объемом 1 М раствора соответствующей соли. Если для работы необходима форма слабее исходной, то ее сначала переводят в гидроксильную форму, промывая 20-кратным количествам 1 М раствора NaOH, а затем уже превращают в нужную форму. Катиониты переводят в требуемую форму промыванием 1 М раствором нитрата соответствующего металла.
При изменении  ионной формы смолы или в присутствии органических растворителей, таких, как ацетонитрил, тетрагидрофуран, может изменяться и объем смолы. Если смола уменьшается в объеме, упаковка в колонке оседает и образуется мертвый объем наверху колонки. Это оседание сопровождается потерей эффективности. Если смола набухает и упаковка в колонке увеличивается, то возрастает сопротивление в колонке, значительно уменьшает скорость потока и может даже привести к разрушению
сорбента. Невысокая  стабильность ионогенных материалов является одним из недостатков ионообменной хроматографии, причем анионообменники менее стабильны, чем катионообменники. Для увеличения срока службы колонок используют предколонки, а также регенерацию колонок сильным растворителем. Катиониты, например, регенерируют обрабатывая 1 М азотной кислотой и продолжительно промывая той подвижной фазой, которая будет использована.
Ионообменники характеризуются степенью набухания  и емкостью. Степенью набухания называют объем упакованного в колонну  обменника (в мл), приходящийся на 1 г его в сухом виде, и имеет размерность мл/г. Максимальное количество ионов, которое может связать ионообменник, определяет его емкость, которая совпадает с концентрацией ионогенных групп. Ёмкость выражается числам ммоль эквивалентов обмениваемого иона на 1 г сухого обменника (ммоль экв/г) или на 1 мл упакованного в колонну набухшего ионообменника (ммоль экв/мл) при значениях рН, соответствующих его полной ионизации. Для высокомолекулярных ионов или амфолитов, например белков, вводят понятие «эффективная» емкость, кoтоpaя зависит от размера молекулы амфолита, расстояния между ионогенными группами и степени доступности всего объема пористой матрицы обменника для этих молекул. Понятия емкости и эффективной емкости могут не совпадать. Иногда приходится снижать полезную емкость сорбента за счет изменения рН, увеличивая при этом его эффективную емкость. Катионообменные смолы имеют емкость около 4,4 ммоль экв/г, а анионообменные – 3,5–4 ммоль экв/г для гелеобразной структуры и 2,5 ммоль экв/г для пористой. Обменная емкость изменяется при изменении рН. При низких рН происходит нейтрализация катионита при добавлении протона:
 
R-+H+ - R-H+,
 
а при высоких  рН подобным образом при действии щелочи нейтрализуются аниониты:
 
R++OH- - R+OH-.
 
Поскольку ионообменная емкость сильных катионитов падает до нуля при низких рН, они не могут быть использованы при рН<1. Сильные аниониты должны применяться при рН<11, слабые катиониты при рН>6, а слабые аниониты при рН<8. Из рисунка видно, что сильные ионообменники могут быть использованы в более широком диапазоне рН, чем слабые. Этим объясняется широкое применение сильных ионитов, на которых может быть разделено большее количество веществ разных классов одновременно, особенно если используется градиентное изменение рН. Сильно удерживаемые вещества, нестойкие при крайних зна чениях рН, могут разделяться на слабых ионитах. Еще раз подчеркнем, что сильные иониты полностью ионизированы в диапазоне рН=2–11. Слабые иониты полностью ионизированы в ограниченной области рН, и их ионизацией можно управлять, меняя рН элюента в пределах диапазона рабочих значений рН.
Таким образом, к категории слабых могут быть отнесены ионообменники, значительно  отличающиеся друг от друга. Для них  характерно не толыко сужение рабочего диапазона рН, но и уменьшение прочности сорбции вещества внутри этого диапазона. Слабым ионообменникам, в частности анионитам с замещающими группами диэтиламиноэтила (ДЕАЕ), отдают предпочтение в тех случаях, когда необходимо элюирование в мягких условиях, например, при разделении белков и пептидов.
Наибольший  интерес в качестве сорбентов  для ионообменной хроматографии  представляет химически модифицированный силикагель, получаемый прививкой к  силикагелю ионогенных групп.
 
Таблица 1. Характеристика модифицированных силикагелей и ионообменных смол
Характеристика
Силикагель
Смола (сополимеры полистирола  с дивинилбензолом)
Типичный диаметр частицы  в мкм
5–10
7–10
Типичная ионообменная емкость, в мэкв/г
0,5–2
3–5
Стойкость к деформации давлением
Очень хорошая
От удовлетворительной до плохой (в зависимости от степени сшивки)
Форма
Сферическая или неправильная
Сферическая
Перепад давления на колонке
Высокий
Очень высокий
Эффективность
Высокая
Низкая
Метод набивки
Суспензионный
Суспензионный
Диапозон рН
2–7,5
0–12 (анионообменные) 0–14 (катионообменные)
Скорость регенерирования
Умеренная
Медленная

 
Применение этих материалов значительно увеличивает стабильность работы колонок, в которых не происходит изменения эффективности. Однако сильнокислые или сильноосновные среды (2>рН>7,5) могут воздействовать на силикагель, выводя из строя колонку. Привитые к силикагелю ионообменники могут быть нестабильны при действии органических растворителей, концентрированных буферных растворов, высоких температур. Ионообменные силикагели зернением 10 или 5 мм не набухают, не сжимаются, как смолы, и отличаются от них большИМ размером и доступностью внутренних пор как для ионов образца, так и для противоионов. Благодаря этому быстрее устанавливается массоперенос даже без повышения температуры и значительно возрастает эффективность сорбента.
Не существует слабых катионитов на основе силикагеля, так как при рН<8 материал не ионизирован, а при рН>8 разрушается подложка наполнительного материала. Сравнительные характеристики модифицированных силикагелей и ионообменных смол, применяемых в ионообменной хроматографии, даны в табл. 1.
Выбор подвижной  фазы и условий разделения
Подвижная фаза в ионообменной хроматографии должна обеспечивать растворимость различных  солей и создание буферного раствора, необходимых для ионного обмена, контроль степени удерживания образца  за счет использования растворителя нужной силы, получения необходимой селективности разделения.
Ионообменное, разделение обычно выполняют при  применении водных растворов солей, которым придаются буферные свойства. Иногда добавляют в подвижную  фазу небольшое количество смешивающихся  с водой органических растворителей – метанола, этанола, ацетонитрила, тетрагидрофурана. Сила и селективность растворителя зависят от типа и концентрации буферных ионов и других солей, от значения рН и от вида и концентрации добавленных органических растворителей.
Удерживание в  ионообменной хроматографии зависит от двух процессов: распределения образца между водной подвижной фазой и органической неподвижной и образования ионных пар (т.е. анионного или катионного обмена), причем последний процесс доминирует.
Распределение вещества между фазами зависит от силы электростатического взаимодействия заряженных ионизированных групп вещества с заряженными группами ионообменника. Некоторые гидрофобные соединения или вещества, способные образовывать водородные связи, могут взаимодействовать с материалом матрицы неспецифически.
Степень удерживания  образца снижается с увеличением  ионной силы подвижной фазы и увеличивается  с увеличением ионообменной емкости  сорбента. Ионная сила подвижной фазы возрастает при возрастании концент
и т.д.................


Перейти к полному тексту работы


Скачать работу с онлайн повышением уникальности до 90% по antiplagiat.ru, etxt.ru или advego.ru


Смотреть полный текст работы бесплатно


Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.