На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Шпаргалка Приближение действительных чисел конечными десятичными дробями. Действия над комплексными числами. Свойства функции и способы ее задания. Тригонометрические функции числового аргумента. Частные случаи тригонометрических уравнений, аксиомы стереометрии.

Информация:

Тип работы: Шпаргалка. Предмет: Математика. Добавлен: 29.06.2010. Сдан: 2010. Уникальность по antiplagiat.ru: --.

Описание (план):


Содержание
    Иррациональные уравнения
      Числовая функция. Способы задания функции
      Основные свойства функции
      Графики функций. Простейшие преобразования графиков функцией
      Обратная функция
      Степенная функции, её свойства и графики
      Показательная функция, её свойства и графики
      Показательные неравенства
      Логарифмы и их свойства
      Логарифмические уравнения
      Тригонометрические функции числового аргумента
      Функция y sinx ее свойства и график
      Обратные тригонометрические функции, их свойства и графики
      Частные случаи тригонометрических уравнений
      Тригонометрические уравнения
      Аксиомы стереометрии и следствия из них
      Взаимное расположение двух прямых в пространстве
      Скрещивающиеся прямые. Признак скрещивающихся прямых
      Теорема о трех перпендикулярах
Алгебра
Действительные числа. Приближение действительных чисел конечными десятичными дробями.
Вещемственное, или действимтельное число - математическая абстракция, возникшая из потребности измерения геометрических и физических величин окружающего мира, а также проведения таких операций как извлечение корня, вычисление логарифмов, решение алгебраических уравнений [2] . Если натуральные числа возникли в процессе счета, рациональные - из потребности оперировать частями целого, то вещественные числа предназначены для измерения непрерывных величин. Таким образом, расширение запаса рассматриваемых чисел привело к множеству вещественных чисел, которое помимо чисел рациональных включает также другие элементы, называемые иррациональными числами.
Абсолютная погрешность и её граница.
Пусть имеется некоторая числовая величина, и числовое значение, которое ей присвоено , считается точным, тогда под погрешностью приближенного значения числовой величины (ошибкой) понимают разность между точным и приближенным значением числовой величины: . Погрешность может принимать как положительное так и отрицательное значение. Величина называется известным приближением к точному значению числовой величины - любое число, которое используется вместо точного значения. Простейшей количественной мерой ошибки является абсолютная погрешность. Абсолютной погрешностью приближенного значения называют величину , про которую известно, что: Относительная погрешность и её граница.
Качество приближения существенным образом зависит от принятых единиц измерения и масштабов величин, поэтому целесообразно соотнести погрешность величины и ее значение, для чего вводится понятие относительной погрешности. Относительной погрешностью приближенного значения называют величину , про которую известно, что: . Относительную погрешность часто выражают в процентах. Использование относительных погрешностей удобно, в частности, тем, что они не зависят от масштабов величин и единиц измерения.

Иррациональные уравнения

Уравнение, в которых под знаком корня содержится переменная, называют иррациональными. При решении иррациональных уравнений полученные решения требуют проверки, потому, например, что неверное равенство при возведении в квадрат может дать верное равенство. В самом деле, неверное равенство при возведении в квадрат даёт верное равенство 12= (-1) 2, 1=1. Иногда удобнее решать иррациональные уравнения, используя равносильные переходы.

Возведём обе части этого уравнения в квадрат; После преобразований приходим к квадратному уравнению; и подставим.

Комплексные числа. Действия над комплексными числами.

Коммплемксные чимсла - расширение множества вещественных чисел, обычно обозначается . Любое комплексное число может быть представлено как формальная сумма x + iy, где x и y - вещественные числа, i - мнимая единица Комплексные числа образуют алгебраически замкнутое поле - это означает, что многочлен степени n с комплексными коэффициентами имеет ровно n комплексных корней, то есть верна основная теорема алгебры. Это одна из основных причин широкого применения комплексных чисел в математических исследованиях. Кроме того, применение комплексных чисел позволяет удобно и компактно сформулировать многие математические модели, применяемые в математической физике и в естественных науках - электротехнике, гидродинамике, картографии, квантовой механике, теории колебаний и многих других.

Сравнение a + bi = c + di означает, что a = c и b = d (два комплексных числа равны между собой тогда и только тогда, когда равны их действительные и мнимые части).

Сложение (a + bi) + (c + di) = (a + c) + (b + d) i.

Вычитание (a + bi) ? (c + di) = (a ? c) + (b ? d) i.

Умножение

Деление

Числовая функция. Способы задания функции

В математике числовая функция - это функция, области определения и значений которой являются подмножествами числовых множеств - как правило, множества действительных чисел или множества комплексных чисел .

Словесный: С помощью естественного языка Игрек равно целая часть от икс. Аналитический: С помощью аналитической формулы f (x) = x!

Графический С помощью графика Фрагмент графика функции .

Табличный: С помощью таблицы значений

x
0
1
2
3
4
5
6
7
8
9
y
1
1
2
3
5
8
13
21
34
55

Основные свойства функции

1) Область определения функции и область значений функции. Область определения функции - это множество всех допустимых действительных значений аргумента x (переменной x), при которых функция y = f (x) определена.

Область значений функции - это множество всех действительных значений y, которые принимает функция. В элементарной математике изучаются функции только на множестве действительных чисел.2) Нуль функции - такое значение аргумента, при котором значение функции равно нулю.3) Промежутки знакопостоянства функции - такие множества значений аргумента, на которых значения функции только положительны или только отрицательны.4) Монотонность функции. Возрастающая функция (в некотором промежутке) - функция, у которой большему значению аргумента из этого промежутка соответствует большее значение функции. Убывающая функция (в некотором промежутке) - функция, у которой большему значению аргумента из этого промежутка соответствует меньшее значение функции.5) Четность (нечетность) функции. Четная функция - функция, у которой область определения симметрична относительно начала координат и для любого х из области определения выполняется равенство f (-x) = f (x). График четной функции симметричен относительно оси ординат. Нечетная функция - функция, у которой область определения симметрична относительно начала координат и для любого х из области определения справедливо равенство f (-x) = - f (x). График нечетной функции симметричен относительно начала координат.6) Ограниченная и неограниченная функции. Функция называется ограниченной, если существует такое положительное число M, что |f (x) | ? M для всех значений x. Если такого числа не существует, то функция - неограниченная.7) Периодическость функции. Функция f (x) - периодическая, если существует такое отличное от нуля число T, что для любого x из области определения функции имеет место: f (x+T) = f (x). Такое наименьшее число называется периодом функции. Все тригонометрические функции являются периодическими. (Тригонометрические формулы).

Графики функций. Простейшие преобразования графиков функцией

График функции - множество точек, у которых абcциссы являются допустимыми значениями аргумента x, а ординаты - соответствующими значениями функции y.

Прямая линия - график линейной функции y = ax + b. Функция y монотонно возрастает при a > 0 и убывает при a < 0. При b = 0 прямая линия проходит через начало координат т.0 (y = ax - прямая пропорциональность)

Парабола - график функции квадратного трёхчлена у = ах2 + bх + с. Имеет вертикальную ось симметрии. Если а > 0, имеет минимум, если а < 0 - максимум. Точки пересечения (если они есть) с осью абсцисс - корни соответствующего квадратного уравнения ax2 + bx +с =0

Гипербола - график функции . При а > О расположена в I и III четвертях, при а < 0 - во II и IV. Асимптоты - оси координат. Ось симметрии - прямая у = х (а > 0) или у - х (а < 0).

Логарифмическая функция y = logax (a > 0)

Тригонометрические функции. При построении тригонометрических функций мы используем радианную меру измерения углов. Тогда функция y = sin x представляется графиком (рис. 19). Эта кривая называется синусоидой.

График функции y = cos x представлен на рис. 20; это также синусоида, полученная в результате перемещения графика y = sin x вдоль оси Х влево на /2.

Основные свойства функций. Монотонность, четность, нечетность, периодичность функций.

Область определения функции и область значений функции. Область определения функции - это множество всех допустимых действительных значений аргумента x (переменной x), при которых функция y = f (x) определена.

Область значений функции - это множество всех действительных значений y, которые принимает функция.

В элементарной математике изучаются функции только на множестве действительных чисел.2) Нуль функции - такое значение аргумента, при котором значение функции равно нулю.3) Промежутки знакопостоянства функции - такие множества значений аргумента, на которых значения функции только положительны или только отрицательны.4) Монотонность функции.

Возрастающая функция (в некотором промежутке) - функция, у которой большему значению аргумента из этого промежутка соответствует большее значение функции.

Убывающая функция (в некотором промежутке) - функция, у которой большему значению аргумента из этого промежутка соответствует меньшее значение функции.5) Четность (нечетность) функции. Четная функция - функция, у которой область определения симметрична относительно начала координат и для любого х из области определения выполняется равенство f (-x) = f (x). График четной функции симметричен относительно оси ординат. Нечетная функция - функция, у которой область определения симметрична относительно начала координат и для любого х из области определения справедливо равенство f (-x) = - f (x). График нечетной функции симметричен относительно начала координат.6) Ограниченная и неограниченная функции. Функция называется ограниченной, если существует такое положительное число M, что |f (x) | ? M для всех значений x. Если такого числа не существует, то функция - неограниченная.7) Периодическость функции. Функция f (x) - периодическая, если существует такое отличное от нуля число T, что для любого x из области определения функции имеет место: f (x+T) = f (x). Такое наименьшее число называется периодом функции. Все тригонометрические функции являются периодическими. (Тригонометрические формулы).

Периодические функции. Правила нахождения основного периода функции.

Периодимческая фумнкция Ї функция, повторяющая свои значения через какой-то ненулевой период, то есть не меняющая своего значения при добавлении к аргументу фиксированного ненулевого числа (периода). Все тригонометрические функции являются периодическими. Являются неверными утверждения относительно суммы периодических функций: Сумма 2 функций с соизмеримыми (даже основными) периодами T1 и T2 является функция с периодом НОК (T1,T2). Сумма 2 непрерывных функций с несоизмеримыми (даже основными) периодами является непериодической функцией. Не существует периодических функций, не равных константе, у которой периодами являются несоизмеримые числа.

Построение графиков степенных функций.

Степенная функция. Это функция: y = axn, где a, n - постоянные. При n = 1 получаем прямую пропорциональность: y = ax; при n = 2 - квадратную параболу; при n = ?1 - обратную пропорциональность или гиперболу. Таким образом, эти функции - частные случаи степенной функции. Мы знаем, что нулевая степень любого числа, отличного от нуля, равна 1, cледовательно, при n = 0 степенная функция превращается в постоянную величину: y = a, т. e. её график - прямая линия, параллельная оси Х, исключая начало координат (поясните, пожалуйста, почему?). Все эти случаи (при a = 1) показаны на рис.13 (n 0) и рис.14 (n < 0). Отрицательные значения x здесь не рассматриваются, так как тогда некоторые функции:

.

Обратная функция

Обрамтная фумнкция - функция, обращающая зависимость, выражаемую данной функцией. Функция является обратной к функции , если выполнены следующие тождества: для всех для всех

Предел функции в точке. Основные свойства предела.

Корень n-ой степени и его свойства.

Корнем n-ой степени из числа a называется такое число, n-ая степень которого равна a.

Определение: Арифметическим корнем n-ой степени из числа a называют неотрицательное число, n-ая степень которого равна a.

Основные свойства корней:

Степень с произвольным действительным показателем и его свойства.

Пусть дано положительное число и произвольное действительное число . Число называется степенью, число - основанием степени, число - показателем степени.

По определению полагают:

.

.

, .

Если и - положительные числа, и - любые действительные числа, то справедливы следующие свойства:

.

.

.

.

.

.

Степенная функции, её свойства и графики

Степенная функция комплексного переменного f (z) = zn с целочисленным показателем определяется с помощью аналитического продолжения аналогичной функции вещественного аргумента. Для этого применяется показательная форма записи комплексных чисел. степенная функция с целочисленным показателем является аналитической во всей комплексной плоскости, как произведение конечного числа экземпляров тождественного отображения f (z) = z. Согласно теореме единственности эти два признака достаточны для единственности полученного аналитического продолжения. Пользуясь таким определением, можно сразу сделать вывод о том, что степенная функция комплексного переменного обладает значительными отличиями от своего вещественного аналога.

Это функция вида , . Рассматриваются такие случаи:

а). Если , то . Тогда , ; если число - чётное, то и функция - чётная (то есть при всех ); если число - нечётное, то и функция - нечётная (то есть при всех ).

Показательная функция, её свойства и графики

Показательная функция - математическая функция .

В вещественном случае основание степени - некоторое неотрицательное вещественное число, а аргументом функции является вещественный показатель степени.

В теории комплексных функций рассматривается более общий случай, когда аргументом и показателем степени может быть произвольное комплексное число.

В самом общем виде - uv, введена Лейбницем в 1695 г.

Особо выделяется случай, когда в качестве основания степени выступает число e. Такая функция называется экспонентой (вещественной или комплексной).

Свойства ; ; .

Показательные уравнения.

Перейдем непосредственно к показательным уравнениям. Для того чтобы решить показательное уравнение необходимо воспользоваться следующей теоремой: Если степени равны и основания равны, положительны и отличны от единицы, то равны и их показатели степеней. Докажем эту теорему: Пусть a>1 и aх=ay.

Докажем, что в этом случае х=y. Допустим противное тому, что требуется доказать, т.е. допустим, что x>у или что x<у. Тогда получим по свойству показательной функции, что либо aх<ay либо aх>ay. Оба эти результата противоречат условию теоремы. Следовательно, x=у, что и требовалось доказать.

Также доказывается теорема и для случая, когда 0<a<1. Замечание. Из равенства aх=ay не обязательно следует что x=у. Из равенства 1х=1y также не обязательно вытекает равенство x=у. Самым простым показательным уравнением является уравнения вида aх=ay, где a>0 и a?1.

Показательные неравенства

Неравенства вида (или меньше) при а (х) >0 и решаются на основании свойств показательной функции: для 0 < а (х) < 1 при сравнении f (x) и g (x) знак неравенства меняется, а при а (х) > 1 - сохраняется. Самый сложный случай при а (х) < 0. Здесь можно дать только общее указание: определить, при каких значениях х показатели f (x) и g (x) будут целыми числами, и выбрать из них те, которые удовлетворяют условию. Наконец, если исходное неравенство будет выполняться при а (х) = 0 или а (х) = 1 (например, когда неравенства нестрогие), то нужно рассмотреть и эти случаи.

Логарифмы и их свойства

Логарифм числа b по основанию a (от греч. льгпт - "слово", "отношение" и ?сйимьт - "число" [1] ) определяется как показатель степени, в которую надо возвести основание a, чтобы получить число b. Обозначение: . Из определения следует, что записи и равносильны. Пример: , потому что . Свойства

Основное логарифмическое тождество:

Логарифмическая функция, её свойства и графики.

Логарифмической функцией называется функция вида f (x) = logax, определённая при

Область определения:

Область значения:

График любой логарифмической функции проходит через точку (1; 0)

Производная логарифмической функции равна:

Логарифмические уравнения

Уравнение, содержащее переменную под знаком логарифма, называется логарифмическим. Простейшим примером логарифмического уравнения служит уравнение loga х = b (где а > 0, а 1). Его решение x = ab.

Решение уравнений на основании определения логарифма, например, уравнение loga х = b (а > 0, а 1) имеет решение х = аb.

Метод потенцирования. Под потенцированием понимается переход от равенства, содержащего логарифмы, к равенству, не содержащему их:

если loga f (х) = loga g (х), то f (х) = g (х), f (х) >0, g (х) >0, а > 0, а 1.

Метод приведения логарифмического уравнения к квадратному.

Метод логарифмирования обеих частей уравнения.

Метод приведения логарифмов к одному и тому же основанию.

Логарифмические неравенства.

Неравенство, содержащее переменную только под знаком логарифма, называется логарифмическим: l и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.