На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Реферат Сопряженный оператор. Сопряженная однородная задача. Условия разрешимости. Если иметь дело с граничными условиями общего вида можно выразить какие-либо два из граничных значений через два других.

Информация:

Тип работы: Реферат. Предмет: Математика. Добавлен: 29.05.2006. Сдан: 2006. Уникальность по antiplagiat.ru: --.

Описание (план):


План.
Сопряженный оператор.
Сопряженная однородная задача.
Условия разрешимости.
Сопряженный оператор.

Обозначим через дифференциальный оператор второго порядка, т.е.
(1)
где представляют собой непрерывные функции в промежутке . Если и - дважды непрерывно дифференцируемые на функции, то имеем:
(2)
Как и в предыдущем параграфе, интегрирование соотношения (2) по частям дает:
(3)
Обозначим дифференциальный оператор, входящий в подынтегральное выражение в правой части (3) через , т.е. (4)
При этом соотношение (3) перепишется так:
(5)
Оператор называется сопряженным по отношению к оператору . Умножая соотношение (4) на и интегрируя полученный результат по частям, по отношению к оператору . Таким образом, операторы и взаимно сопряжены.
Как и в предыдущем параграфе, дифференциальное уравнение:
(6)
будем называть сопряженным дифференциальному уравнению:
(7)
Если же , то оператор и дифференциальное уравнение будем называть сопряженными. Сравнивая выражения (1) и (5), приходим к выводу, что тогда и только, когда:
Таким образом, оператор будем самосопряженным тогда и только тогда, когда .
При этом:
Так как любое дифференциальное уравнение вида (7) можно преобразовать в самосопряженную форму, умножив на функцию .
Дифференцируя соотношение (5) по , получаем так называемую формулу Лагранжа:
(8)
Правая часть этой формулы может быть записана как:
(9)
где
(10)
Отметим, что:
и следовательно, матрица -невырожденная. Подстановка выражения (9) в соотношение (8) дает:
(11)
Сопряженная однородная задача.

Введем следующее невырожденное линейное преобразование в вектор :
(12),
где
Заметим, что указанное преобразование может быть выполнено бесчисленным множеством способов, в зависимости от выбора матрицы А. При заданном ненулевом векторе две последние строки матрицы А можно выбрать так, чтобы придать любые требуемые значения компонентам. Это замечание используется в дальнейшем при нахождении вида сопряженных граничных условий. Поскольку , мы можем обратить преобразование (12) и получить:
.
При этом (11) можно переписать как:
или
(13),
где (14)
Билинейная форма в соотношении (13) называется каноническим представлением билинейной формы в правой части тождества (11).
Для того чтобы найти граничные условия сопряженной задачи, положим в соотношении (13)
и и получим:
(15)
Из формулы (21) следует, ч и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.