Здесь можно найти учебные материалы, которые помогут вам в написании курсовых работ, дипломов, контрольных работ и рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение оригинальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение оригинальности любого файла в формате MS Word. После такого повышения оригинальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, РУКОНТЕКСТ, etxt.ru. Программа «StudentHelp» работает по уникальной технологии так, что на внешний вид, файл с повышенной оригинальностью не отличается от исходного.

Результат поиска


Наименование:


реферат Планета Земля

Информация:

Тип работы: реферат. Добавлен: 08.05.2013. Год: 2012. Страниц: 14. Уникальность по antiplagiat.ru: < 30%

Описание (план):


Введение
 
 
Речь пойдет о Земле, о ее строении, внутреннем состоянии  и вещественном составе, глобальных проблемах, с которыми сталкивается наша планета, а значит и мы –  ее обитатели. Именно в этой области  соприкасаются и такие науки  о Земле, как геология, геофизика и геохимия. Так же, необходимо показать ее место в космическом пространстве, выявить связь с другими космическими телами, рассмотреть особенности, присущие только планете Земля, выявляя ее уникальность и значимость в необъятном космическом пространстве.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Планета Земля
 
    Земля как одна из планет Солнечной системы на первый взгляд ничем не примечательна. Это не самая большая, но и не самая малая из планет. Она не ближе других к солнцу, но и не обитает на периферии планетной системы. И всё же Земля обладает одной уникальной особенностью – на ней есть жизнь. Однако при взгляде на Землю из космоса это не заметно. Хорошо видны облака, плавающие в атмосфере. Сквозь просветы в них различимы материки. Большая же часть Земли покрыта океанами.
    Появление жизни, живого вещества – биосферы – на нашей планете явилось следствием её эволюции. В свою очередь биосфера оказала значительное влияние на весь дальнейший ход природных процессов. Так, не будь жизни на Земле, химический состав её атмосферы был бы совершенно иным.
  Несомненно, всестороннее изучение Земли имеет громадное значение для человечества, но знания о ней служат также своеобразной отправной точкой при изучении остальных планет земной группы.
     Земля — одна из девяти планет, вращающихся вокруг Солнца. Многие звезды, подобные нашему Солнцу, образуют галактику Млечного Пути. В свою очередь, спиральная галактика Млечного Пути — одна из множеств галактик разной формы, существующих во Вселенной. Она включает свыше 100 млрд. звезд. Таким образом, можно представить, насколько многообразна и бесконечна наша Вселенная.
     В виду того, что Солнце и Земля располагаются внутри нашей Галактики, и мы наблюдаем, ее край как бы из середины, Млечный Путь кажется нам не спиральным скоплением звезд, а сплошной дугообразной полосой, пересекающей ночное небо. Предположение, что эта светлая дуга состоит из скопления звезд, было высказано Галилео Галилеем в начале XVII в. Эти звезды слишком удалены от нас, чтобы можно было их увидеть. Невооруженным глазом наблюдается немногим более 5000 звезд. Млечный Путь имеет форму диска с диаметром около 108 тыс. световых лет.
    Солнце располагается примерно в 3/5 расстояния от центра галактики Млечного Пути. Все звезды галактики, наше Солнце вместе со свитой из девяти планет и связанных с ними тел (спутников) совершают полный оборот вокруг галактического центра за 240—250 млн. лет. Скорость движения довольно велика и составляет 240 км/с. Солнце обладает массой 2,25-1027 т, что в 329 400 раз больше массы Земли (6,2-1021 т), а его объем в 1300 000 раз больше объема Земли. Оно является центром притяжения всех космических тел, входящих в Солнечную систему. Вокруг Солнца за счет гравитационного притяжения вращаются планеты и их спутники, астероиды, кометы и метеориты.
    Наша планета вращается вокруг своей оси с запада на восток. Поэтому наблюдателю с Земли кажется, что все время звезды ночью, а Солнце днем смещаются к западу. Все планеты земного ряда движутся по своим орбитам с запада на восток почти в одной и той же плоскости. Даже Солнце медленно вращается вокруг своей оси с запада на восток. Все планеты, кроме Венеры и Урана, обращаются вокруг своей оси в том же направлении, в котором они движутся вокруг Солнца. Венера вращается в обратном направлении, а ось вращения Урана располагается в плоскости его орбиты. Абсолютное большинство спутников планет обращаются по орбитам того же направления, в котором вращаются их планеты вокруг своих осей.
     Примечательная для Солнечной системы особенность — согласованность движения космических тел — свидетельствует о том, что Солнце, планеты и их спутники имеют общее происхождение. Как предполагают астрономы, все они возникли из единого облака межзвездной материи.
     Земля, как и другие планеты, получает энергию от Солнца — звезды среднего размера диаметром 1,39-109 км. Выделяемая Солнцем энергия за 1 с составляет около 1026 Дж. Почти вся энергия, достигающая земной поверхности, приходит в виде электромагнитного излучения. Это излучение обладает широким спектром, включающим рентгеновские и ультрафиолетовые лучи, видимый свет, тепловое излучение и радиоволны. Озоновый слой в верхних слоях земной атмосферы препятствует свободному проникновению ультрафиолетовых и рентгеновских лучей.
     Солнце представляет собой огромных размеров природный реактор, в котором происходят мощнейшие ядерные превращения. Но при этом надо отметить, что его диаметр в результате происходящих ядерных реакций не меняется. По мнению астрофизиков, тенденция к взрывному расширению уравновешивается гравитационным притяжением материи. На поверхности Солнца температура составляет около 5500°С, и предполагается, что в его центре, где осуществляется ядерный синтез, она повышается до 10 млн. градусов.
     Свет и тепло, излучаемые Солнцем, являются основой для развития многих геологических процессов. Солнечное тепло — одно из главных слагаемых климата. Оно создает условия, пригодные для жизни на Земле.
     На протяжении длительного времени количество солнечной энергии, достигающее земной поверхности, практически не меняется. Жизнь на Земле развивается в течение нескольких миллиардов лет, а ведь живые организмы могут развиваться в строго ограниченном диапазоне температур, не превышающих 80—100°С.
     Давно ли возникло Солнце? Этот вопрос задавали себе ученые еще в глубокой древности, и многие естествоиспытатели пытались на него ответить. Расчеты, которые произвели астрофизики на основе теоретических предпосылок ядерной физики, свидетельствуют, что Солнце имеет возраст около 5 млрд. лет. Теоретические расчеты возраста Солнца подтвердились геологическими данными. Оказалось, что древнейшие из известных на Земле горных пород образовались 3,8—4 млрд. лет назад. На Луне обнаружены породы, возраст которых 4,7 млрд. лет, а датировки метеоритов показали около 4,6 млрд. лет. Как видно, все эти определения абсолютного возраста близки друг к другу, а это значит, что, вероятно, все космические тела — Солнце и его спутники — образовались почти в одно и то же время.
  Планеты, движущиеся по орбитам вокруг Солнца, имеют разные размеры и строение. Карликами среди них являются Плутон и Меркурий, а гигантами — Нептун и Юпитер. Одни планеты сложены твердым материалом и окружены жидкой или газовой атмосферой, уплотненным газовым веществом. Меркурий, Венера, Земля и Марс — ближайшие к Солнцу планеты — имеют небольшие размеры и слагаются каменным или металлическим веществом. Юпитер, Сатурн, Уран и Нептун состоят из большого количества газов: водорода, гелия, метана, а также твердого аммиака и диоксида углерода. Газовая оболочка плотным кольцом окружает твердое ядро. Понятно, что многие самые общие представления в значительной степени имеют предположительный характер.
   Земля — самая крупная из близко расположенных к Солнцу планет. Она обращается вокруг Солнца почти по круговой орбите. Среднее расстояние до Солнца равно 150 млн. км. Скорость движения Земли по орбите составляет 29,7 км/с. Полный оборот вокруг Солнца она совершает за 365,26 сут. Период вращения Земли вокруг своей оси равен 23 ч 56 мин.
 
 
 
Форма и размеры  Земли
 
Астрономические наблюдения, а также измерения из космоса и непосредственные замеры на поверхности Земли позволили определить форму и размеры нашей планеты, ее массу, гравитационное и магнитное поля, величину теплового потока, идущего из недр, и ряд физических свойств земной поверхности. Средний радиус Земли равен 6371 км, при этом экваториальный радиус составляет 6378,86 км, а полярный — 6356,78 км. Экваториальное вздутие и полярное сжатие возникли из-за вращения Земли вокруг своей оси и ее наклона. В целом же форма Земли очень близка к эллипсоиду вращения, который носит название геоида.
Масса Земли составляет 5,976*1027 г, или 5.976*109трлн. т. Объем Земли 1,083-1027 см3.
Зная объем и массу  Земли, можно определить ее среднюю  плотность. Она равна 5,52 г/см3, или  в 5,52 раза выше плотности воды. Лабораторными исследованиями установлено, что плотность горных пород на земной поверхности равна 2,8 г/см3. Это значит, что в ее недрах должны находиться горные породы с плотностью, в несколько раз превышающей среднюю плотность Земли.
Ускорение свободного падения  на поверхности Земли определяется с помощью измерительных приборов, называемых гравиметрами. За единицу  измерения принят 1 см/с2. Современные  гравиметры допускают измерение  силы тяжести с точностью до 0,001 см/с2. Ускорение свободного падения на экваторе равно в среднем 978,049 см/с2. В нем учтено центробежное ускорение, создаваемое вращением Земли и равное 3,392 см/с2. На полюсах центробежное ускорение отсутствует, и поэтому там ускорение свободного падения больше, чем на экваторе, всего на 1/189.
В разных точках Земли  существуют отклонения от средней величины ускорения свободного падения. Это  так называемые гравитационные аномалии. Последние нередко достигают  нескольких сот см/с2.
Хорошо известно, что  наша планета обладает магнитным полем. Каждый может по компасу проверить существование земного магнетизма, стоит только взглянуть на его стрелку. Компас был изобретен в глубокой древности в Китае и до настоящего времени, верно, служит путешественникам и мореходам. Единицей измерения магнитной индукции служит тесла (Тл). Современные магнитометры, т. е. приборы, с помощью которых измеряется индукция геомагнитного поля, обладают высокой точностью.
Положение магнитных  полюсов Земли не совпадает с  географическим Северный конец магнитной стрелки притягивается к полюсу, расположенному около Гренландии (73° с. ш. и 100° з. д.), а южный — к полюсу, находящемуся в австралийском секторе Антарктики (68° ю. ш. и 134° в. д.). Величина индукции геомагнитного поля максимальная у магнитных полюсов (0,7*10-4 Тл у Южного и 0,6*10-4 Тл у Северного) и минимальная у экватора (0,42*10-4 Тл).
Магнитная стрелка всегда указывает на магнитный полюс. Для  того чтобы определить точное положение  Северного географического полюса, необходимо вводить поправку на магнитное склонение.
В чем же заключается  причина действия столь интересного  явления, как магнитное поле Земли? Схематично принято считать, что  в ядре Земли находится магнитный  диполь, наподобие магнитного стержня  с двумя полюсами различного знака. Магнитологи доказали, что магнитные полюса меняют местонахождение. В определенные промежутки времени Северный полюс становился Южным, а Южный — Северным. Периоды относительно устойчивого положения знака полюсов оцениваются от 700 тыс. до 1,5 млн. лет.
Давно известно, что из глубин Земли исходит тепло. О существовании крупного источника тепла в глубине свидетельствуют извержения вулканов, когда на поверхность Земли изливается кипящая лава с температурой более 1500°С. Измерения в глубоких скважинах и шахтах показали, что температура увеличивается с определенной интенсивностью. Было вычислено, что на каждый 1 км глубины температура возрастает на 30°С. Это так называемый геотермический градиент. Геотермический поток на суше составляет (1,2—1,6) • 10-6 Дж/(см2 * с). Близкие значения получены и для океанического дна. Минимальные значения геотермического потока тепла наблюдаются в центральных частях континентов, где развиты наиболее древние горные породы, а максимальные — в областях современной вулканической деятельности. Еще большие его значения зафиксированы вдоль осевой части срединно-океанических хребтов — протяженных горных систем на дне Мирового океана.
 
 
Внутренние оболочки Земли
 
      Современная Земля состоит из нескольких неоднородных оболочек — атмосферы, гидросферы, биосферы, литосферы, под литосферой в глубоких недрах находятся мантия и ядро.
      Атмосфера — внешняя газовая оболочка, ограниченная снизу твердой и жидкой поверхностью Земли. В настоящее время земная атмосфера содержит 5,3*103 трлн. т воздуха, что составляет одну миллионную часть массы всей Земли.
     Атмосфера Земли состоит из азота (78,09%), кислорода (20,94%), аргона (0,93%), углекислого газа (0,033%), а также неона, гелия, метана, ксенона, криптона, водорода и Других газов, содержание которых незначительно. Кроме того, в воздухе имеются термодинамически активные примеси. Важнейшей такой примесью в атмосфере является водяной пар. Он способен конденсироваться с образованием облаков и тумана.
Частицы водяного пара, и  особенно облачность, перераспределяют потоки коротко и длинноволнового изучения в атмосфере. При этом они вносят большой вклад в развитие парникового эффекта. Атмосфера свободно пропускает солнечную радиацию до земной поверхности, но поглощает собственное излучение Земли и задерживает поток тепла, идущий в космос от нагретой земной поверхности.
Другими термодинамическими активными  примесями в атмосфере являются углекислый газ, озон и различные  мельчайшие взвешенные частицы, или  аэрозоль. Углекислый газ играет огромную роль в развитии парникового эффекта.
Озона в атмосфере очень мало, всего одна миллионная доля, но его  роль в развитии жизни на Земле  весьма велика. Озон в основном сконцентрирован  на высоте 17—25 км, здесь он образуется из молекулярного кислорода под  действием ультрафиолетовых лучей в результате фотохимических реакций. Вся ультрафиолетовая радиация Солнца, губительная для живых организмов, поглощается озоновым экраном, и тем самым обеспечивается безопасность жизни на суше и на поверхности океана. Водная поверхность также поглощает ультрафиолетовую радиацию, и поэтому сотни миллионов лет назад, когда еще не существовало озонового экрана, жизнь зародилась и развивалась в глубинах океанов и морей. Аэрозоль рассеивает солнечную радиацию, частично отражает ее, а частично поглощает. Поэтому его роль для Земли двояка. С одной стороны, он препятствует прохождению солнечного тепла к земной поверхности, а с другой — поглощая солнечную радиацию, затем излучает инфракрасный спектр и тем самым увеличивает действие парникового эффекта.
    По характеру распределения температуры в атмосфере различают несколько слоев. Средняя температура воздуха у земной поверхности +14,3°C. В тропосфере (нижнем слое атмосферы) протекают погодообразующие процессы. Она ограничена во внетропических широтах высотой 8—12 км, а в экваториальной зоне и тропиках до высоты 16—17 км. Воздух в тропосфере нагревается от поверхности Земли, и поэтому с высотой он становится все холоднее — на каждый 1 км высоты температура в среднем понижается на 6—6,5°С. Здесь формируются и развиваются атмосферные вихри, в том числе циклоны и антициклоны. В ней сосредоточен почти весь водяной пар и образуются облака.
    Стратосфера располагается выше и занимает слой от 8—17 до 50—55 км. Здесь также образуются крупные атмосферные вихри, а горизонтальный перенос воздуха сопровождается восходящими и нисходящими движениями.
    Характерной особенностью стратосферы является повышение температуры с высотой на 1—2° на каждый километр. На верхней границе стратосферы температура не только оказывается равной 0°С, но и нередко даже выше этой точки. В стратосфере находится озоновый экран. Наибольшая его концентрация приходится на высоту от 18 до 24 км.
    Мезосфера расположена на высоте от 50—55 до 80 км. Здесь температуры вновь понижаются и на ее верхней границе достигают —60/-100°С. На каждый километр высоты в мезосфере температура снижается на 2-3°.
В следующем слое —  термосфере температура вновь увеличивается. На высоте 100 км она переходит нулевую  отметку, а в слое 150—200 км достигает +500°С. На ее верхней границе, на высоте около 800 км, температура определяется в +2000°C. Здесь происходит интенсивное поглощение ультрафиолетовой радиации Солнца, нагрев и ионизация атмосферы. В мезосфере и нижней части термосферы образуются электрически заряженные ионы. Поэтому слой, расположенный на высоте от 60 до 400 км, обычно называют ионосферой.
    В океанических водах растворено огромное количество химических элементов и соединений, которые, как известно, в растворе распадаются на положительные и отрицательные ионы, называемые соответственно катионами и анионами. Главными катионами являются натрий, магний, кальций, калий и стронций, а главными анионами — Cl, S04, НС03, Вг, С02.
В морской воде находится  и некоторое количество газов. Всего  в океане присутствует 140 трлн. т углекислого газа (это почти в 60 раз больше, чем в атмосфере) и 8 трлн. т кислорода.
Верхний слой каменной оболочки Земли, или литосферы, отделенный от нижележащих  слоев так называемой поверхностью Мохоровичича, именуется земной корой. Поверхность Мохоровичича является границей раздела между земной корой и мантией, здесь происходит скачкообразное увеличение скорости распространения сейсмических волн. Различают два основных типа земной коры: континентальную, из которой состоят материки, и океаническую, образующую дно океанов. Первая гораздо старше: некоторые ее участки датируются в 3,8 млрд. лет, тогда как у океанической коры возраст немногим более 150 млн. лет. Средняя мощность континентальной коры равна 25—75 км, а океанической — намного меньше.
      Для поверхности океанической коры характерны специфические формы рельефа. Это срединно-океанические хребты, в осевой части которых располагаются рифтовые долины, представляющие собой протяженные провалы с крутыми боковыми стенками. Другими интересными формами являются глубоководные желоба. Их ширина не превышает нескольких десятков километров, а длина составляет сотни километров. Глубоководные желоба располагаются на периферии океанов и как бы отделяют от океана островные дуги. Примерами служат Курило-Камчатский и Алеутский желоба.
На Земле выделяется еще одна оболочка, называемая биосферой. Это глобальная система, обладающая свойствами саморегуляции. Она имеет свой «вход» и «выход». «Вход» — это поток солнечной энергии, поступающей из космоса, а «выход» — образования, возникающие в результате жизнедеятельности организмов. Верхней границей биосферы служит озоновый экран, поглощающий губительные для жизни ультрафиолетовые лучи. Примером саморегуляции является Мировой океан. Реки ежегодно выносят в океан около 1,5 млн.т растворенного карбоната кальция, а также большое количество других элементов и соединений. Однако при этом солевой состав океанической воды не меняется. В чем же дело? Оказывается, организмы в процессе своей жизнедеятельности используют для построения скелета карбонат кальция. Весь его избыток расходуется организмами. Но после гибели организмов раковины выпадают в осадок.
Нижняя граница биосферы довольно расплывчата. Организмы существуют в глубоких зонах океана. Даже в  глубоководной Марианской впадине были обнаружены живые организмы. Не только бактерии, но и различные микроорганизмы по трещинам и порам проникают в осадочный слой и толщу рыхлых пород дна океана вплоть до базальтового слоя океана и гранитно-метаморфического слоя на континентах. По-видимому, этими слоями надо ограничивать биосферу.
В современной биосфере существует около 2 млн., видов живых  организмов, каждый из которых, в свою очередь, миллионы и миллионы особей.
Академик Владимир Иванович Вернадский, разрабатывая проблему роли органического мира в жизни нашей планеты, пришел к выводу, что живое вещество принимает активное участие во всех геологических процессах на поверхности Земли и в образовании атмосферы.
 
 
  Тепловая  энергия планеты
 
    О высокой температуре земных недр учёные догадывались давно. Об этом свидетельствовали и вулканические извержения, и рост температуры при погружении в глубокие шахты. В среднем у поверхности Земли её увеличение составляет 20 градусов на километр.
Тепловая энергия земных недр выделяется с поверхности планеты в виде теплового потока, который измеряется количеством тепла, выделяемого с единицы площади за  единицу времени. Измерить тепловой поток Земли с достаточной точностью удалось только во второй половине XX века.
Континентальную земную кору можно представить в виде 15 – километрового слоя гранита, лежащего на слое базальта такой же толщины. Концентрация радиоактивных изотопов, служащих источниками тепла, в гранитах и базальтах хорошо изучена. Это прежде всего радиоактивный калий, уран и торий. Подсчитано, что при их распаде выделяется примерно 130 Дж/(см год). В тоже время средний тепловой поток, который равен 130 – 170 Дж/(см год). Следовательно, он почти полностью определяется тепловыделением в гранитном и базальтовом слоях.
С океанической корой  всё обстоит иначе. Она значительно  тоньше континентальной, и основу её составляет 5 – 6 –километровый базальтовый  слой. Распад содержащихся в нём  радиоактивных элементов даёт всего  около 10 Дж/(см год). Однако, когда специалисты  измерили тепловой поток на океанах, он оказался примерно таким же, как и на материках.
Сегодня установлено, что  основная часть тепла поступает  в океаническую кору через литосферную  плиту из мантии. Вещество мантии постоянно  находится в движении. Неравенство  температур различных слоёв в ней приводит к активному перемешиванию вещества: более холодное и, соответственно, более плотное тонет, более горячее всплывает. Это так называемая тепловая конвекция.
Большинство современных  исследователей указывают на три  возможных источника энергии для поддержания тепловой конвекции в мантии. Во – первых, мантия всё ещё сохраняет большое количество тепла, накопленного в период формирования планеты. Его достаточно, чтобы поверхностный тепловой поток сохранялся на его теперешнем уровне в течение срока, в несколько раз превышающего нынешний возраст Земли. При этом планета должна остывать, но её остывание происходит очень медленно. Во – вторых, определённое количество тепла, по-видимому, поставляется в мантию из ядра. И, наконец, третий источник – это распад радиоактивных элементов (их содержание в мантии в настоящее время трудно оценить).
 
 
Атмосфера и  гидросфера Земли
 
В настоящее время  Земля обладает атмосферой массой примерно 5.15*10 кг., т.е. менее миллионной доли массы планеты. Вблизи поверхности она содержит 78.08% азота, 20.05% кислорода, 0.94% инертных газов, 0.03% углекислого газа и в незначительных количествах другие газы.
Давление и плотность  в атмосфере убывают с высотой. Половина воздуха содержится в нижних 5.6 км, а почти вся вторая половина сосредоточена до высоты 11.3 км. На высоте 95 километров плотность воздуха в миллион раз ниже, чем у поверхности. На этом уровне и химический состав атмосферы уже иной. Растёт доля лёгких газов, и преобладающими становятся водород и гелий. Часть молекул разлагается на ионы, образуя ионосферу.
Выше 1000 км. Находятся  радиационные пояса. Их тоже можно рассматривать  как часть атмосферы, заполненную  очень энергичными ядрами атомов водорода и электронами, захваченными магнитным полем планеты.
  Вода покрывает более 70% поверхности земного шара, а средняя глубина Мирового океана около 4 км. Масса гидросферы примерно 1.46*10 кг. Это в 275 раз больше массы атмосферы, но лишь 1/4000 от массы всей Земли.
Гидросферу на 94% составляют воды Мирового океана, в которых растворены соли (в среднем 3.5%), а также ряд газов. Верхний слой океана содержит 140 трлн. тонн углекислого газа, а растворённого кислорода – 8 трлн. тонн.
 
Эволюция Земли
 
   Вопрос ранней эволюции Земли тесно связан с теорией её происхождения. Сегодня известно, что наша планета образовалась около 4.6 млрд. лет назад. В процессе формирования Земли из частиц протопланетного облака постепенно увеличивалась её масса. Росли силы тяготения, а, следовательно, и скорости частиц, падавших на планету. Кинетическая энергия частиц превращалась в тепло, и Земля всё сильнее разогревалась. При ударах на ней возникали кратеры, причём выбрасываемое из них вещество уже не могло преодолеть земного тяготения и падало обратно. 
Чем крупнее были падавшие тела, тем сильнее они нагревали Землю. Энергия удара освобождалась не на поверхности, а на глубине, равной примерно двум поперечникам внедрившегося тела. А так как основная масса на этом этапе поставлялась планете телами размером в несколько сот километров, то энергия выделялась в слое толщиной порядка 1000 км. Она не успевала излучится в пространство, оставаясь в недрах Земли. В результате температура на глубинах 100 – 1000 км могла приблизиться к точке плавления. Дополнительное повышение температуры, вероятно, вызывал распад короткоживущих радиоактивных изотопов.
По – видимому, первые возникшие расплавы представляли собой  смесь жидких железа, никеля и серы. Расплав накапливался, а затем  вследствие более высокой плотности  просачивался вниз, постепенно формируя земное ядро. Таким образом, дифференциация (расслоение) вещества Земли могла начаться ещё на стадии её формирования. Ударная переработка поверхности и начавшаяся конвекция, несомненно, препятствовали этому процессу. Но определённая часть более тяжёлого вещества всё же успевала опуститься под перемешиваемый слой. В свою очередь дифференциация по плотности приостанавливала конвекцию и сопровождалась дополнительным выделением тепла, ускоряя процесс формирования различных зон в Земле.
Предположительно ядро сформировалось за несколько сот миллионов лет. При постепенном остывании планеты богатый никелем железоникелевый сплав, имеющий высокую температуру плавления, начал кристаллизоваться – так зародилось твёрдое внутреннее ядро. К настоящему времени оно составляет 1.7% массы Земли. В расплавленном внешнем ядре сосредоточено около 30% земной массы.
Развитие других оболочек продолжалось гораздо дольше и в  некотором отношении не закончилось  до сих пор.
Литосфера сразу после  своего образования имела небольшую  толщину и была очень не устойчивой. Она снова поглощалась мантией, разрушалась в эпоху великой бомбардировки (от 4.2 до 3.9 млрд. лет назад), когда Земля, как и Луна, подвергалась ударам очень крупных и довольно многочисленных метеоритов. На Луне и сегодня можно увидеть свидетельства метеоритной бомбардировки – многочисленные кратеры и моря (области, заполненные излившейся магмой). На нашей планете активные тектонические процессы и воздействие атмосферы и гидросферы практически стёрли следы этого периода.
Около 3.8 млрд. лет назад сложилась первая лёгкая и, следовательно, «непотопляемая» гранитная кора. В то время планета уже имела воздушную оболочку и океаны; необходимые для их образования газы усиленно поставлялись из недр Земли в предшествующий период. Атмосфера тогда состояла в основном из углекислого газа, азота и водяных паров, кислорода в ней было мало, но он вырабатывался в результате, во–первых, фотохимической диссоциации воды и, во–вторых фотосинтезирующей деятельности простых организмов, таких, как сине – зелёные водоросли..
Что ждёт Землю в будущем? На этот вопрос можно ответить лишь с большой степенью неопределённости, абстрагируя как от возможного внешнего, космического влияния, так и от деятельности человечества, преобразующего окружающую среду, причём не всегда в лучшую сторону.
В конце концов, недра  Земли остынут до такой степени, что конвекция в мантии и, следовательно, движение материков (а значит, и горообразование, извержение вулканов, землетрясения) постепенно ослабнут и прекратятся. Выветривание со временем сотрёт неровности земной коры, и поверхность планеты скроется под водой. Дальнейшая её судьба будет определятся среднегодовой температурой. Если она значительно понизится, то океан замёрзнет и Земля покроется ледяной коркой. Если же температура повысится (а скорее к этому и приведёт возрастающая светимость Солнца), то вода испарится, обнажив равную поверхность планеты. Очевидно, ни в том, ни в другом случае жизнь человечества на Земле будет уже не возможна, по крайней мере, в нашем современном представлении о ней.
 

Глобальные проблемы
1. Разрушение природной  среды
На всех стадиях своего развития человек был тесно связан с окружающим миром. Но с тех пор  как появилось высокоиндустриальное общество, опасное вмешательство  человека в природу резко усилилось, расширился объём этого вмешательства, оно стало многообразнее и сейчас грозит стать глобальной опасностью для человечества. Расход невозобновимых видов сырья повышается, все больше пахотных земель выбывает из экономики, так как на них строятся города и заводы. Человеку приходится все больше вмешиваться в биосферу - ту часть нашей планеты, в которой существует жизнь. Биосфера Земли в настоящее время подвергается нарастающему антропогенному воздействию.
Наиболее масштабным и значительным является химическое загрязнение среды несвойственными ей веществами химической природы. Среди них - газообразные и аэрозольные загрязнители промышленно бытового происхождения. Прогрессирует и накопление углекислого газа в атмосфере. Дальнейшее развитие этого процесса будет усиливать нежелательную тенденцию в сторону повышения среднегодовой температуры на планете. Вызывает тревогу у экологов и продолжающееся загрязнение Мирового океана нефтью и нефтепродуктами, достигшее уже 1/5 его общей поверхности. Нефтяное загрязнение таких размеров может вызвать существенные нарушения газо - и водообмена между гидросферой и атмосферой. Не вызывает сомнений и значение химического загрязнения почвы пестицидами и ее повышенная кислотность, ведущая к распаду экосистемы. В целом, все рассмотренные факторы, которым можно приписать загрязняющий эффект, оказывают заметное влияние на процессы, происходящие в биосфере.
2. Загрязнение атмосферы
Известно, что загрязнение  атмосферы происходит в основном в результате работы промышленности, транспорта и т. п., которые в совокупности ежегодно выбрасывают «на ветер» более миллиарда твердых и газообразных частиц.
Основными загрязнителями атмосферы на сегодняшний день являются окись углерода и сернистый газ. Сейчас общепризнанно, что наиболее сильно загрязняет воздух промышленное производство. Источники загрязнений - теплоэлектростанции, которые вместе с дымом выбрасывают в воздух сернистый и углекислый газ; металлургические предприятия, особенно цветной металлургии, которые выбрасывают в воздух оксиды азота, сероводород, хлор, фтор, аммиак, соединения фосфора, частицы и соединения ртути и мышьяка; химические и цементные заводы. Вредные газы попадают в воздух в результате сжигания топлива для нужд промышленности, отопления жилищ, работы транспорта, сжигания и переработки бытовых и промышленных отходов.
Наиболее распространенные загрязнители атмосферы поступают  в нее в основном в двух видах: либо в виде взвешенных частиц, либо в виде газов.
3. Загрязнение почвы
Почвенный покров Земли  представляет собой важнейший компонент биосферы Земли. Именно почвенная оболочка определяет многие процессы, происходящие в биосфере.
Загрязнения почвы трудно классифицируются, в разных источниках их деление дается по-разному. Если обобщить и выделить главное, то наблюдается  следующая картина загрязнения почвы: мусором, выбросами, отвалами, отстойными породами; тяжелыми металлами; пестицидами; микотоксинами; радиоактивными веществами.
Важнейшее значение почв состоит в аккумулировании органического  вещества, различных химических элементов, а также энергии. Почвенный покров выполняет функции биологического поглотителя, разрушителя и нейтрализатора различных загрязнений. Если это звено биосферы будет разрушено, то сложившееся функционирование биосферы необратимо нарушится. Именно поэтому чрезвычайно важно изучение глобального биохимического значения почвенного покрова, его сов
и т.д.................


Перейти к полному тексту работы


Скачать работу с онлайн повышением оригинальности до 90% по antiplagiat.ru, etxt.ru


Смотреть полный текст работы бесплатно


Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.