Здесь можно найти образцы любых учебных материалов, т.е. получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ и рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Диплом Исследование геометрии поверхностей четырехмерного псевдоевклидова пространства индекса один (пространства Минковского). Определение пространства Минковского, его основные особенности, типы прямых и плоскостей. Развертывающиеся и линейчатые поверхности.

Информация:

Тип работы: Диплом. Предмет: Математика. Добавлен: 17.05.2010. Сдан: 2010. Уникальность по antiplagiat.ru: --.

Описание (план):


Учреждение образования
«Брестский государственный университет имени А.С. Пушкина»
Математический факультет
Кафедра алгебры и геометрии
Дипломная работа
Дифференциальная геометрия торсов в пространстве 1R4 с псевдоевклидовой касательной плоскостью

Брест 2010
Содержание
Введение
§1. Пространство Минковского
§2. Кривые в пространстве 1R4
§3. Понятие о линейчатых и развертывающихся поверхностях
§4. Торсы в пространстве 1R4
§5. Линии на торсах пространства Минковского
§6. Асимптотические линии на торсе пространства Минковского
Заключение
    Список использованных источников
Введение
В работе исследуется геометрия поверхностей четырехмерного псевдоевклидова пространства индекса один, т.е. пространства Минковского.
Изучение дифференциальной геометрии в пространстве Минковского является актуальной задачей, поскольку пространство Минковского является пространством специальной теории относительности, и все результаты по дифференциальной геометрии этого пространства получают физическое истолкование. Каждое событие характеризуется тремя пространственными координатами и моментом времени t. Если уравнения физической теории (релятивистской механики, релятивистской гидродинамики, электродинамики и др.) записаны в виде соотношений, связывающих векторы и тензоры, заданные в пространстве Минковского, то их вид будет одинаковым во всех инерциальных системах отсчета. Тем самым основной принцип специальной теории относительности будет выполняться автоматически.
Интервал (расстояние между точками) в пространстве Минковского играет роль, аналогичную роли расстояния в геометрии евклидовых пространств. Он инвариантен при замен е одной инерциальной системы отсчета на другую, так же, как расстояние инвариантно при поворотах, отражениях и сдвигах начала координат в евклидовом пространстве.
Данная работа состоит из шести параграфов.
В первом параграфе происходит знакомство с пространством Минковского, дается определение этого пространства, его основные особенности, перечисляются типы прямых и плоскостей.
Во втором параграфе исследуются кривые пространства 1R4, вводится понятие соприкасающегося флага. Для кривых с заданным соприкасающимся флагом строится канонический репер и выводятся деривационные формулы.
Третий параграф посвящен изучению развертывающихся и линейчатых поверхностей. Изучение основных понятий этого параграфа поможет перейти к рассмотрению торсов.
В четвертом параграфе рассматриваются торсы с псевдоевклидовой касательной плоскостью и соприкасающимся флагом вида {M, R1, 1R2, 1R3}. Для таких торсов строится канонический репер кривой пространства 1R4 и выводятся деривационные формулы.
В последующих двух параграфах исследуются линии на торсах указанного типа с помощью построенного канонического репера. Дается понятие геодезических линий, решается вопрос о существовании (1,2)-,(2,2)-,(1,3)-,(2,3)- геодезических линий на торсе с псевдоевклидовой касательной плоскостью. Вводится понятие нормальной кривизны кривой, вектора кривизны, определяются асимптотические линии.
§1. Пространство Минковского
Пространством Минковского называется четырехмерное псевдоевклидово пространство индекса 1.
Герман Минковский предложил данное пространство в 1908 году в качестве геометрической интерпретации пространства-времени специальной теории относительности.
Интервал в пространстве Минковского играет роль, аналогичную роли расстояния в геометрии евклидовых пространств. Он инвариантен при замене одной инерциальной системы отсчета на другую, так же, как расстояние инвариантно при поворотах, отражениях и сдвигах начала координат в евклидовом пространстве.
После евклидовых пространств индекса k=0, т.е. собственно евклидовых, наибольший интерес представляют евклидовы простран-ства индекса k=1 (они, конечно, принадлежат к псевдоевклидовым пространствам). Евкли-дово пространство индекса 1 представляет интерес с точки зрения теории дифференциальных уравнений (волновое уравнение с п аргу-ментами) и особенно с точки зрения теории относительности. В по-следнем случае играет роль именно четырехмерное евклидово пространство индекса 1.
Данное пространство может быть получено на базе четырехмерного аффинного пространства А, с помощью введения скалярного умножения векторов.
Пусть некоторый репер аффинного пространства А4, где , .
Введем скалярное умножение по формуле:
. (1)
Пространство A4, для векторов которого введено скалярное умножение по формуле (1) называется четырехмерным псевдоевклидовым пространством индекса 1 или пространством Минковского. Обозначается 1R4.
Скалярный квадрат вектора определяется по формуле:
. (2)
При этом вектора репера будут иметь следующие скалярные квадраты:
(3)
Определение 1.1. Длиной вектора в пространстве Минковского будем называть число:
Определение 1.2. Векторы пространства Минковского называются ортогональными, если их скалярное произведение равно нулю.
Таким образом, в пространстве 1R4 будут существовать векторы трех типов.
1. Векторы действительной длины при .
Например, (2,1,1,2).
2. Векторы мнимой длины при .
Например, (3,1,1,1).
3. Ненулевые векторы нулевой длины при .
Например, (6,2,4,4).
Такие векторы называются изотропными. Они лежат на изотропном конусе.

Уравнение конуса будет иметь вид
-(x0)2+(x1)2+(x2)2+(x3)2=0

Такой конус также называют световым.
Расстояние с(М,N) между точками М(x1,x2,x3,x4) и N(у1,у2,у3,у4) в пространстве 1R4 определяется как длина вектора (у1- x1, у2- x2, у3- x3, у4- x4) и равна
с(М,N)= (5)
В пространстве 1R4 существует три типа прямых.
1. Прямые действительной длины (R1), направляющий вектор которых является вектором действительной длины. Например, е = [].
2. Прямые мнимой длины (1R1), направляющий вектор которых является вектором мнимой длины. Например, е = [].
3. Изотропные прямые (), направляющий вектор которых является изотропным вектором. Например, e = [0, +].
В пространстве 1R4 существует три типа двумерных плоскостей.
1. Евклидова плоскость R2, на которой существует базис, в котором скалярное произведение любых двух векторов этой плоскости записывается в виде
, где .
Например, евклидова плоскость - плоскость . Для векторов этой плоскости , .
Тогда,
2. Псевдоевклидова плоскость1R2, на которой существует базис, в котором скалярное произведение любых двух векторов этой плоскости записывается в виде , где .
Например, евклидовой плоскостью является плоскость . Для векторов этой плоскости, . Получим,
3. Полуевклидова плоскость, на которой существует базис, в котором скалярное произведение любых двух векторов этой плоскости принимает вид , где .
Например, полуоевклидова плоскость - плоскость . Для векторов этой плоскости
, .
Тогда получим,
т.к.

Псевдоевклидова плоскость по своим аффинным свойствам не отличается от евклидовой, однако метрические свойства этих плоскостей существенно различаются. Это видно, хотя бы на примере окружности, которую на псевдоевклидовой плоскости определим как совокупность всех точек, удаленных на одно и то же псевдоевклидово расстояние r от данной точки - центра.
Если центр совпадает с началом координат О(0,0), то по определению уравнение окружности имеет вид
.
Радиус окружности может быть вещественным (r=a), тогда .
Если радиус окружности мнимый, т.е. r=ia, то . В случае, когда радиус r=0, имеем .
Таким образом на существует три вида окружностей. На аффинной плоскости они представляют собой пару пересекающихся прямых - окружность нулевого радиуса - и две сопряженные гиперболы, для которых указанные прямые являются асимптотами. (Рис. 1.2)
В пространстве 1R4 существует три типа 3-плоскостей.
1. Евклидова 3-плоскость R3, на которой существует базис, в котором скалярное произведение принимает вид:
.
Например, евклидовой 3-плоскостью является плоскость Для векторов этой 3-плоскости , Тогда получим, ,)=
2. Плоскость 1R3, на которой существует базис, в котором скалярное произведение принимает вид:
.
Например, плоскостью 1R3 является плоскость Для векторов этой 3-плоскости , Получаем,
,)=

3. Плоскость , на которой существует базис, в котором скалярное произведение принимает вид: .
Например, плоскостью является плоскость Для векторов этой 3-плоскости , .
Получим:
Поскольку каждая 3-плоскость ортогональна некоторой прямой, то существует только 3 типа 3-плоскостей.
Определение 1.3. Ортогональным дополнением к векторному пространству L1R4 называется векторное пространство, образованное всеми векторами, ортогональными к пространству L.
Пример. Найдем множество векторов, ортогональных к вектору . Если вектор ортогонален , то . Отсюда,
=.
Таким образом, ортогональным дополнением к вектору является множество векторов . Эти векторы определяют 3-плоскость которое является 3-плоскостью вида 1R3. Следовательно, R11R3. Это означает, что к прямой R1 ортогональной является 3-плоскость типа1R3. Верно и обратное.
Аналогично найдем множество векторов ортогональных к вектору. Если вектор ортогонален , то . Отсюда,
=.
Множество векторов, ортогональных вектору , имеет вид и определяет 3-плоскость которое является 3-плосткостью вида R3. Следовательно, 1R1R3. Это означает, что к прямой 1R3 ортогональной является 3-плоскость типа R3. Верно и обратное.
Рассмотрим вектор () и найдем множество векторов ортогональных к данному вектору. Если вектор ортогонален (), то .
Получаем, что
=.
Отсюда, , а -- произвольные. - это множество векторов, ортогональных вектору () и определяет 3-плоскость которое является 3-плосткостью вида . Значит, . Это означает, что к прямой ортогональной является 3-плоскость типа . Верно и обратное.
Заметим, что .
Найдем множество векторов, ортогональных к векторам . Если вектор ортогонален , то Отсюда,
Таким образом, ортогональным дополнением к векторам является множество векторов . Эти векторы определяют 2-плоскость которая является 2-плосткостью вида 1R2. Следовательно, R2 1R2 (к двумерной плоскости R2 ортогональной является плоскость вида 1R2).
Найдем множество векторов, ортогональных к векторам . Если вектор ортогонален , то Отсюда,
Таким образом, ортогональным дополнением к векторам является множество векторов . Эти векторы определяют 2-плоскость которое является 2-плосткостью вида R2, Следовательно, R2 1R2 (к двумерной плоскости R2 ортогональной является плоскость вида 1R2). Верно и обратное.
Найдем множество векторов, ортогональных к векторамЕсли вектор ортогонален , то
Отсюда,
Таким образом, ортогональным дополнением к векторам является множество векторов . Эти векторы определяют 2-плоскость которая является 2-плосткостью вида . Следовательно, .


Таким образом, получена теорема.
Теорема 1.1. В пространстве 1R4 существуют следующие типы прямых, плоскостей и 3-плоскостей:
- прямые: R1, 1R1,.
- 2-плоскости: R2, 1R2,.
- 3-плоскости: R3, 1R3,.

§2. Кривые в пространстве 1R4

В пространстве 1R4 выберем базис
,
где Точка M1R4, имеющая в репере R координаты (): M()R.
Определение 2.1. Кривой в пространстве 1R4 называется множество точек этого пространства, координаты которых задаются уравнениями:
(6)
Или в векторном виде . (7)
Определение 2.2. Функция, имеющая непрерывные производные до k-го порядка включительно на отрезке [a,b], называется k раз дифференцируемой функцией на этом отрезке.
Определение 2.3. Кривая называется дифференцируемой класса Сk, если функции (6), задающие параметрические уравнения, являются k раз дифференцируемыми функциями.
Пусть кривая является кривой класса C3. Рассмотрим на дифференцируемой кривой вектора:
.
Определение 2.4. Точка M, принадлежащая кривой , называется неособой, если в этой точке вектора , линейно независимы. В противном случае точка M кривой называется особой.
Определение 2.5. Прямая называется касательной к кривой в точке M, 2-плоскость называется соприкасающейся плоскостью кривой , 3-плоскость называется соприкасающейся 3-плоскостью кривой в точке M.
Очевидно, .
Теорема 2.1. Кривая имеет в каждой точке касательную и притом единственную.
Если r=r(t) - векторное уравнение кривой, то касательная в точке Р, соответствующей значению параметра t, имеет направление вектора r'(t).
Теорема 2.2. Кривая имеет в каждой точке соприкасающуюся плоскость. При этом соприкасающаяся плоскость либо единственная, либо любая плоскость, содержащая касательную к кривой, является соприкасающейся.
Если r=r(t) - уравнение кривой , то соприкасающаяся плоскость в точке, соответствующей значению параметра t, параллельна векторам r'(t) и r''(t).
Теорема 2.3. Задание касательной, соприкасающейся плоскости и соприкасающейся 3-плоскости корректно, т.е. не зависит от параметризации кривой.
Для доказательства достаточно перейти к новому параметру и сравнить направляющие вектора.
Определение 2.5. Соприкасающийся флаг - это совокупность, состоящая из точки кривой, касательной к кривой в этой точке, соприкасающейся 2-плоскости к кривой в этой точке и соприкасающейся 3-плоскости к кривой в этой точке. [M, ], M .
Соприкасающийся флаг может быть следующих видов.
10. {M, R1, R2, R3}. Например,
20. {M, R1, 1R2, 1R3}. Например,
30. {M, R1, , 1R3}. Например,
40. {M, R1, , }. Например,
50. {M, 1R1, 1R2, 1R3}. Например,
60. {M, , , 1R3}. Например,
70. {M, , , }. Например,
80. {M, R1, R2, 1R3}. Например,
90. {M, R1, R2, }. Например,
100. {M, , 1R2, 1R3}. Например,
Более подробно в своей дипломной работе я рассмотрю кривые, имеющие соприкасающийся флаг вида 20.
Рассмотрим кривую с соприкасающимся флагом 20.
Построим в произвольной точке M кривой канонический репер {M, 1, 2, 3, 4}.
Введем на кривой естественную параметризацию s следующим образом:
(8)

Теорема 2.4. Для кривой : , заданной в естественной параметризации, получим
(9)
Доказательство.
.
Из (8) следует . Значит, и, следовательно,
, . (10)
Дифференцируем равенство (10): Отсюда,
Ч.т.д.
Вектор направлен по касательной в точке М: . Вектор выберем в соприкасающейся плоскости перпендикулярно :
Условие перпендикулярности к в соприкасающейся плоскости: Отсюда: .
Вектор выберем в соприкасающейся 3-плоскости перпендикулярно векторам и .
(11)
Найти и можно используя условия ортогональности:
Подставив и в формулу (8) получим вектор .
Вектор выберем в 1R4 перпендикулярно ,,.
В нашем случае векторы ,, - векторы действительной длины, а вектор - вектор мнимой длины.
Пусть кривая задана в естественной параметризации. Вектора ,, , канонического репера будут заданы тоже с помощью параметра s.
Рассмотрим векторы ,, . Эти векторы можно будет разложить по базису ,, :
(12)
Теорема 2.5. Производная вектора постоянной длины перпендикулярна этому вектору.
Доказательство.
Пусть

Ч.т.д.
Из теоремы 2.5. следует, что .
Домножим первое уравнение (12) скалярно на . Получим . Аналогично,
. (13)
Домножим первое уравнение (12) скалярно на , второе на , затем сложим их. (,)+(,)=+. Выражение =0.
Отсюда, = .
Аналогично, =, =, =, =,=.
Выберем , . При этом имеет действительную длину. Тогда
(14)
Исходя из (12) и (14), получим =. Следовательно, ==0.
.
Значит, раскладывается по векторам ,,, задающим . Значит, =0, а следовательно =0.
. Пусть k1(s).
Деривационные формулы запишутся в виде:
§3. Понятие о линейчатых и развертывающихся поверхностях
Поверхность, представляющая собой геометрическое место прямых линий, называется линейчатой. Точнее линейчатую поверхность мы будем строить следующим образом.

Возьмем какую-нибудь кривую в пространстве; пусть -- ее текущий радиус-вектор, а u - параметр, к которому она отнесена, = (u). Эту кривую мы будем называть направляющей. В каждой точке этой кривой зададим единичный вектор, который будет являться, таким образом, также функцией параметра u вдоль кривой, l=l(u).
Через каждую точку N направляющей линии с радиус-вектором (u) проводим прямую параллельно вектору l(u),.отвечающему этой точке. В результате мы получаем в пространстве семейство прямых (Рис. 3.1) от одного параметра, именно от u. Эти прямые мы будем называть образующими. Выбор образующей определяется, таким образом, значением u; что же касается выбора какой-нибудь точки М на этой образующей, то его мы будем характеризовать расстоянием NM по образующей от направляющей линии до точки М. При этом расстояние NM мы берем со знаком, принимая на образующей направление l за положительное. Будем обозначать расстояние NM коротко через v, NM=v.
В таком случае радиус-вектор произвольной точки М на произвольной образующей, определяемой значением , можно записать в виде
(u), ;
действительно, вектор NM коллинеарен единичному вектору и потому отличается от него лишь скалярным множителем, равным длине NM с соответствующим знаком, т. е. множителем v.
Итак, окончательно .
В результате радиус-вектор произвольной точки М на произвольной образующей выразился как функция двух независимых параметров u, v. Мы получили, таким образом, параметрическое представление линейчатой поверхности, именно той, которая образована прямыми (образующими) построенного нами однопараметрического семейства прямых.
Фиксируя в этом уравнении u и меняя v, мы движемся, оче и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.