Здесь можно найти учебные материалы, которые помогут вам в написании курсовых работ, дипломов, контрольных работ и рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение оригинальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение оригинальности любого файла в формате MS Word. После такого повышения оригинальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, РУКОНТЕКСТ, etxt.ru. Программа «StudentHelp» работает по уникальной технологии так, что на внешний вид, файл с повышенной оригинальностью не отличается от исходного.

Результат поиска


Наименование:


Реферат/Курсовая Измерение параметров витой пары

Информация:

Тип работы: Реферат/Курсовая. Добавлен: 05.05.13. Год: 2012. Страниц: 9. Уникальность по antiplagiat.ru: < 30%

Описание (план):


Лист  замечаний: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Измерение параметров витой  пары
Несмотря  на первоочередное физическое значение основных электрических параметров, использовать их для реальной оценки качества среды передачи не целесообразно. Тем более, исторически сложилось, что для оценки качества передачи требуется знать только соотношение  двух базовых параметров - сигнала  и шума. Это достаточно логично, ведь для корректной интерпретации принятого  сигнала не важно абсолютное значение амплитуды, она может составлять и 0,001 В, и 1000 В. Необходимо, что бы полезный сигнал был различим на фоне шума (превышал уровень помех).
Поэтому нормируются производителем и определяются при тестировании линии именно те параметры, с помощью которых  можно легко сопоставить уровни сигнала и шума. При этом в качестве основной единицы измерения выбраны  Децибелы (дБ).
Это условное обозначение, позволяющее сравнивать и количественно оценивать уровни сигналов, относящиеся к процессам  в различных средах и измеряемым в различных единицах. Важно помнить, что децибелы определяют отношение  уровней, а не абсолютную величину, и для преобразования в них  применяется следующая формула: Х(дБ) = 20*log10(P1/P2), где P1 и P2 - два сравниваемых значения.
Рассмотрим  наиболее важные из параметров, определяющих физические свойства линии передачи данных. Наиболее существенное влияние  на них оказывает затухание (ослабление) - отношение мощности сигнала на выходе из передатчика к мощности сигнала на входе в приемник той  же линии. Обуславливает постепенную  потерю энергии сигнала в среде  передачи, в результате которой мощность полезного сигнала уменьшается.
A = 20*log10 (Р передатчика / Р приемника)
Для оценки качества кабеля часто используется коэффициент затухания alfa, который отражает ослабление сигнала на единицу длины:
alfa(дБ/метр) = А (дБ) / L (м), где L - длина кабеля.
Нужно различать собственное (в идеальных  условиях), и рабочее затухание  кабеля. Наименьшим оно будет в  случае равенства волнового сопротивления  источника сигнала, приемника, и  самого кабеля (отражение электромагнитной энергии будет отсутствовать). Иначе  говоря, должна быть обеспечена согласованная  нагрузка.
Так как  затухание прямо пропорционально  сопротивлению витой пары, то из рисунка 7.7. следует вывод, что оно  растет по мере увеличения частоты  сигнала, постепенно стабилизируясь на высоких частотах.
К сожалению, затухание далеко не полностью описывают  картину прохождения сигнала  по реальному кабелю. При передаче сигналов по неидеальной витой паре, часть энергии рассеивается в  окружающем пространстве в виде электромагнитных волн (а не только в виде тепла). Причем, чем больше будет отличаться от идеальной витая пара (будет разбалансированной), тем больше будет энергия такого излучения.
Если  в непосредственной близости от таких  проводников будут находиться другие, то в них возникнет наведенный ток. Этот эффект получил название переходных наводок - отношение мощности наведенного  сигнала к основному. А разность между ним и передаваемым сигналом, соответственно, считается переходным затуханием.

Рис. 7.8. Переходные наводки
Необходимо  различать NEXT (Near End Crosstalk) - переходное затухание двунаправленной передачи, и FEXT (Far End Crosstalk) - переходное затухание однонаправленной передачи (английское слово Cross часто сокращают как Х). Надо отметить, что дословно NEXT означает перекрестные наводки на ближнем, а FEXT - на дальнем конце кабеля.
Таким образом, в зависимости от типа передачи (или от места измерения, по другой трактовке), можно применять следующие  соотношения: NEXT (FEXT) = 20*log10 (Pс/Рн), где Рс - мощность сигнала, а Рн - мощность сигнала, наведенная на другой витой паре).
Связана такая серьезная терминологическая  путаница с тем, что 10/100baseT имеет  одну пару на передачу, а другую на прием. При этом понятие однонаправленных наводок не имеет практического смысла (как не имеет смысла понятие наводки на источник сигнала). Естественно, первоначальные определения давались по принципу "как проще", потом они "устоялись" в нормативах, документации, технологическом оборудовании, и изменить их стало практически невозможно.
Таким образом, чем выше NEXT и FEXT, тем меньше уровень имеет наводка в соседних парах, и тем выше качество кабеля. Это объясняет выбор в качестве базового такого неочевидного параметр, как перекрестное затухание (а не более понятной инженерам наводки). Из маркетинговых соображений, лучший кабель не должен иметь более низкие числа в малопонятных неспециалистам характеристиках.
Вполне  закономерно, что наводки зависят  от частоты, так как параллельно  идущие проводники можно рассматривать  как обкладки конденсатора. Стандарт EIA/TIA-568A нормирует минимально допустимые значения для переходного затухания  двунаправленной передачи (при кабеле 100 метров длиной) по следующей формуле:
NEXT(f) = NEXT(0,772) - 15*log10(f/0,772), где NEXT(0,772) - минимально допустимое переходное затухание двунаправленной передачи на частоте 0,772 МГц (составляет 43 дБ для кабеля 3 категории, и 64 дБ для 5 категории), а f (МГц) - частота сигнала.
На основе описанных параметров несложно вывести  критерии, напрямую показывающие соотношение  сигнал/шум (а значит, и качество линии) в логарифмическом виде. В  кабельных системах для этого  используется следующая пара параметров. ACR (attenuation to crosstalk ratio), дословно переводится как "отношение затухания к наводкам", и ELFEXT (equal level far end crosstalk) - "равноуровневые наводки на дальнем конце". Эти параметры не определяются путем измерений, а рассчитываются по следующим формулам:
ACR = NEXT - A, ELFEXT = FEXT - А.
Физический  смысл ACR достаточно прост - это превышение сигнала над уровнем собственных  шумов при двунаправленной передачи сигналов, а ELFEXT - однонаправленной.
Так как  основным видом помех в кабелях  компьютерных сетей являются наводки, то использование параметра ACR позволяет  однозначно определить верхнюю границу  частоты электрического тракта передачи (либо любой его части). Считается, что среда передачи может обеспечить устойчивую полнодуплексную работу любого приложения с такой граничной  частотой, на которой параметр ACR составляет 10 дБ.

Рис. 7.9. Граничная частота среды передачи
Приведенный график очень наглядно показывает картину  возможности приема сигнала заданной частоты от параметров кабеля. Особенно хорошо это видно для нестандартных  кабелей, и в следующих главах к этой иллюстрации мы еще не раз  вернемся.
Для иллюстрации, рассмотрим стандартный кабель длиной 100 метров в сети 100baseT. По нормам, затухание  не должно превышать 24 дБ. В десятичных величинах это значит уменьшение сигнала в 251 раз. Уровень наводок  на входе в приемник для комбинации худших пар ограничен величиной 27,1 дБ. Это значит, что мощность наводок  в 513 раз меньше мощности сигнала  передатчика смежной пары. Сигнал превышает наводки на 3,1 дБ или  в 2,04 раза.
Есть  еще несколько параметров, которые  действующими стандартами не нормируются, но на высокоскоростную передачу данных могут влиять.
Прежде  всего, это относительная скорость распространения сигналов (NVP, Nominal Vilocity of Propagation), выражающее в процентах замедление сигналов в витой паре относительно скорости света в вакууме. Параметр может оказаться важен для корректной работы высокоскоростных приложений. Так же рефлектометры его используют для определения расстояния до аномалии.
Задержка (Delay) в передаче сигнала по одному кабелю, определяется разной электрической длиной пар с разным шагом скрутки и разным материалом изоляции. Для протоколов 10/100baseT это практически не имеет значения, но уже для 1000baseT некоторые специфические виды кабелей (например, с разным материалом диэлектрика в парах) могут вызвать серьезное рассогласование сигнала.
В заключение раздела нужно сказать, что с  увеличением скоростей передачи данных, все большее количество параметров приходится принимать во внимание при  построении сетей. Описанных вполне достаточно для 10/100/1000baseT. Но, к сожалению, это не значит, что для следующих  протоколов не придется учитывать еще  какие-либо особенности электрической  среды, образуемой витопарным кабелем. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Нахождение волнового  сопротивления 
 При измерении емкости  
 

Рис.1
1.Зеленая пара , 2.Синяя  пара ,3. Оранжевая пара,  4. коричневая  пара
Результаты измерения 
1.Для зеленой пары 
С=1053,3  ПФ
2.Для Оранжевой  пары
С=1091,8  ПФ
3.Для коричневой  пары
С=1106,8  ПФ
4.Для синей пары
С=1078,2  ПФ
При измерении индуктивности 
 

Рис.2 

1.Зеленая пара , 2.Синяя  пара ,3. Оранжевая пара,  4. коричневая  пара
Результаты  измерения 
1.Для зеленой пары 
L=13.14  МГн
2.Для Оранжевой  пары
L=13.31  МГн
3.Для коричневой  пары
L=13.37  МГн
4.Для синей пары
L=13.01  МГн
Обработка Результатов
Замечание : Длина витой пары 20 метров
Zв = 
1.Для зеленой пары        Zв =111.7  ОМ
2.Для Оранжевой  пары          Zв =112.43  ОМ
3.Для коричневой  пары      Zв =109.9  ОМ
4.Для синей пары       Zв =109.85  ОМ
Измерение NEXT для разных пар
Комбинация  №1

Рис.3 
 

Частота   F,  КГц Входное напряжение Uвх   ,В Выходное напряжение  Uвых,В
1 5 0,001
10 5 0,2
100 5 0,2
500 5 0,4
1000 4,9 0,6
2000 4,5 0,7
3000 4,1 0,8
4000 3,8 0,6
 
 (?)=20Lg(Uвх/ Uвых)
Частота  F,КГц 1 10 100 500 1000 2000 3000 4000
(?) 73,98 47,96 27,96 21,94 18,24 16,16 14,19 16,03
 

Рис.4
Комбинация  №2

Рис.5
Частота   F,  КГц Входное напряжение Uвх   ,В Выходное напряжение  Uвых,В
1 5 0,001
10 5 0,002
100 5 0,2
500 4,8 0,4
1000 4,8 0,6
2000 4,4 0,9
3000 4 0,8
4000 3,8 0,6
 (?)=20Lg(Uвх/ Uвых)
Частота  F,КГц 1 10 100 500 1000 2000 3000 4000
(?) 73,98 67,96 47,96 21,58 18,06 13,78 13,98 16,03
 

Рис.6
Комбинация  №3

Рис.7
Частота   F,  КГц Входное напряжение Uвх   ,В Выходное напряжение  Uвых,В
1 5 0,001
10 5 0,002
100 4,8 0,04
500 4,7 0,16
1000 4,5 0,3
2000 2,5 0,8
3000 2,6 0,6
4000 3,6 0,4
(?)=20Lg(Uвх/ Uвых)
Частота  F,КГц 1 10 100 500 1000 2000 3000 4000
(
и т.д.................


Перейти к полному тексту работы


Скачать работу с онлайн повышением оригинальности до 90% по antiplagiat.ru, etxt.ru


Смотреть полный текст работы бесплатно


Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.