На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


задача Дифференциальное исчисление функции одной переменной: определение предела, асимптот функций и глобальных экстремумов функций. Нахождение промежутков выпуклости и точек перегиба функции. Примеры вычисления неопределенного интеграла, площади плоской фигуры.

Информация:

Тип работы: задача. Предмет: Математика. Добавлен: 02.10.2009. Сдан: 2009. Уникальность по antiplagiat.ru: --.

Описание (план):


10
Содержание

1. Введение в анализ и дифференциальное исчисление функции одного переменного
2. Дифференциальное исчисление функций и его приложение
3. Интегральное исчисление функции одного переменного
1. Введение в анализ и дифференциальное исчисление функции одного переменного

1. Вычислить предел: .

Решение.
При имеем
Следовательно,
2. Найти асимптоты функции: .
Решение.
Очевидно, что функция не определена при .
Отсюда получаем, что
Следовательно, - вертикальная асимптота.
Теперь найдем наклонные асимптоты.
Следовательно, - наклонная асимптота при .
3. Определить глобальные экстремумы: при .

Решение.
Известно, что глобальные экстремумы функции на отрезке достигаются или в критических точках, принадлежащих отрезку, или на концах отрезка. Поэтому сначала находим .
.
А затем находим критические точки.
Теперь найдем значение функции на концах отрезка.
.
Сравниваем значения и получаем:
4. Исследовать на монотонность, найти локальные экстремумы и построить эскиз графика функции: .

Решение.
Сначала находим .
.
Затем находим критические точки.
x
-3
0
-
0
+
0
+
убывает
min
возрастает
возрастает
возрастает
Отсюда следует, что функция
возрастает при ,
убывает при .
Точка - локальный минимум.
5. Найти промежутки выпуклости и точки перегиба функции: .

Решение
Чтобы найти промежутки выпуклости и точки перегиба, найдем вторую производную функции.
.
.
.
x
-2
1
-
0
-
0
+
вогнутая
перегиб
выпуклая
перегиб
вогнутая
Отсюда следует, что функция
выпуклая при ,
вогнутая при .
Точки , - точки перегиба.

2. Дифференциальное исчисление функций и его приложение»

1. Провести полное исследование свойств и построить эскиз графика функции .

Решение.
1) Область определения функции
.
2) Функция не является четной или нечетной, так как
.
3) Теперь найдем точки пересечения с осями:
а) с оx: , б) с oy .
4) Теперь найдем асимптоты.
а)
А значит, является вертикальной асимптотой.
б) Теперь найдем наклонные асимптоты
Отсюда следует, что
является наклонной асимптотой при . и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.