Здесь можно найти учебные материалы, которые помогут вам в написании курсовых работ, дипломов, контрольных работ и рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

 

Повышение оригинальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение оригинальности любого файла в формате MS Word. После такого повышения оригинальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, РУКОНТЕКСТ, etxt.ru. Программа «StudentHelp» работает по уникальной технологии так, что на внешний вид, файл с повышенной оригинальностью не отличается от исходного.

Результат поиска


Наименование:


реферат Цифровые рентгенографические системы

Информация:

Тип работы: реферат. Добавлен: 03.05.2013. Год: 2013. Страниц: 8. Уникальность по antiplagiat.ru: < 30%

Описание (план):


СОДЕРЖАНИЕ

ЦИФРОВЫЕ РЕНТГЕНОГРАФИЧЕСКИЕ  СИСТЕМЫ 

ЦИФРОВАЯ ЛЮМИНЕСЦЕНТНАЯ РЕНТГЕНОГРАФИЯ (ЦЛР)

СЕЛЕНОВАЯ РЕНТГЕНОГРАФИЯ

АВТОМАТИЧЕСКИЙ АНАЛИЗ ИЗОБРАЖЕНИЯ

СПИСОК ЛИТЕРАТУРЫ

 

ЦИФРОВЫЕ  РЕНТГЕНОГРАФИЧЕСКИЕ СИСТЕМЫ

 
Преобразование традиционной рентгенограммы в  цифровой  массив  с последующей возможностью обработки рентгенограмм методами вычислительной техники стало распространенным процессом. Такие аналоговые системы зачастую имеют очень жесткие ограничения на экспозицию из-за малого динамического диапазона рентгеновской пленки.  В отличие от аналоговых прямые цифровые  рентгенографические  системы позволяют получать диагностические изображения без промежуточных носителей, при любом необходимом уровне дозы, причем это изображение можно обрабатывать и отображать самыми различными способами.
На рис.1 приведена схема типичной  цифровой  рентгенографической системы. Рентгеновская трубка  и приемник  изображения сопряжены с компьютером и управляются им,  а получаемое изображение запоминается, обрабатывается (в  цифровой форме) и отображается на телеэкране,  составляющем часть пульта управления (или устройства вывода данных)  оператора-рентгенолога.
Аналогичные пульты управления можно  применять и в других системах получения изображения, например на основе ядерного магнитного резонанса или компьютерной томографии. Цифровое изображение можно записать на магнитном носителе,  оптическом диске или же на специальном записывающем устройстве,  способном  постоянно вести регистрацию изображения на пленку в аналоговой форме.
В  цифровой  рентгенологии  могут  найти применение два класса приемников изображения:  приемники  с  непосредственным  формированием изображения и  приемники с частичной регистрацией изображения, в которых полное изображение  формируется путем сканирования либо рентгеновским пучком, либо  приемным устройством (сканирующая проекционная рентгенография).

Рис.1 Составные элементы цифровой системы получения рентгеновских изображений
 
В цифровой рентгенографии применяют  усилитель изображения, ионографическую камеру и устройство с вынужденной люминисценцией. Эти приемники могут непосредственно формировать цифровые изображения без промежуточной регистрации и хранения.  Усилители изображения не обладают наилучшим пространственным разрешением или контрастом,  однако  имеют высокое быстродействие. Аналого-цифровое преобразование флюорограммы с числом точек в изображении 512х512 может занимать время менее 0,03  с. Даже при  числе  точек  2048х2048  в  изображении время преобразования изображения в цифровую форму составляет всего несколько секунд.  Время считывания изображения  с пластины с вынужденной люминисценции или ионографической камеры значительно больше,  хотя последнее выгодно отличается лучшим разрешением и динамическим диапазоном.
Записанное на фотопленке изображение можно преобразовать в цифровую форму с помощью сканирующего микроденситометра,  но любая информация, зафиксированная на фотопленке со  слишком малой или,  наоборот, слишком высокой оптической  плотностью,  будет искажена из-за влияния характеристик пленки.  В цифровую форму можно преобразовать  и  ксеро- рентгенограмму также с помощью сканирующего денситометра,  работающего в отраженном свете,  или путем непосредственного считывания зарядового изображения с селеновой пластины.
В России  прямая  цифровая  рентгенографическая система Института ядерной физики (ИЯФ) СО РАН применяется в нескольких клинических больницах. В этой системе рентгеновская пленка как регистратор рентгеновского излучения заменена многопроволочной пропорциональной камерой. Такая камера  вместе  с электронными схемами усиления и формирования импульсов представляет собой линейку на 256 практически независимых каналов, имеющих чувствительную поверхность 1х1 мм. (В последних моделях 350 каналов и 0,5х0,5 мм.) Использование в счетчиках в качестве  рабочего газа  ксенона  при давлении 3 кгс/см2 обеспечивает высокую эффективность регистрации излучения.  Эта система может быть  отнесена  к классу ионографических приборов для цифровой рентгенографии,  передающих изображение на внешние устройства отображения.
В других цифровых рентгенографических  системах используют твердотельные  приемники с высоким  коэффициентом  поглощения  рентгеновского излучения.
В обоих разновидностях упомянутых рентгенографических систем применяется  метод сканирования с построчной регистрацией изображения, которое воспроизводится в целое на дисплее компьютера (сканирующая  проекционная рентгенография).
Ко второму классу цифровых рентгенографических  систем следует отнести люминофоры с памятью и вынужденной люминисценцией, которая затем регистрируется. Это приемник с непосредственным формированием  изображения.
Системы получения изображения  со сканированием рентгеновским  пучком и приемником имеют важное преимущество, состоящее в том, что  в них хорошо подавляется рассеяние. В этих системах один коллиматор располагается перед пациентом с целью ограничения первичного рентгеновского пучка до размеров, необходимых для работы приемника, а другой - за пациентом,  чтобы уменьшить рассеяние. На рис.2 изображена линейная сканирующая система для получения цифрового изображения грудной клетки. Приемником в системе является полоска из оксисульфида гадолиния,  считывание информации с которой ведется линейной матрицей из 1024 фотодиодов. Проекционные рентгенограммы синтезируются также сканерами компьютерной томографии и выполняют вспомогательную роль при выделении  соответствующего сечения.
Главным недостатком сканирующих  систем является то,  что  большая  часть полезной  выходной  мощности рентгеновской трубки теряется и  что необходимы большие времена экспозиции (до 10 с).
Матрицы изображения из 512х512 элементов  может быть вполне достаточно для  целей цифровой флюороскопии,  тогда  как система рентгеноскопии грудной  клетки  может  потребовать  матрицы  с  числом  элементов 1024х1024 при размерах  элемента изображения 0,4 мм.
 

Рис.2 Система линейного  сканирования для цифровой  рентгенографии грудной клетки.
 
 

Рис.3 Принципиальная схема  взаимодействия элементов системы  получения, обработки, хранения и передачи рентгеновских диагностических изображений.
 
Число градаций  в изображении  зависит от медицинского назначения. Аналого-цифрового преобразования на 8  бит,  обеспечивающего  точность 0,4%, вполне  достаточно  для  регистрации  зашумленных изображений или  больших массивов (меньшей ступени градации яркости соответствует больший уровень  шума),  однако  для  ряда приложений может понадобиться и 10-битовый АЦП (точность 0,1%).
Если требуется  быстрый  доступ к информации,  полученной за длительный период времени,  целесообразно  применять оптические диски. Емкость памяти 12-дюймового оптического диска равна примерно 2 гигабайт, что соответствует 1900 изображениям размером 1024х1024 по 8 бит каждое (без сжатия данных). Для считывания с оптического диска может быть использовано автоматическое  устройство  съема,  позволяющее  обеспечить быстрый доступ к любому изображению. Возможность работы со всеми изображениями в цифровой форме весьма привлекательна, а системы, выполняющие это, называются системами хранения и передачи изображения (СПХИ).
На рис.3 изображена принципиальная схема взаимодействия элементов  системы получения,  обработки,  хранения и передачи  рентгеновских  диагностических изображений.
 
АВТОМАТИЧЕСКИЙ АНАЛИЗ ИЗОБРАЖЕНИЯ
В медицинской рентгенологии разработан ряд диагностических методик, основанных на измерениях относительных размеров изображений органов (рентгенокардиометрия). Рентгенометрические методы широко применяются при рентгеновских исследованиях беременных, некоторых костных патологий в педиатрии и в других случаях.
Применение ЭВМ для рентгенометрических  методов во много раз сокращает  трудовые затраты персонала и  повышает точность измерений.
Задача автоматического анализа  медицинских изображений является особенно актуальной в условиях проведения обязательного диспансерного обследования населения. Ее решение должно радикальным образом трансформировать весь процесс "скрининга" (массового профилактического обследования).
Под автоматическим анализом в медицинской  диагностике понимается частный  случай распознавания изображений (автоматическая классификация), т. е. Отнесение изображения к определенному классу или группе, например норма, патология либо конкретный тип патологии. Математическая суть классификации есть отыскание некоторой функции, отображающей множество изображений во множество, элементами которого являются классы или группы изображений.
В большинстве случаев процесс  автоматической классификации проводится в три этапа:
    Предварительная обработка, состоящая в максимальном приближении исследуемого изображения к эталонному или нормализованному. Чаще всего для медицинских изображений это пространственно инвариантные операции, сдвиг, изменение яркости, изменение контраста, квантование и геометрические преобразования (изменение масштаба, поворот оси). Теория этих преобразований хорошо разработана и, как правило, не вызывает трудностей при использовании современных ЭВМ.
    Выделение признаков, при которых функция, представляющее обработанное изображение, подвергается функциональному преобразованию, выделяющему ряд наиболее существенных признаков, которые кодируются действительными числами. Выделение признаков заключается в математических преобразованиях изображения в зависимости от задачи анализа. Это может быть вычитание из эталона, вычитание постоянной составляющей для исключения мешающих теней, дифференцирование или автокорреляция для выделения контура, частотная фильтрация и многие другие. Правильный выбор алгоритма обработки имеет решающее значение для следующего этапа преобразования и представляет наибольшую трудность.
    Классификация признаков. Полученные в результате предыдущей операции наборы действительных чисел, описывающие выделенные признаки, сравниваются с эталонными числами, заложенными в память машины. ЭВМ на основании такого сравнения классифицирует изображение, т. е. относит его к одному из известных видов, например норма или патология. Набор действительных чисел, характеризующих выделенные признаки, при этом можно рассматривать как точку в n-мерном пространстве. Если в это пространство предварительно введены области, занимаемые тем или иным классом в пространстве, называемом пространством признаков, либо, что случается чаще, задана плотность вероятности для каждого класса, появляется возможность с известной вероятностью отнести данное изображение к определенному классу.
Медицинские изображения, получаемые при рентгеновской, изотопной либо ультразвуковой диагностики различны как по характеру их сложности, так  и по виду заложенной в них информации, определяемой прежде всего механизмом взаимодействия используемого вида излучения с органами и тканями. Однако они обладают общих признаков, важных для проблемы автоматической классификации; это прежде всего отсутствие:1) эталона нормы из-за индивидуальных особенностей каждого организма;   2) эталона патологии при огромном разнообразии ее форм.
Указанные два обстоятельства чрезвычайно  затрудняют выполнение двух последних  этапов автоматической классификации  и подчас делают вообще невозможным  решение задачи с помощью современного уровня техники.
Полная автоматическая классификация при дифференциальной диагностике пока еще невозможна. Может быть осуществлен только предварительный отбор по принципу норма–патология, экономически обоснованном лишь для тех случаев, когда проводится массовое диспансерное обследование.

ЦИФРОВАЯ ЛЮМИНЕСЦЕНТНАЯ РЕНТГЕНОГРАФИЯ (ЦЛР)

 
Применяемые в ЦЛР (рис.6) пластины-приемники  изображения после их  экспонирования рентгеновским излучением последовательно,  точка за точкой, сканируются специальным  лазерным устройством,  а возникающий  в процессе лазерного сканирования  световой  пучок трансформируется в цифровой сигнал.

 
Рис. 6  Цифровая люминисцентная рентгенография.
1-генератор; 2-рентгеновская  трубка; 3-пациент; 4-запоминающая пластина; 5-транспортирующее устройство; 6-аналого-цифровой  преобразователь; 7-накопитель изображений;8-видеопроцессор; 9-сеть; 10-цифро-аналоговый преобразователь; 11-монитор; 12-снимок; 13-рентгенолог.
После цифрового усиления контуров и  контрастности элементов изображения  оно  лазерным  принтером печатается на пленке или воспроизводится на телевизионном мониторе рабочей консоли.
Люминесцентные пластины-накопители   выпускаются  в  стандартных  формах рентгеновской пленки,  помещаются вместо обычных  комплектов  "пленка—усиливающий экран"  в кассету и применяются  в обычных рентгеновских аппаратах.
Такая пластина  обладает значительно  большей экспозиционной широтой, чем  общепринятые комбинации пленка-экран, благодаря чему значительно расширяется  интервал  между  недо-  и переэкспонированием. Этим способом можно получать достаточно контрастные изображения даже при резко сниженной экспозиционной дозе, нижним пределом которой является лишь уровень квантового шума. Поэтому даже при рентгенографии в палате  у  постели больного методика ЦЛР гарантирует получения качественного снимка.
При ЦЛР используются цифровые преобразователи, пространственное разрешение которых  выше,  чем у большинства используемых в настоящее время для  обычной  рентгенографии  комбинаций экран-пленка.  Все же особым преимуществом ЦЛР  является передача малоконтрастных  деталей, тогда как передача очень мелких деталей, таких, например, как микрокальценаты в молочной железе,  остается прерогативой  рентгенографии на рентгеновской пленке.
 
 

СЕЛЕНОВАЯ РЕНТГЕНОГРАФИЯ

 

Рис.7 Цифровая селеновая  рентгенография.
1-генератор; 2-рентгеновская трубка; 3-пациент; 4-селеновый барабан; 5-сканирующие электроды и усилитель; 6-аналого-цифровой преобразователь; 7-накопитель изображений; 8-видеопроцессор; 9-сеть; 10-цифро-аналоговый преобразователь; 11-монитор; 12-снимок; 13-рентгенолог.
Селеновые детекторы  представляют собой новейшую систему цифровой рентгенографии (рис. 7).  Основной частью такого устройства служит детектор в  виде  барабана,  покрытого слоем  аморфного селена.  Селеновая  рентгенография в настоящее  время  используется  только  в  системах рентгенографии грудной клетки. Характерная для снимков грудной клетки высокая контрастность между легочными полями и областью средостения при цифровой обработке сглаживается,  не уменьшая при этом контрастности деталей изображения.
Другим преимуществом селенового  детектора является высокий коэффициент  отношения сигнал/шум.
 

АВТОМАТИЧЕСКИЙ АНАЛИЗ ИЗОБРАЖЕНИЯ


и т.д.................


Перейти к полному тексту работы


Скачать работу с онлайн повышением оригинальности до 90% по antiplagiat.ru, etxt.ru


Смотреть полный текст работы бесплатно


Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.