На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Реферат Особенности решения задач Диофантовой Арифметики, которые решаются с помощью алгебраических уравнений или системы алгебраических уравнений с целыми коэффициентами. Характеристика великой теоремы Ферма, анализ и методы приминения алгоритма Евклида.

Информация:

Тип работы: Реферат. Предмет: Математика. Добавлен: 26.09.2014. Сдан: 2010. Уникальность по antiplagiat.ru: --.

Описание (план):


20
Министерство образования и науки
Научное Общество Учащихся
Секция «Алгебра»




Работа по теме:
«Диофантовы уравнения»


Выполнила:
ученица 10 «А» класса МОУ СОШ № 43
Булавина Татьяна
Научный руководитель: Пестова
Надежда Ивановна
Нижний новгород 2010
Содержание

Введение
О диофантовых уравнениях
Способы решения диофантовых уравнений
Список литературы
Введение

Я выбрала тему: «Диофантовы уравнения» потому, что меня заинтересовало, как зарождалась арифметика.
Диофант Александрийский (3 век)-греческий математик. Его книгу «Арифметика» изучали математики всех поколений.
Необычайный расцвет древнегреческой науки в IV--III вв. до н. э. сменился к началу новой эры постепенным спадом в связи с завоеванием Греции Римом, а потом и начавшимся разложением Римской империи. Но на фоне этого угасания еще вспыхивает яркий факел. В 3-ем веке новой эры появляется сочинение александрийского математика Диофанта «Арифметика». О жизни самого Диофанта нам известно только из стихотворения, содержащегося в «Палатинской антологии». В этой антологии содержалось 48 задач в стихах, собранных греческим поэтом и математиком VI в. Метродором. Среди них были задачи о бассейне, о короне Герона, о жизненном пути Диофанта. Последняя оформлена в виде эпитафии -- надгробной надписи.
Прах Диофанта гробница покоит: дивись ей -- и камень
Мудрым искусством его скажет усопшего век.
Волей богов шестую часть жизни он прожил ребенком
И половину шестой встретил с пушком на щеках.
Только минула седьмая, с подругою он обручился.
С нею пять, лет проведя, сына дождался мудрец.
Только полжизни отцовской возлюбленный сын его прожил.
Отнят он был у отца ранней могилой своей.
Дважды два года родитель оплакивал тяжкое горе.
Тут и увидел предел жизни печальной своей.
Отсюда нетрудно подсчитать, что Диофант прожил 84 года.
Трактат «Арифметика» занимает особое место в античной матиматике не только по времени своего появления, но и по содержанию. Большую часть его составляют разнообразные задачи по теории чисел и их решения. Но, главное, автор использует не геометрический подход , как это было принято у древних греков,-решения Диофанта предвосхищают алгебраические и теоретико- числовые методы. К сожалению, из 13 книг, составлявших «Арифметику», до нас дошли лишь первые 6, а остальные погибли в перипетиях тогдашнего бурного времени. Достаточно сказать, что через 100 лет после смерти Диофанта была сожжена знаменитая александрийская библиотека, содержавшая бесценные сокровища древнегреческой науки.
О диофантовых уравнениях.

Задачи Диофантовой «Арифметики» решаются с помощью уравнений, проблемы решения уравнеий скорее относятся к алгебре, чем к арифметике. Почему же тогда мы говорим, что эти уравнения относятся к арифметическим? Дело в том, что эти задачи имеют специфические особенности.
Во-первых, они сводятся к уравнениям или к системам уравнений с целыми коэффициентами. Как правило, эти системы неопределённые,т.е. число уравнений в них меньше числа неизвестных.
Во-вторых, решения требуется найти только целые, часто натуральные.
Для выделения таких решений из всего бесконечного их множества приходится пользоваться свойствами целых чисел ,а это уже относится к области арифметики.Дадим определение диофантовым уравнениям.
Диофантовы уравнения-алгебраические уравнения или системы алгебраических уравнений с целыми коэффициентами, для которых надо найти целые или рациональные решения. При этом число неизвесных в уравнениях больше числа уравнений. Ни один крупный математик не прошёл мимо теории диофантовых уравнений.
Давайте рассмотрим современную простенькую задачу.
За покупку нужно уплатить 1700 р. У покупателя имеются купюры только по 200р. и по 500 р. Какими способами он может расплатиться? Для ответа на этот вопрос достаточно решить уравнение 2x + 5y=17 с двумя неизвестными x и y. Такие уравнения имеют бесконечное множество решений. В частности, полученному уравнению отвечает любая пара чисел вида (x, 17-2x/5). Но для этой практической задачи годятся только целые неотрицательные значения x и y. Поэтому приходим к такой постановке задачи: найти все целые неотрицательные решения уравнения 2x+5y=17. Ответ содержит уже не бесконечно много,авсего лишь две пары чисел (1, 3) и (6, 1).Диофант сам находил решения своих задач. Вот несколько задач из его «Арифметики».
1. Найти два числа так, чтобы их произведение находилось в заданном отношении к их сумме.
2. Найти три квадрата так, чтобы сумма их квадратов тоже была квадратом.
3. Найти два числа так, чтобы их произведение делалось кубом как при прибавлении , так и при вычитании их суммы.
4. Для числа 13=2І+3І найти два других,сумма квадратов которых равна 13.
Приведём диофантово решение последней задачи. Он полагает первое число (обозначим его через А) равным x+2, а второе число B равным 2x-3 , указывая , что коэффициент перед x можно взять и другой. Решая уравнения
(x+2)І+(kx-3)І=13,
Диофант находит x=8/5, откуда A=18/5,B=1/5. Воспользуемся указанием Диофанта и возьмём произвольный коэффициент перед x в выражении для B. Пусть снова А=x+2,а В=kx-3, тогда из уравнения
(x+2)І+(kx-3)І=13
x=2(3k-2)/kІ+1.
Отсюда
А=2(kІ+3k-1)/kІ+1,
В=3kІ-4k-3/kІ+1.
Теперь становятся понятными рассуждения Диофанта. Он вводит очень удобную подстановку А=x+2, В=2x-3, которая с учётом условия 2І+3І=13 позволяет понизить степень квадратного уравнения. Можно было бы с тем же успехом в качестве В взять 2x+3 , но тогда получаются отрицательные значения для В,чего Диофант не допускал. Очевидно , k=2- наименьшее натуральное число , при котором А и В положительны .
Исследование Диифантовых уравнений обычно связано с большими трудностями. Более того , можно указать многочлен F (x,y1,y2 ,…,yn) c целыми коэффициентами такой, что не существует алгоритма , позволяющего по любому целому числу x узнавать , разрешимо ли уравнение F (x,y1,y2 ,…,yn)=0 относительно y1,…,y. Примеры таких многочленов можно выписать явно. Для них невозможно дать исчерпывающего описания решений.
Современной постановкой диофантовых задач мы обязанны Ферма. Именно он поставил перед европейскими математиками вопрос о решении неопределённых уравнений только в целых числах. Надо сказать , что это не было изобретением Ферма - он только возродил интерес к поиску целочисленных решений. А вообще задачи, допускающие только целые решения, были распространены во многих странах в очень далёкие от нас времена.В нынешней математике существует целое направление, занимающееся исследованиями диофантовых уравнений,поиском способов их решений.Называется оно диофантовым анализом и диофантовой геометрией , поскольку использует геометрические способы доказательств.
Простейшее Диофантово уравнение ax+by=1,где a и b - цельные взаимопростые числа, имеет бесконечно много решений (если x0 и y0-решение, то числа x=x0+bn, y=y0-an, где n- любое целое , тоже будут решениями).
Другим примером Диофантовых уравнений является
x2 + у2 = z2. (5)
Это Диофантово уравнение 2-й степени. Сейчас мы займёмся поиском его решений. Удобно записывать их в виде троек чисел (x,y,z). Они называются пифагоровыми тройками. Вообще говоря , уравнению (5) удовлетворяет бесконечное множество решений. Но нас будут интересовать только натуральные. Целые, положительные решения этого уравнения представляют длины катетов х, у и гипотенузы z прямоугольных треугольников с целочисленными длинами сторон и называются пифагоровыми числами. Наша задача состоит в том, чтобы найти все тройки пифагоровых чисел. Заметим, что если два числа из такой тройки имеют общий делитель, то на него делится и третье число. Поделив их все на общий делитель, вновь получим пифагороау тройку. Значит от любой пифагоровой тройки можно перейти к другой пифагоровой тройке, числа которой попарно взаимо просты. Такую тройку называют примитивной. Очевидно, для поставленной нами задачи достаточно найти общий вид примитивних пифагоровых троек. Ясно, что в примитивной пифагоровой тройке два числа не могут быть чётными, но в то же время все три числа не могут быть нечётными одновременно. Остаётся один вариант: два числа нечётные, а одно чётное. Покажем, что z не может быть чётным числом. Предположим противное: z=2m, тогда x и y-нечётные числа. x=2k+1, y=2t+1. В этом случае сумма xІ+yІ=4(kІ+k+tІ+t)+2 не делится на 4, в то время как zІ=4mІ делится на 4. Итак, чётным числом является либо x, либо y. Пусть x=2u, y и z- нечётные числа. Обозначим z+y=2v, z-y=2w . Числа v и w взаимно простые. На самом деле, если бы они имели общий делитель d>1, то он был бы делителем и для z=w+v, и для y=v-w, что противоречит взаимной простоте y и z. Кроме того , v и w разной чётности: иначе бы y и z были бы чётными. Из равенства xІ=(z+y)(z-y) следует, что uІ=vw. Поскольку v и w взаимно просты, а их произведение является квадратом , то каждый из множителей является квадратом . Значит найдутся такие натуральные числа p и q, что v=pІ, w= qІ . Очевидно, числа p и q взаимно просты и имеют разную чётность . Теперь имеем
z=pІ+qІ , y=pІ-qІ,
откуда
xІ=( pІ+qІ)І-( pІ-qІ)І=4 pІ qІ.
В результате мы доказали, что для любой примитивной пифагоровой тройки (x,y,z) найдутся взаимо простые натуральные числа p и q разной чётности , p>q , такие, что
х =2pq, у =pІ-qІ, z = p2+q2.(6)
Все тройки взаимно простых пифагоровых чисел можно получить по формулам
х =2pq, у = pІ-qІ, z = p2+q2,
где m и n -- целые взаимо простые числа. Все остальные его натуральные решения имеют вид:
x=2kpq,y=k(pІ-qІ),z=k(p2+q2 ),
где k-произвольное натуральное число. Теперь рассмотрим следующую задачу: дано произвольное натуральное число m>2; существует ли пифагоров треугольник, одна из сторон которого равна m? Если потребовать , чтобы заданную длину m имел катет, то для любого m ответ положительный. Докажем это. Пусть сначала m-нечётное число. Положим p=m+1/2, q=m-1/2. Получаем пифагорову тройку
х =2pq=mІ-1/2,
у =pІ-qІ=m,
z = p2+q2 = mІ+1/2.
В случае чётного m обозначим m=2t. В свою очередь t может быть чётным или нечётным. Для чётного t положим p=t, q=1, откуда соответствующий треугольник имеет стороны
х =2pq=2t=m,
у =pІ-qІ= tІ-1= mІ/4-1,
z = p2+q2 = tІ+1= mІ/4+1.
Если же t-нечётное число, то возьмём p=t+1/2, q=t-1/2. Выпишем пифагорову тройку, отвечающую этим значениям p и q: 2pq= tІ-1/2, pІ-qІ=t=m/2, p2+q2 = tІ+1= mІ/4+1. Чтобы получить стороны искомого треугольника , надо ещё умножить эти числа на 2: x= tІ-1= mІ/4-1, y=2t=m, z =tІ+1= mІ/4+1. В виду равноправности катетов полученная тройка та же , что и в случае чётного t.
Приведём примеры. Для m=7 имеем треугольник с катетами x=24,y=7 и гипотенузой z=25. В случае m=3 тройка (4,3,5) задаёт наименьший пифагоров треугольник. Этот треугольник называется египетским. Сложнее выяснить , для каких натуральных m существует пифагоров треугольник с гипотенузой m. Так как m в этом случае должно быть кратно числу z= p2+q2 , где p и q имеют разную чётность , то необходимо найти вид чисел z>2, представляемых в виде суммы квадратов разной чётности. Обозначим p=2r, q=2s+1, тогда p2+qІ=4(rІ+sІ+s)+1. Значит число z имеет вид 4t+1. Однако не всякое число вида 4t+1 раскладывается на сумму двух квадратов . Наример, число 9=4*2+1 так разложить невозможно. Но если число 4t+1 простое . то оно представимо в виде суммы двух квадратов, причём единственным способом. Число вида 4t+1 можно записать в виде суммы двух квадратов лишь в двух случаях: когда оно является произведением числа того же вида на квадрат натурального и когда оно равно произведению простых чисел типа 4t+1 .
Итак, пифагоров треугольник с заданой гипотинузой m существует только при условии , что в каноническом разложении числа m встречается простой множитель вида 4t+1.
Рассмотрим примеры .
1. Пусть m =17 ( здесь 17=4Ч4+1). Из равенства 17=4І+1І находим p=4, q=1, x=2pq=8, y=pІ-qІ=15. Тройка (8,15,17) задаёт пифагоров треугольник.
2. В случае m=65 имеем 65=5Ч13=5(4Ч3+1). Так как 13=3І+2І, то p=3, q=2, 2pq=12, pІ-qІ=5, p2+qІ=13. Для отыскания нужной нам тройки умножим эти числа на 5 и получим (60,25,65). Число 65 и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.