На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Реферат Оцнка ймоврност вдхилення випадкової величини Х вд її математичного сподвання. Знаходження дисперсї випадкової величини за допомогою теореми Бернулл. Застосування для випадкової величини нервност Чебишова. Суть центральної граничної теореми.

Информация:

Тип работы: Реферат. Предмет: Математика. Добавлен: 02.02.2010. Сдан: 2010. Уникальность по antiplagiat.ru: --.

Описание (план):


Міністерство освіти і науки України
Приватний вищий навчальний заклад
Європейський університет
Запорізька філія
Реферат
Граничні теореми теорії ймовірностей
з дисципліни: Теорія ймовірностей та математична статистика

Виконав
Перевірив:
Запоріжжя,
2007р.
Теорема Бернуллі. Нехай імовірність появи події А в кожному із п незалежних повторних випробувань дорівнює р, т - число появ події А (частота події) в п випробуваннях. Тоді
Доведення. Частість можна розглядати як невід'ємну випадкову величину. Знайдемо її математичне сподівання
Отже, необхідно оцінити імовірність відхилення випадкової величинивід її математичного сподівання. Для цього знайдемо дисперсію цієї випадкової величини
За нерівністю Чебишова одержимо
Звідси граничним переходомодержуємо (4), що й треба було довести.
Теорема Чебишова. Нехай - послідовність попарно незалежних випадкових величин, які задовольняють умовам
для усіх t = 1,2,..., п.
Тоді
Доведення. Знайдемо математичне сподівання та дисперсіюсередньої випадкових величин, тобто
Застосуємо для випадкової величини нерівність Чебишова (2)
Границя цієї імовірності при дорівнює одиниці, тобто рівність (5) доведено.
Центральна гранична теорема. Нехай задана послідовність незалежних однаково розподілених випадкових величин
Розглянемо випадкову величинуТоді
Прифункція розподілу
тобто сумабуде розподілена за нормальним законом з математичним сподіванням 0 та дисперсією
Для доведення цієї теореми треба знайти границю характеристичної функції, побудованої для нормованої випадкової величини
Наслідок. При розподіл с и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.