Здесь можно найти учебные материалы, которые помогут вам в написании курсовых работ, дипломов, контрольных работ и рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

 

Повышение оригинальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение оригинальности любого файла в формате MS Word. После такого повышения оригинальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, РУКОНТЕКСТ, etxt.ru. Программа «StudentHelp» работает по уникальной технологии так, что на внешний вид, файл с повышенной оригинальностью не отличается от исходного.

Результат поиска


Наименование:


курсовая работа Теория и техника научного эксперимента

Информация:

Тип работы: курсовая работа. Добавлен: 04.05.2013. Год: 2012. Страниц: 29. Уникальность по antiplagiat.ru: < 30%

Описание (план):


Некоммерческое акционерное  общество
«Алматинский университет энергетики и связи»
 
 
Кафедра ПТЭ
 
 
 
 
 
 
 
Расчетно-графическая работа № 1
 
По дисциплине: «Теория и техника  научного эксперимента»
 
 
 
 
 
 
 
 
Специальность:     6М0717  Промышленная теплоэнергетика
 
Выполнил:         Апсеметов А. А.      Группа    МПТЭн/п-12-1
 
Проверила:        Джаманкулова Н.О.
 
_______________________ «____» __________________2012г. 
 
 
 
 
 
 
 
 
 
 
Алматы 2012
 

Содержание
 
1 Задание 1
2 Выполнение задания  1
3 Задание 2
4 Выполнение задания 2
 
Список литературы
 

Задание 1
 
Ответить на следующие вопросы:
- Основные понятия теории планирования  эксперимента.
- Пассивный и активный эксперимент,  область планирования, план эксперимента,
уровни и интервалы варьирования факторов.
- Планирование регрессионных экспериментов
- Основные критерий оптимальности  планов.
- Задачи оптимизации в экстремальных  экспериментах.
- Полный факторный и дробный  факторный эксперименты.
 

Основные понятия теории планирования эксперимента.
Экспериментальные исследования являются основным источником получения достоверных сведений об объектах реального мира. Такие исследования проводятся с целью выбора рациональных технологических режимов функционирования или оптимизации параметров систем, оценки степени выполнения заданных требований к создаваемым изделиям, выяснения закономерностей функционирования, анализа влияния факторов на показатели качества систем и т.д. Натурные исследования свойств технических средств или сложных моделей требуют значительных затрат ресурсов. Данное обстоятельство заставляет уделять серьезное внимание рациональной организации экспериментального изучения таких объектов.
Теория планирования эксперимента охватывает практически все встречающиеся  на практике варианты исследования объектов. В дальнейшем будут рассмотрены следующие типовые задачи экспериментального исследования:
поиск значений параметров системы, обеспечивающих достижение оптимального значения показателя качества исследуемого объекта при  известных ограничениях на значения этих параметров. Перебор всех допустимых сочетаний значений параметров системы с целью поиска оптимального варианта нерационален по затратам ресурсов. Для решения указанной задачи ТПЭ предлагает такую последовательность проведения опытов, которая позволяет применить градиентные методы поиска при априорно неизвестной функции, связывающей показатель качества с параметрами системы;
приближенное аналитическое описание функциональной связи показателей  качества с параметрами системы  по результатам проведенного эксперимента. Традиционные методики проведения экспериментов из-за зависимости компонентов восстанавливаемого аналитического описания не позволяют определить раздельное влияние каждого фактора на результирующий показатель, т. е. эти методики обеспечивают получение аналитических зависимостей, пригодных лишь для решения интерполяционных задач. В отличие от них ТПЭ дает возможность оценить вклад каждого параметра в значение показателя, т.е. приближенно восстановить закон функционирования объекта по экспериментальным данным. Полученное аналитическое описание объекта можно использовать для предварительного исследования вариантов построения системы или в интересах построения модели старшей системы, включающей данный объект на правах элемента;
оценка дифференциального влияния  уровней параметров системы на показатель качества. Такая задача возникает в случае, когда параметры системы являются по своей природе качественными или когда количественные параметры могут принимать небольшое число различных значений.
Кроме указанных, существуют и других задачи, решаемые с помощью ТПЭ, например:
испытания образцов техники. Планирование должно позволить оценить степень  соответствия показателей качества образцов заданным требованиям при  минимальном объеме испытаний;
отсеивающие эксперименты. Предназначены выявить параметры, незначительно влияющие на показатель качества системы. Соответствующие планы применяют на начальных этапах исследования, когда нет конкретных сведений о влиянии тех или иных параметров. Отсеивание несущественных факторов снижает трудоемкость решения задач оптимизации или приближенного аналитического описания системы;
адаптивное планирование. Применяется  в условиях управления технологическим  процессом, когда система управления все время должна приспосабливаться  к конкретным условиям функционирования, а возможно, и предсказывать дальнейшее развитие процесса.
Решение задач с применением  ТПЭ предусматривает использование  априорной информации об изучаемом  процессе для выбора общей последовательности управления экспериментами, которая уточняется после очередного этапа проведения исследований на основе вновь полученных сведений. Тем самым достигается возможность рационального управления экспериментами при неполном первоначальном знании характеристик исследуемого объекта. Целесообразность применения ТПЭ тем выше, чем сложнее исследуемая система.
В ТПЭ исследуемый объект (реальный объект, модель объекта) рассматривается  как "черный ящик", имеющий входы v(управляемые независимые параметры) и выходы y [3, 6].
Переменные v принято называть факторами. Теория ПЭ изучает только активный тип экспериментов, когда имеется возможность независимо и целенаправленно менять значения факторов v во всем требуемом диапазоне. Факторы в эксперименте бывают качественными и количественными. Качественные факторы можно квантифицировать или приписать им числовые обозначения, тем самым перейти к количественным значениям. В дальнейшем будем считать, что все факторы являются количественными и представлены непрерывными величинами (если другое не оговорено особо). Переменным vможно сопоставить геометрическое понятие факторного пространства – пространства,  координатные оси которого соответствуют значениям факторов. Совокупность конкретных значений всех факторов образует точку в многомерном факторном пространстве. Примерами факторов являются: интенсивность потока запросов к базе данных, скорость передачи данных по каналу, объем запоминающего устройств. Кроме того, на объект воздействуют возмущающие факторы, они являются случайными и не поддаются управлению.
Область планирования задается интервалами возможного изменения факторов vi,min< vi < vi,max  для i =1, 2, …, k, где k – количество факторов. В теории ПЭ часто используют нормализацию факторов, т.е. преобразование натуральных значений факторов в безразмерные (кодированные) величины. Переход к безразмерным значениям xi задается преобразованием
xi = (vi – vi0)/Dvi,

где vi – натуральное значение фактора, vi0 – натуральное значение основного уровня фактора, соответствующее нулю в безразмерной шкале,  Dvi – интервал варьирования. Совокупность основных уровней всех факторов представляет собой точку в пространстве параметров, называемую центральной точкой плана или центром эксперимента. С геометрической точки зрения нормализация факторов равноценна линейному преобразованию пространства факторов, при котором проводятся две операции: перенос начала координат в точку, соответствующую значениям основных уровней факторов; сжатие – растяжение пространства в направлении координатных осей.
Активный эксперимент  включает: систему воздействий, при которых воспроизводится функционирование объекта; регистрацию отклика объекта. План эксперимента задает совокупность данных, определяющих количество, условия и порядок реализации опытов. Опыт составляет элементарную часть эксперимента и предусматривает воспроизведение исследуемого явления в конкретных условиях с последующей регистрацией результата. В условиях случайности в одних и тех же условиях проводятся параллельные (повторные) опыты в интересах получения статистически устойчивых результатов. Опыт uпредполагает задание конкретных значений факторам v u = v1u, v2u, …,  vku, а совокупность значений факторов во всех Nточках плана эксперимента образует матрицу плана
v11, v21, …,  vk1
v12, v22, …,  vk2
.     .     .     .     .
v1N, v2N, …,  vkN .

Строки матрицы соответствуют  опытам, столбцы – факторам, элемент  матрицы viz задает значение z-го фактора в i-м опыте.
Вектор y называется откликом. В ТПЭ обычно изучается ситуация, в которой вектор отклика y состоит из одного элементаy. При наличии нескольких составляющих вектора y, каждую из них можно исследовать отдельно. Зависимость отклика от факторов носит название функции отклика, а геометрическое представление функции отклика – поверхности  отклика. Функция отклика рассматривается как показатель качества или эффективности объекта. Этот показатель является функцией от параметров – факторов. На практике широкое распространение получили простые функции вида М{y'} = bf(v), где b=(b0, b1, …,bh) – вектор неизвестных параметров модели размерности h+1, f(v)=(f0(v), f1(v), …, fh(v)) – вектор заданных базисных функций, М{y'} – математическое ожидание функции отклика. Такое представление функции отклика соответствует линейной по параметрам модели регрессионного анализа, т.е. функция отклика есть линейная комбинация базисных функций от факторов.
Вследствие влияния на результаты экспериментов случайных воздействий  истинные значения коэффициентов можно  определить только приближенно. Оценку b = (b0, b1, …, bh) вектора неизвестных параметров b находят по результатам экспериментов, в ходе которых получают значения yu при заданных значениях факторов vu. Эти оценки обычно рассчитываются с помощью метода наименьших квадратов (МНК) на основе выборок значений факторов и откликов системы на воздействия [8]. В качестве оценки b вектора b выбирается такое значение, которое минимизирует
,
где y'u – вычисленное на модели значение функции отклика в u-й точке факторного пространства. Приравнивая нулю частные производные от данной квадратичной формы, взятые по переменным b0, b1, …, bh, можно получить систему уравнений вида
,
где i= 0, 1, 2, …, h. Значение b находят путем решения этой системы уравнений. Решение системы возможно при линейной независимости базисных функций.
Если не принимать специальных  мер, то оценки коэффициентов b станут взаимозависимыми, и полученное выражение для функции отклика можно рассматривать только как интерполяционную формулу, что затрудняет ее физическую интерпретацию и последующие расчеты. Однако, формируя специальным образом матрицу плана, можно получить независимые значения b. И эти величины будут характеризовать вклад каждого фактора в значение функции отклика.
Итак, задача заключается в определении  общей формы записи функции отклика y'. В большинстве случаев вид этой функции, получаемый из теоретических соображений, является сложным для практического применения, а при неполном знании объекта вообще неизвестен. По данным причинам функцию целесообразно представить в универсальном, удобном для практического применения виде, чему соответствует представление в виде полинома. Тогда системой базисных функций является совокупность степенных функций с целыми неотрицательными значениями показателей степени. Полиномиальная форма представления функции отклика примет вид
y' = b0 + b1x1 + …+ bkxk + b12x1x2 + b13x1x3+…
+bk–1,k xk–1xk + +b11x21 + …+bkkx2k + … + e,

где e – случайная  величина, характеризующая ошибку опыта.
Такая функция отклика линейна  относительно неизвестных коэффициентов  и будет полностью определена, если заданы степень полинома и коэффициенты. Степень полинома обычно задается исследователем априорно и уточняется в ходе исследования. На практике наибольшее распространение получили полиномы первого и второго порядка, соответственно линейные и квадратичные модели. Коэффициенты полинома принято называть эффектами факторов.
Иногда функцию отклика целесообразно представить в другом виде, например, в виде степенной функции, так как достижение заданной точности требует применения полинома высокого порядка. Однако использование функций, нелинейных относительно неизвестных параметров, усложняет вычисления, затрудняет оценку их свойств. В некоторых случаях задачу можно упростить путем искусственного преобразования нелинейной функции в линейную. При этом требуется соответствующее преобразование и результатов экспериментов.
Применение ТПЭ основано на ряде допущений, а именно [2, 6]:функция отклика содержит в своем составе неслучайную и случайную составляющую. Многие показатели качества автоматизированных систем обработки информации носят случайный характер. Это требует многократного повторения опытов в одних и тех же условиях в целях получения статистически устойчивых результатов, а получаемые оценки показателей должны обладать свойствами состоятельности, эффективности, несмещенности и достаточности. Оценки типовых показателей формируются путем усреднения результатов наблюдений. Поэтому при достаточно большом количестве наблюдений можно считать, что случайная составляющая e распределена по нормальному закону с нулевым математическим ожиданием, что позволяет получить несмещенную оценку математического ожидания функции отклика в конкретной точке плана. Будем также считать, что величина e имеет дисперсию, не зависящую от значений факторов. Иначе говоря, результаты, полученные путем усреднения повторных опытов в каждой точке плана, представляют собой независимые, нормально распределенные случайные величины;
Факторы v1, v2, …,  vk измеряются с пренебрежимо малой ошибкой по сравнению с ошибкой в определении величины y(учет помех в задании факторов приводит к трудно разрешимым проблемам в оценке коэффициентов функции отклика). Ошибка в определении значения функции отклика объясняется не столько погрешностью измерений, сколько влиянием на результат работы системы неучтенных или случайных факторов, например различиями в формируемой последовательности случайных чисел при статистическом моделировании;
Дисперсии среднего значения функции отклика  в различных точках равны друг другу (выборочные оценки дисперсии однородны). Это означает, что при многократных повторных наблюдениях над величиной yu при некотором наборе значенийv1u, v2u, …,  vku, получаемая оценка дисперсии среднего значения не будет отличаться от оценки дисперсии, полученной при многократных наблюдениях для любого другого набора значений независимых переменных v1s, v2s, …,  vks.
Указанные допущения позволяют  использовать для расчетов коэффициентов полинома МНК, который дает эффективные и несмещенные оценки коэффициентов и обеспечивает простоту проведения самих расчетов. Применение МНК, вообще говоря, не требует соблюдения нормального распределения результатов наблюдения. Этот метод в любом случае дает решение, минимизирующее сумму квадратов отклонений результатов наблюдения от значений функции отклика. Допущение  о нормальном распределении используется при проведении различного рода проверок, например, при проверке адекватности функции отклика и экспериментальных данных. Естественно, что точность оценок коэффициентов функции отклика повышается с увеличением числа опытов, по которым вычисляются коэффициенты.
 
 
 
 
 
Пассивный и активный эксперимент, область планирования, план эксперимента, уровни и интервалы варьирования факторов.
 
Теория предполагает, что эксперимент  может быть пассивным и активным.
При пассивном эксперименте информация об исследуемом объекте накапливается путем пассивного наблюдения, то есть информацию получают в условиях обычного функционирования объекта. Активный эксперимент проводится с применением искусственного воздействия на объект по специальной программе.
При пассивном эксперименте существуют только факторы в виде входных  контролируемых, но неуправляемых переменных, и экспериментатор находится в положении пассивного наблюдателя. Задача планирования в этом случае сводится к оптимальной организации сбора информации и решению таких вопросов, как выбор количества и частоты измерений, выбор метода обработки результатов измерений.
Наиболее часто целью пассивного эксперимента является построение математической модели объекта, которая может рассматриваться  либо как хорошо, либо как плохо  организованный объект. В хорошо организованном объекте имеют место определенные процессы, в которых взаимосвязи входных и выходных параметров устанавливаются в виде детерминированных функций. Поэтому такие объекты называют детерминированными. Плохо организованные или диффузные объекты представляют собой статистические модели. Методы исследования с использованием таких моделей не требуют детального изучения механизма процессов и явлений, протекающих в объекте.
Примером пассивного эксперимента может быть анализ работы схемы, которая  не имеет входов, только выходы, и  повлиять на ее работу невозможно.
Хорошим примером пассивного эксперимента с диффузным объектом являются измерения  метеорологических параметров (температуры, скорости ветра и т.д.) при природных  катаклизмах.
Активный эксперимент позволяет быстрее и эффективнее решать задачи исследования, но более сложен, требует больших материальных затрат и может помешать нормальному ходу технологического процесса. Иногда отсутствует возможность проведения активного эксперимента (например, при исследовании явлений природы). Тем не менее, учитывая преимущества активного эксперимента, тогда, когда это возможно, предпочтение отдают ему.
При активном эксперименте факторы  должны быть управляемыми и независимыми.
Активный эксперимент предполагает возможность воздействия на ход  процесса и выбора в каждом опыте уровней факторов. При планировании активного эксперимента решается задача рационального выбора факторов, существенно влияющих на объект исследования, и определения соответствующего числа проводимых опытов. Увеличение числа включенных в рассмотрение факторов приводит к резкому возрастанию числа опытов, уменьшение - к существенному увеличению погрешности опыта. Фактор считается заданным только тогда, когда при его выборе указывается его область определения – совокупность значений, которые может принимать данный фактор. В эксперименте используется ограниченная часть области определения, задаваемая обычно в виде дискретного множества уровней. Выбранные факторы должны быть однозначно управляемыми и операциональными, то есть поддающимися регулированию с поддержанием на заданном уровне в течение всего опыта при соблюдении последовательности необходимых для этого действий. Должна быть назначена также точность измерения факторов в выбранном диапазоне измерения.
Совокупности факторов должны отвечать требованиям совместимости и независимости. Соблюдение первого требования означает, что все комбинации факторов осуществимы и безопасны, второго - возможность установления фактора на любом уровне независимо от уровней других факторов.
План эксперимента – совокупность данных определяющих число, условия и порядок проведения опытов.
Планирование эксперимента – выбор  плана эксперимента, удовлетворяющего заданным требованиям, совокупность действий направленных на разработку стратегии  экспериментирования (от получения  априорной информации до получения работоспособной математической модели или определения оптимальных условий). Это целенаправленное управление экспериментом, реализуемое в условиях неполного знания механизма изучаемого явления.
В процессе измерений, последующей обработки данных, а также формализации результатов в виде математической модели, возникают погрешности и теряется часть информации, содержащейся в исходных данных. Применение методов планирования эксперимента позволяет определить погрешность математической модели и судить о ее адекватности. Если точность модели оказывается недостаточной, то применение методов планирования эксперимента позволяет модернизировать математическую модель с проведением дополнительных опытов без потери предыдущей информации и с минимальными затратами.
Цель планирования эксперимента –  нахождение таких условий и правил проведения опытов при которых удается  получить надежную и достоверную  информацию об объекте с наименьшей затратой труда, а также представить  эту информацию в компактной и удобной форме с количественной оценкой точности.
Пусть интересующее нас свойство (Y) объекта зависит от нескольких (n) независимых переменных (Х1, Х2, …, Хn) и мы хотим выяснить характер этой зависимости - Y=F(Х1, Х2, …, Хn), о которой  мы имеем лишь общее представление. Величина Y – называется “отклик”, а сама зависимость Y=F(Х1,Х2, …, Хn) – “функция отклика”.
Отклик должен быть определен количественно. Однако могут встречаться и качественные признаки Y. В этом случае возможно применение рангового подхода. Пример рангового подхода - оценка на экзамене, когда одним числом оценивается сложный комплекс полученных сведений о знаниях студента.
Независимые переменные Х1, Х2, …, Хn –  иначе факторы, также должны иметь  количественную оценку. Если используются качественные факторы, то каждому их уровню должно быть присвоено какое-либо число. Важно выбирать в качестве факторов лишь независимые переменные, т.е. только те которые можно изменять, не затрагивая другие факторы. Факторы должны быть однозначными. Для построения эффективной математической модели целесообразно провести предварительный анализ значимости факторов (степени влияния на функцию), их ранжирование и исключить малозначащие факторы.
Диапазоны изменения факторов задают область определения Y. Если принять, что каждому фактору соответствует координатная ось, то полученное пространство называется факторным пространством. При n=2 область определения Y представляется собой прямоугольник, при n=3 – куб, при n >3 - гиперкуб.
Для планов второго порядка область  планирования может:
Быть естественной, то есть включать область планирования планов первого  порядка и дополнительные точки (такие планы называются композиционными). Дополнительные точки могут выходить за область плана первого порядка  – единичного гиперкуба. В этом случае опыты в них реализуются при установлении факторов за пределами варьирования. Это надо учитывать при определении области совместимости факторов.
Не выходить за пределы единичного гиперкуба, то есть для всех точек  плана выполняется условие .
Не выходить за пределы единичного гипершара, определяемую соотношением таких значений факторов в плане, что .
Во втором и третьем случаях  используют специальные приемы выполнения приведенных соотношений в плане. План с одной областью планирования можно перестроить в план другой областью планирования.
Если уже был ранее сформирован  план ПФЭ, но точность его функции  отклика не удовлетворяет, то мы можем  достроить этот план до плана второго  порядка (композиционный план) и сформировать функцию отклика в виде полного квадратичного полинома, без потери информации о ранее сделанных опытах.
Регрессионный анализеримент наименьший кВ
 
Как только мы начинаем говорить о пригодности модели или о  значимости коэффициентов, приходится вспоминать о статистике: и с этого  момента МНК превращается в регрессионный анализ.
Регрессионный анализ, как  всякий статистический метод, применим при определенных предположениях, постулатах:
Постулат № 1. Параметр оптимизации есть случайная величина с нормальным законом распределения. Дисперсия воспроизводимости - одна из характеристик этого закона распределения.
Постулат № 2. Дисперсия  не зависит от абсолютной величины .
Постулат № 3. Значения факторов суть не случайные величины. Это утверждение практически означает, что установление каждого фактора на заданный уровень и его поддержание существенно точнее, чем ошибка воспроизводимости.
Проверка адекватности модели. Проверка на пригодность полученной модели (проверка адекватности) начинают с вычисления остаточной дисперсии, то есть дисперсии адекватности .
 
   (1.4)
 
где - число опытов (МПЭ),
- число коэффициентов модели.
- разность между реальным значением и предсказанным по модели.
Числом степеней свободы  в статистике называется разность между  числом опытов и числом коэффициентов (констант), которые уже вычислены  по результатам этих опытов независимо друг от друга.
Например, проведен полный фактический эксперимент и нашли линейное уравнение регрессии,
.
Примечание: Параллельные опыты нельзя считать самостоятельными, так как они дублируют друг друга. В связи с этим, они все  дают одну степень свободы.
Необходимо запомнить правило: в планировании эксперимента число степеней свободы для равно числу различных опытов, результаты которых используются при подсчете коэффициентов регрессии, минус число определяемых коэффициентов.
В статистике разработан критерий, который очень удобен для проверки гипотезы об адекватности модели. Он называется F критерием Фишера и определяется:
,     (1.5)
где - дисперсия адекватности;
- дисперсия воспроизводимости.
Удобство использования  - критерия состоит в том, что проверку гипотезы можно свести к сравнению с табличным значением. Таблица построена следующим образом. Столбцы связаны с определенным числом степеней свободы для числителя строки для знаменателя . На пересечении соответствующих строки и столбца стоят критические значения - критерия. Как правило, в технических задачах используется уровень значимости 0,05.
Если рассчитанное значение -критерия не превышает табличного, то с соответствующей доверительной вероятностью модель можно считать адекватной. При превышении табличного значения гипотеза отвергается. Для запишем общую формулу:
,      (1.6)
где - число опытов;
- число параллельных опытов в  -ой строке матрицы;
- среднее арифметическое из  , параллельных опытов;
- предсказанное по уравнению  регрессии значение в этом  опыте.
 
Задачи оптимизации  в экстремальных экспериментах
 
Эксперимент, который  ставится для решений задач оптимизации, называется экстремальным. Примерами задач оптимизации являются выбор оптимального состава многокомпонентных смесей, повышение производительности действующей установки, повышение качества продукции и снижение затрат на её получение. Прежде чем планировать эксперимент необходимо сформулировать цель исследования. От точной формулировки цели зависит успех исследования. Необходимо также удостовериться, что объект исследования соответствует предъявляемым ему требованиям. В технологическом исследовании целью исследования при оптимизации процесса чаще всего является повышение выхода продукта, улучшение качества, снижение себестоимости.
Параметр оптимизации – это признак, по которому мы хотим оптимизировать процесс. Он должен быть количественным, задаваться числом. Множество значений, которые может принимать параметр оптимизации, называется областью его определения. Области определения могут быть непрерывными и дискретными, ограниченными и неограниченными. Например, выход реакции – это параметр оптимизации с непрерывной ограниченной областью определения. Он может изменяться в интервале от 0 до 100%. Число бракованных изделий, число кровяных телец в пробе крови – вот примеры параметров с дискретной областью определения, ограниченной снизу.
Требования  к параметру оптимизации. Уметь измерять параметр оптимизации – это значит располагать подходящим прибором. В ряде случаев такого прибора может не существовать или он слишком дорог. Если нет способа количественного измерения результата, то приходится воспользоваться приемом, называемым ранжированием (ранговым подходом). При этом параметрам оптимизации присваиваются оценки – ранги по заранее выбранной шкале: двухбалльной, пятибалльной и т.д. Ранговый параметр имеет дискретную ограниченную область определения. В простейшем случае область содержит два значения (да, нет; хорошо, плохо). Это может соответствовать, например, годной продукции и браку.
Ранг – это количественная оценка параметра оптимизации, но она  носит условный (субъективный) характер. Мы ставим в соответствие качественному  признаку некоторое число – ранг. Для каждого физически измеряемого параметра оптимизации можно построить ранговый аналог. Потребность в построении такого аналога возникает, если имеющиеся в распоряжении исследователя численные характеристики неточны или неизвестен способ построения удовлетворительных численных оценок. При прочих равных условиях всегда нужно отдавать предпочтение физическому измерению, так как ранговый подход менее чувствителен и с его помощью трудно изучать тонкие эффекты.
Еще одно требование, связанное  с количественной природой параметра  оптимизации, – однозначность в статистическом смысле. Заданному набору значений факторов должно соответствовать одно с точностью до ошибки эксперимента значение параметра оптимизации.
Для успешного достижения цели исследования необходимо, чтобы  параметр оптимизации действительно оценивал эффективность функционирования системы в заранее выбранном смысле. Это требование является главным, определяющим корректность постановки задачи.
Представление об эффективности  не остается постоянным в ходе исследования. Оно меняется по мере накопления информации и в зависимости от достигнутых результатов. Это приводит к последовательному подходу при выборе параметра оптимизации. Так, например
и т.д.................


Перейти к полному тексту работы


Скачать работу с онлайн повышением оригинальности до 90% по antiplagiat.ru, etxt.ru


Смотреть полный текст работы бесплатно


Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.