На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


контрольная работа Порядок и хаос

Информация:

Тип работы: контрольная работа. Добавлен: 17.12.2012. Сдан: 2011. Страниц: 15. Уникальность по antiplagiat.ru: < 30%

Описание (план):


ОГЛАВЛЕНИЕ 

  Стр.
ВВЕДЕНИЕ 2
    О ПорядкЕ
4
    О ХАОСЕ
9
    Взаимосвязь порядка с хаосом
13
    Синергетика – КАК связующее звено между порядком и хаосом.
 
19
ЗАКЛЮЧЕНИЕ 24
СПИСОК  ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ 26
 

Введение 

     Темой данной контрольной работы является «Порядок и хаос». Во-первых, почему именно тема «Порядок и хаос» является темой моей контрольной работы? Изначально, когда я только знакомился с перечнем тем для контрольных работ, мне сразу приглянулась совсем другая: - «Фрейдизм в философии». Дело в том, что я около трех лет назад (мне было 23 года) начинал читать «Введение в психоанализ» З. Фрейда. В результате, прочитав всего порядка полутораста страниц, я понял, что мне пока рано впитывать мысли этого великого человека, дабы не усложнять взаимоотношения со сверстниками, да и не только со сверстниками.
     Ну, вот мое оФрейдение и продолжится, подумал я, увидев в списке предложенных тем «Фрейдизм в философии». Но все оказалось не так как ожидалось. Эту тему, почти сразу, забронировал кто-то другой.  В результате, мне ничего не оставалось, как рыскать глазами по оставшимся темам.
     И вот свершилось! Среди многих других более непонятных, на первый взгляд, тем я выбрал одну, на мой взгляд, менее непонятную: «Порядок и хаос». Она показалась мне необычной, что-то манило, казалось, что за пеленой простоты названия не может скрываться ничего не понятного и трудно перевариваемого. Я ошибся.
     По  мере собирания информационных материалов для написания контрольной работы и ознакомления с ними, у меня сложилось впечатление, будто я нахожусь на гораздо низшем умственном уровне, чем предполагал. Ничего не поделаешь, ведь для того я и поступил в БАГСУ, чтобы повысить свой уровень миропонимания и осознание своего места в нем. 
     И так, темой моей контрольной работы является два противоположных понятия - порядок и хаос, а так же связь между ними.
     Во  всем мире, во всех древних религиях и воззрениях существовало объяснение такого понятия, как хаос.
     Например, в «Теогонии» Гесиода хаос породил  всех богов, то есть из хаоса происходят все известные нам греческие божества — от громовержца Зевса до Гекатонхейров, имеющих много форм.
     В Китае хаос изображали в виде круга  или яйца, из которого возникает  всё — возникает из пустоты  этого круга, из окружности, точнее даже, из нефритового кольца, которое вы много раз видели в музеях.
     Понятие хаоса встречается и у народов  Северной Европы. В германской мифологии  и у скандинавов хаос — начало всех вещей.
     Итак, ясно, что все народы во все времена  и по всей Земле задавали себе тот  важнейший вопрос, который волнует сегодня и нас: что такое хаос, что такое порядок, что мы можем узнать о них, насколько это важно для нас, как применить это в жизни?
     К примеру – рыночная экономика. На начальном этапе она представляет собой систему хаоса, но постепенно в хаосе рождаются устойчивые структуры, потому что хаос всегда связывает их с самоорганизацией. Существует целая наука об управлении этими структурами, а фактически об управлении хаосом.
     В данной контрольной работе я постараюсь описать эти два противоположных понятия в отдельности и приоткрыть тайну перехода от порядка к хаосу и наоборот.
 

    О ПорядкЕ
 
     Порядок в физической, экологической, экономической  и любой другой системе может  быть двух видов: равновесный и неравновесный. При равновесном порядке, когда  система находится в равновесии со своим окружением, параметры, которые ее характеризуют, одинаковы с теми, которые характеризуют окружающую среду; при неравновесном порядке они различны. Что обычно понимается под такими параметрами?
     В физике самый главный из них – температура: никакое равновесие невозможно, если внутри рассматриваемой нами системы температура не такая, как у окружения. При этом сразу возникают тепловые потоки, начинается перетекание тепла от горячих тел к холодным, которое будет продолжаться до тех пор, пока температура не установится на едином для всех тел – как в системе, так и ее окружении – уровне. Так, выключенный электрический утюг быстро приобретает температуру комнаты – «окружающей среды»: между ним – системой – и окружением устанавливается равновесие. Другой важный параметр, характеризующий физическую систему, – давление. При равновесном порядке давление внутри системы должно быть равно давлению на нее со стороны окружения. Экономические и социальные системы тоже описываются обобщающими параметрами, которые при равновесии принимают фиксированные значения.
     На  первый взгляд равновесный порядок  более «стабилен», чем неравновесный. В самой природе равновесного порядка заложено противодействие  любым возмущениям состояния  системы (такое «упрямство» в термодинамике называется принципом Ле-Шателье).
     Способность возвращаться к исходному состоянию  – непременное свойство так называемых саморегулирующихся систем. И хотя «саморегулирование» – термин сравнительно недавний, возник он, по существу, вместе с кибернетикой, саморегулирующиеся процессы встречаются в природе сплошь и рядом. Пожалуй, самый поразительный пример такого процесса – природный ядерный реактор, который проработал примерно полмиллиона лет (и, заметьте, без остановки на ремонт).
     В 1972 году на урановом месторождении Окло в африканской республике Габон был проведен изотопный анализ руд. Это была скорее формальность, «рутина», чем серьезное научное исследование. Но вдруг неожиданно для всех результаты оказались необычными: концентрация изотопа уран-235 оказалась намного ниже естественной – в некоторых местах обеднение («выгорание») урана достигало 50 процентов. В то же время исследователи обнаружили огромный избыток таких изотопов (неодима, рутения, ксенона и других), которые обычно возникают при реакции деления урана-235. Феномен Окло породил множество гипотез, и одна из простейших среди них (и потому наиболее правдоподобная) приводит к фантастическому на первый взгляд выводу: около двух миллиардов лет тому назад в Окло был пущен атомный реактор, проработавший примерно пятьсот тысячелетий. Пришельцы? Совсем не обязательно.
     Для работы реактора нужен замедлитель  нейтронов, например, вода. Она могла  случайно скопиться в месторождениях с высокой концентрацией урана-235 и запустить ядерный котел. А потом началось саморегулирование: с увеличением мощности реактора выделялось много тепла и поднималась температура. Вода испарялась, замедляющий нейтроны слой становился тоньше, и мощность реактора падала. Тогда вода скапливалась вновь, и цикл регулирования повторялся.
     Природа неравновесного порядка другая. Этот вид порядка – искусственного происхождения и, как мы уже говорили, существует только при условии подачи энергии (или питательной массы) извне. Действительно, ведь неравновесность  – неодинаковость параметров системы и среды – вызывает потоки тепла и массы. Поэтому для поддержания порядка требуется компенсировать потери, к которым приводят необратимые «выравнивающие» потоки. Другими словами, нужны энергетические затраты. Если подпитку энергией прекратить, то система «свалится» в состояние равновесного порядка. Потери, связанные с перетеканием тепла или массы, называются диссипативными, поскольку их физическая сущность – рассеяние энергии, как говорят, ее диссипация. Создается парадоксальная ситуация: в условиях диссипации, традиционно воспринимаемой как проявление распада структур, их неустойчивости, возникает порядок!1.
       Мы редко задумываемся над  тем, что человеческий организм  существует в состоянии неравновесного  порядка, когда энергетические  потери компенсируются за счет энергии топлива (пищи) и окислителя (воздуха). Когда же жизненный путь организма заканчивается, он переходит в состояние полного равновесия с окружающей средой (равновесный порядок).
     Физика  – наука количественная, и, чтобы  получить конкретный результат, нужно перейти от общих рассуждений к уравнениям и математическим образам. Самым полезным из таких образов, с помощью которого можно изобразить ход процесса, состояние системы и степень ее организованности, оказалось так называемое фазовое пространство. Координатами в этом пространстве служат различные параметры, характеризующие рассматриваемую систему. В механике, например, это положения и скорости всех точек, движение которых мы рассматриваем, и поэтому в современной аналитической механике фазовое пространство, пожалуй, основное понятие.
     Рис. 1.
       

     Фазовое пространство – это, с одной стороны, абстрактное математическое пространство, координатами в котором служат положения и скорости всех точек физической системы, а с другой стороны, оно очень удобно для наглядного описания ее эволюции. Например, движение шарика на абсолютно упругой резинке, в которой нет трения, полностью определяется начальной скоростью и положением шарика (начальными условиями). Каждому мгновенному состоянию такого осциллятора – колебательной системы – отвечает точка на фазовой плоскости. Когда шарик колеблется вверх и вниз без трения, эта точка описывает замкнутую кривую, а если колебания постепенно затухают, то фазовая траектория сходится по спирали к предельной точке, соответствующей остановке шарика. Эта точка неподвижна: если шарик подтолкнуть, его фазовая кривая вернется в ту же точку, которая как бы притягивает все близлежащие траектории. Поэтому ее называют неподвижной притягивающей точкой, или фокусом. Такая притягивающая точка – простейший тип аттрактора.
     А всегда ли геометрические образы на фазовой  диаграмме будут четкими? Оказывается, что существует класс явлений, противоположных  порядку, как по физической сущности, так и по характеру изображения на фазовой диаграмме. Их образы размыты, нечетки, носят случайный, или, как говорят, стохастический характер. Явления, порождающие такие образы, называются хаотическими. 

 

    О ХаосЕ
 
     Когда в июле 1977 года Нью-Йорк внезапно погрузился во тьму, никто даже не предполагал, что причина катастрофы – переход энергетической системы города из равновесного состояния в хаотическое, вызванный дисбалансом выработки и потребления энергии2. Неожиданно из энергетической системы города выпал крупный потребитель. Система автоматики и диспетчерская служба не успели отключить эквивалентную этому потребителю, по существу, работающую только на него, генерирующую станцию. Образовался разрыв между генерацией энергии и ее потреблением, и в результате энергетическая система перешла из состояния равновесия в хаотическое. «Фазовый портрет» системы с одной частотой (в США эта частота равна 60 Гц), которая поддерживается с высокой точностью, превратился в портрет с огромным числом частот – «размылся». Ситуация непрерывно ухудшалась, так как система защиты потребителей от случайных, хаотических «бросков» напряжения и сбоя частоты начала последовательно отключать предприятия от источников энергии. Это была самая настоящая катастрофа – развал системы.
     Такие катастрофы довольно редки, однако практически  ежедневно в крупных энергосистемах мира наблюдаются явления не столь  опасные, но все же доставляющие немало хлопот. В линиях передачи «гуляют» случайные, хаотические частоты, вызванные переменами в режиме работы оборудования и несовершенством систем управления. Они наносят экономике ущерб не меньший, чем потери на сопротивление в линиях передачи – «джоулево тепло», на которое расходуется около 20 процентов вырабатываемой в мире электроэнергии.
       Обычно под хаосом всегда понималось  неупорядоченное, случайное, непрогнозируемое  поведение элементов системы.  Многие годы господствовала теория, утверждавшая, что статистические  закономерности определяются только  числом степеней свободы: полагали, что хаос – это отражение сложного поведения большого количества частиц, которые, сталкиваясь, создают картину неупорядоченного поведения. Наиболее характерный пример такой картины – броуновское движение мелких частиц в воде. Оно отражает хаотические тепловые перемещения громадного числа молекул воды, случайным образом ударяющих по плавающим в воде частицам, вынуждая их к случайным блужданиям. Такой процесс оказывается полностью непредсказуемым, недетерминированным, поскольку точно установить последовательность изменений в направлении движения частицы невозможно – мы ведь не знаем, как движутся все без исключения молекулы воды. Но что отсюда следует? А вот что: становится невозможным вынести такие закономерности, которые позволяли бы точно прогнозировать каждое последующее изменение траектории частицы по предыдущему ее состоянию. Иными словами, не удается надежно, достоверно связать между собой причину и следствие или, как выражаются специалисты по математической физике, формализовать причинно-следственные связи. Такой вид хаоса можно назвать недетерминированным (НХ). И все же некоторые усредненные характеристики поведения в состоянии недетерминированного хаоса были найдены. Используя аппарат статистической физики, ученые сумели вывести формулы, описывающие кое-какие обобщенные параметры броуновского движения, например, расстояние, пройденное частицей за некоторое время (первым эту задачу решил А. Эйнштейн).
     Однако  в самые последние годы внимание исследователей все больше сосредоточилось  на так называемом детерминированном хаосе (ДХ). Этот вид хаоса порождается не случайным поведением большого количества элементов системы, а внутренней сущностью нелинейных процессов. (Именно такой хаос и привел к энергетической катастрофе в Нью-Йорке.) Оказывается, что детерминированный хаос – отнюдь не редкость: всего два упруго сталкивающихся бильярдных шара образуют систему, сложная поведенческая функция которой имеет статистические закономерности, то есть содержит элементы «хаоса». Отталкиваясь друг от друга и от стенок бильярдного стола, шары рассеиваются под разными углами, и через некоторую последовательность соударений их можно рассматривать как неустойчивую динамическую систему с непрогнозируемым поведением. Аналитические решения нелинейных уравнений, описывающих поведение таких систем, как правило, не могут быть получены. Поэтому исследования проводятся с помощью вычислительного эксперимента: на ЭВМ шаг за шагом получают численные значения координат отдельных точек траектории.
     В фазовом пространстве детерминированный  хаос отображается непрерывной траекторией, развивающейся во времени без самопересечения (иначе процесс замкнулся бы в цикл) и постепенно заполняющей некоторую область фазового пространства. Таким образом, любую сколь угодно малую зону фазового пространства пересекает бесконечно большое количество отрезков траектории. Это и создает в каждой зоне случайную ситуацию – хаос: И вот что удивительно: несмотря на детерминизм процесса – ведь бильярдные шары полностью подчиняются классической, «школьной» механике, – ход его траектории непредсказуем. Другими словами, мы не в состоянии предвидеть или хотя бы грубо охарактеризовать поведение системы на достаточно большом отрезке времени и в первую очередь потому, что принципиально отсутствуют аналитические решения.
     Сегодня поиски исследователей – главным образом математиков – направлены на то, чтобы выявить все типы нелинейных уравнений, решение которых приводит к детерминированному хаосу. Активный интерес к нему вызван тем, что одни и те же его закономерности могут проявляться в самых разных природных явлениях и технических процессах: при турбулентности в потоках, неустойчивости электронных и электрических сетей, при взаимодействии видов в живой природе, при химических реакциях и даже, по-видимому, в человеческом обществе. Отсюда следует фундаментальная значимость хаоса – его изучение может привести к созданию мощного математического аппарата, обладающего большой общностью и обширными возможностями для приложений.
 

    Взаимосвязь порядка с хаосом
 
     До  недавних пор для любой отрасли техники, для любого производства было характерно стремление организовывать работу всех аппаратов и устройств в устойчивом статическом режиме. Порядок, равновесие, устойчивость всегда считались чуть ли не главными техническими достоинствами. Как тут не опасаться внешнего беспорядка, неопределенности, зыбкости, неизбежных энергетических потерь – этих обязательных спутников неравновесности?
     Пожалуй, в технике смелее всех оказались  строители, которые сумели преодолеть этот психологический барьер и стали  закладывать в конструкции башен, высотных зданий, мостов элемент неопределенности – возможность совершать колебания.
     Неупорядоченные процессы могут приводить и к  катастрофам. Например, при неправильном выборе профиля крыльев или хвостового оперения самолетов в полете может возникнуть грозное явление – флаттер – сочетание крутильных и изгибных неупорядоченных колебаний. При достижении определенной скорости полета флаттер приводит к разрушению всей конструкции, – в свое время это явление оказалось, пожалуй, самым серьезным препятствием на пути развития реактивной авиации. Впоследствии академик М.В. Келдыш разработал теорию неустойчивых колебаний и методы борьбы с ними, и только его работы позволили справиться с флаттером путем затормаживания – демпфирования – колебаний3. Благодаря такому демпфированию конструкции самолетов становились устойчивыми даже в сложных нестационарных условиях, характерных для аэродинамики. Интересно, что одна из монографий Келдыша, изданная в 1945 году, называется «Шимми переднего колеса трехколесного шасси»4. Шимми – это американская разновидность фокстрота, по законам которого и «танцует» колесо. Шимми колеса самолетных шасси при взлетах и посадках тоже приводило к самовозбуждающимся нерегулярным колебаниям и в итоге – к разрушению самолетов. На основе теории Келдыша этот дефект был устранен. Так фундаментальная наука в очередной раз продемонстрировала свою практическую полезность.
     В реальной природе протекает множество  хаотических процессов, но мы не воспринимаем их как хаос, и наблюдаемый мир кажется нам вполне стабильным. Наше сознание, как правило, интегрирует, обобщает информацию, воспринимаемую органами чувств, и поэтому мы не видим мелких «дрожаний» – флуктуаций – в окружающей нас природе. Самолет надежно держится в воздушных турбулентных вихрях, и хотя они неупорядочено пульсируют, подъемную силу самолета можно рассчитать с точностью до нескольких килограммов как некоторую среднюю величину. Из далекого космоса на Землю приходят сигналы от спутников и космических объектов, и из гигантского моря хаотических помех удается «выловить» нужную информацию. Собственно, вся радиофизика строится на «разбраковке» по определенным статистическим закономерностям полезных данных и вредных «шумов».
     Как связаны между собой упорядоченные  и хаотические явления и как сформулировать (содержательно и математически строго) правила, которые описывали бы непрерывный переход от строгих чинных закономерностей к хаосу случайного, и наоборот?
     Классический  пример такого двойственного поведения  одного и того же объекта, единой физической системы – это течение жидкости (см. рис. 2)5. 

     Рис.2. 

     
     Так возникает турбулентность. Цилиндр  обтекается потоком жидкости, например, движется в ней. Обтекание Удобно характеризовать «числом Рейнольдса» Re, которое пропорционально скорости течения и радиусу цилиндра. При малых числах Рейнольдса жидкость плавно обтекает находящееся в ней тело, а затем, по мере того как скорость течения возрастает, в жидкости образуются вихри. Чем выше скорость натекающего потока (больше число Рейнольдса), тем больше образуется вихрей и тем сложнее, запутаннее становятся траектории частиц жидкости. При развитой турбулентности скорость потока позади тела пульсирует непредсказуемым образом.
     Наблюдая  движущийся поток воды в условиях, когда мы можем регулировать его  скорость, например, в русле плотины  или при движении глиссера, мы можем  уловить постепенный переход  от устойчивого гладкого – ламинарного  – течения к неровному, пульсирующему, вихревому – турбулентному. При малых скоростях жидкость течет мерно и плавно, как говорят, стационарно. Когда же скорость течения возрастает, в потоке начинают образовываться вихри, но и на этой стадии картина все еще остается стационарной. По мере роста скорости вихри все больше увлекаются потоком, и возникает нестационарное течение. Вода неожиданно закручивается в водоворотах и вообще ведет себя так, как будто по собственной прихоти бросается то туда, то сюда. Крупные вихри порождают непредсказуемое, неупорядоченное состояние, и, наконец, структура потока становится полностью турбулентной – хаотической.
     Чем же объяснить столь сильное различие между ламинарным и турбулентным течениями, в чем тут загадка? К сожалению, несмотря на непрекращающиеся усилия большого числа исследователей из разных стран, никому еще не удалось ни описать бурное, неупорядоченное (таков перевод латинского слова turbulentus) турбулентное течение, ни найти аналитически, то есть с помощью формул, условия перехода к нему от ламинарного (латинское lamina означает «пластинка», «полоска»).
     Но  тогда возникает естественный вопрос: почему так трудно описать хаотическое  турбулентное поведение жидкости математически? Дело в том, что некоторые физические системы (на самом деле их большинство) оказываются очень «чуткими» – они бурно реагируют даже на слабые воздействия. Такие системы называются нелинейными, так как их отклик непропорционален силе «возмущающего» воздействия, а часто и вообще непредсказуем. Например, если чуть-чуть подтолкнуть камень, лежащий на вершине скалы, то он покатится вниз по неизвестной заранее траектории, и эффект от падения камня может быть гораздо больше, чем то воздействие, которому он подвергся. Иными словами, слабые возмущения его состояния не затухают, а резко усиливаются. Правда, камень чувствителен к слабым воздействиям, лишь пока он на вершине скалы, однако существуют физические системы, которые столь же бурно реагируют на внешние возмущения на протяжении длительного времени. Именно такие системы и оказываются хаотическими.
     Так и при турбулентности – маленькие  вихри-возмущения, непрерывно возникающие  в жидкости, не рассасываются (как  при ламинарном течении), а постоянно  нарастают, пока все движение воды не приобретет сложный, запутанный характер. Соответственно и описание этого движения чрезвычайно сложно: у турбулентного потока слишком много «степеней свободы».
     Как показывает пример турбулентности, поведение  нелинейной системы трудно предсказать  – она «отзывается» на возмущение своего состояния весьма сложным  образом и, как правило, неоднозначно. Поэтому, чтобы исследовать нелинейные процессы, обычно приходится использовать так называемый «принцип линеаризации», то есть сводить нелинейную систему с присущим ей неоднозначным откликом к линейной, которая характеризуется вполне «надежным» предсказуемым поведением. По существу, это – кардинальное упрощение и тем самым загрубление сути явления.
     Но  на наших глазах технический прогресс сопровождается появлением все более  сложных систем, например, в энергетике, и то, как гарантировать устойчивость их работы, полное отсутствие непредсказуемых сбоев, становится все более важной задачей. Сегодня потребовались новые подходы, принципиально новый взгляд на проблему анализа нелинейных процессов, приводящих к непрогнозируемому поведению, к «хаосу». И хотя сущность порядка и хаоса до сих пор не сформулирована, в последние годы появилась надежда разобраться в действии механизмов непредсказуемости, включая переходы «порядок – хаос» либо «хаос – порядок» (такие переходы и их двунаправленность обозначают П-Х).
     Этому способствовали прежде всего два  фактора: во-первых, интенсивное использование  современных вычислительных средств  и, во-вторых, развитие математического  аппарата, остававшегося ранее лишь в пределах «чистой теории». Мощные компьютеры позволили получить решения нелинейных уравнений в виде эффектных графических образов – траекторий эволюции динамической системы.
     Основы  математического аппарата, подходящего  для описания «хаоса», были заложены еще в конце XIX века, но получили широкое  развитие лишь в наше время. Этому сильно способствовала отечественная математическая школа академика А.Н. Колмогорова в лице члена-корреспондента АН СССР В.И. Арнольда и профессора Я.Г. Синая. В области прикладных исследований большая заслуга принадлежит школам академика А.В. Гапонова-Грехова и члена-корреспондента АН СССР А.С. Монина. В настоящее время формируется новый весьма универсальный подход к анализу нелинейных систем, основанный на классических результатах математиков и физиков.
 

    Синергетика – КАК связующее звено между порядком и хаосом.
 
     Мы  живем в постоянно меняющемся мире. Вот несколько самых примитивных  примеров. Взгляните за окно: падает снег, ветер вздымает снежинки, закручивает  их, швыряет в стекла. Но стихает  ветер, и снежинки плавно опускаются на землю по прямой линии. Наступает оттепель, идет дождь. И капли так же то падают прямо, то мечутся на воздушных струях. Да и сами мы - то сидим, то ходим, то работаем, то танцуем. А если представить, что было бы, если бы мир вокруг нас, да и мы сами не менялись. Да ничего бы не было - ни нас, ни мира. По физическому определению и мы, и мир - нелинейные системы. Иначе говоря, находящиеся в состоянии хаоса.
     Рассматривая  все аспекты бытия в едином комплексе, ученые пришли к парадоксальному  выводу: для жизни хаос необходим больше, чем порядок.
     Впрочем, есть ли здесь парадокс? К такому выводу мыслители пришли еще тысячи лет назад. Так, Платон утверждал, что  бытие состоит из трех сущностей. Первая - движущая неподвижное. Вторая - самодвижущаяся. И третья - подлежащая движению6. Иначе говоря, бытие только тогда имеет место, когда имеет место движение в широком смысле этого слова. Но ведь любое изменение - это неустойчивость, неопределенность, кончающаяся не всегда прогнозируемым результатом...
     В бытовом аспекте хаос - явление отрицательное. Наука не столь категорична. Яркий пример тому - теория тепловой смерти, выдвинутая в середине прошлого столетия немецким ученым Клаузиусом. Он утверждал, что когда-нибудь звезды отдадут все свое тепло в окружающее пространство и погаснут. Трудно представить себе больший хаос, чем бушующие звезды, где мечутся потоки раскаленных газов. Но это хаотичное движение обеспечивает жизнь. И наоборот, порядок - смерть.
     Конечно, Клаузиус не пытался связать хаос с другими явлениями в нашем  многообразном мире. Это сделал наш современник, русский ученый, живущий в Бельгии, Илья Пригожин, основавший новую науку - синергетику7. И получивший за это Нобелевскую премию. Одна из сильнейших российских школ синергетики (в России ее чаще называют нелинейной динамикой) создана в Саратовском государственном университете.
     - Собственно, синергетика - это не  новая наука, а новое междисциплинарное  направление, - поясняет ректор университета  профессор Дмитрий Трубецков8. - Давно известно, что самые выдающиеся достижения сделаны на стыке наук. Синергетика же объединяет не пограничные, а внутренние области разных ветвей науки. Появление ее продиктовано, что называется, самой жизнью: наука сегодня раздробилась на отдельные, самостоятельные отрасли, потерявшие зачастую все связи между собой. А их необходимо восстановить, чтобы понимать мир во всем его многообразии. Это и делает синергетика.
и т.д.................


Перейти к полному тексту работы


Скачать работу с онлайн повышением уникальности до 90% по antiplagiat.ru, etxt.ru или advego.ru


Смотреть полный текст работы бесплатно


Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.