На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


научная работа Гормоны. Периферические эндокринные железы. Управляющие эндокринные железы. Анатомия и физиология эпифиза. Влияние эпифиза на различные функции организма. Биологические ритмы организма. Связь эпифиза и психики человека. Влияние эпифиза на старение.

Информация:

Тип работы: научная работа. Предмет: Медицина. Добавлен: 08.02.2007. Сдан: 2007. Уникальность по antiplagiat.ru: --.

Описание (план):


180

Оглавление.

    Оглавление. 1
    Вступление. 4
    Часть I. Общая характеристика эндокринной системы. 6
      Глава 1. Гормоны 6
        1.1 Что такое гормон. 6
        1.2 Классификация гормонов. 6
        1.3 Транспорт гормонов. 7
      Глава 2. Периферические эндокринные железы. 8
        2.1 Щитовидная железа 8
        2.2 Паращитовидные железы. 9
        2.3 Тимус. 10
        2.4 Поджелудочная железа. 12
        2.5 Надпочечники. 13
        2.6 Половые железы. 17
      Глава 3. Управляющие эндокринные железы. 20
        3.1 Гипоталамус 20
        3.2 Гипофиз. 30
        3.3 Эпифиз. 34
    Часть II. Анатомия и физиология Эпифиза. 36
      Глава 1. Сложность устройства Эпифиза. 36
        1.1 Эмбриогенез. 36
        1.2 Строение. 36
        1.3 Гистология. 37
        1.4 Физиология 39
        1.5 История исследований. 41
      Глава 2. Гормоны Эпифиза. 43
        2.1 Серотонин, его строение и синтез. 43
        2.2 Физиологические функции серотонина. 43
        2.3 Синтез и метаболизм мелатонина. 45
        2.4 Регуляция синтеза мелатонина. 45
        2.5 Мелатонин в организме. 46
        2.6 Ритм секреции мелатонина. 47
      Глава 3. Влияние Эпифиза на различные функции организма. 49
        3.1 Влияние эпифиза на репродуктивную функцию. 49
        3.2 Влияние эпифиза на функции гипофиза. 49
        3.3 Влияние эпифиза на функции щитовидной железы. 51
        3.4 Влияние эпифиза на функции надпочечников. 52
        3.5 Влияние эпифиза на функции околощитовидных желёз. 52
        3.6 Эпифиз и психика. 52
        3.7 Эпифиз и сон 53
        3.8 Эпифиз и канцерогенез. 56
    Часть III. Биологические ритмы организма. 57
      Глава 1. Ритмы живых организмов. 57
        1.1 Ритмы вокруг нас. 57
        1.2 Типы ритмов. 58
        1.3 Изучение ритмов у живых организмов (кроме человека) 59
        1.4 Роль средовых сигналов. 60
        1.5 Эпифиз 61
      Глава 2. Циркадианные ритмы у человека 64
        2.1 Ритмы у человека. 64
        2.2 Сон и бодрствование. 64
        2.3 Когда сдвигаются фазы ритма. 66
        2.4 Ультрадианные ритмы у человека. 70
      Глава 3. Инфрадианные ритмы у человека. 73
        3.1 Продолжительные ритмы. 73
        3.2 Репродуктивный цикл у женщины. 73
        3.3 Сезонные ритмы 74
        3.4 Пейсмейкеры мозга млекопитающих - супрахиазменные ядра 75
        3.5 Другие пейсмейкеры 77
        3.6 Ритмы и психические нарушения. 77
        3.7 Функции биологических часов. 79
    Часть IV. Связь Эпифиза и Психики человека. 81
      Глава 1. Серотонин как генератор психических способностей. 81
        1.1 Интригующие факты. 81
        1.2 Эпифиз - контролер воображения. 82
        1.3 Связь серотонина и восприятия. 84
        1.4 Опыты по изучению галлюцинаций. 87
        1.5 Шизофрения. 89
        1.6 Эпифиз и сокрытые функции организма. 91
        1.7 Наблюдение детей с необычными психическими способностями. 94
      Глава 2. К самоубийствам толкает генетическая инструкция. 98
        2.1 Фермент NAT2 98
        2.2 Влияние NAT2 на функцию Эпифиза. 98
        2.3 Влияние суточных и сезонных ритмов на суициды. 99
        2.4 Снижение концентрации серотонина - предрасположеность к суициду. 100
      Глава 3. Аффективные психозы. 103
        3.1 Данные и гипотезы относительно психозов. 103
        3.2 Модели наследования психозов. 104
        3.3 Влияние различных факторов на развитие психозов. 105
        3.4 Серотониновая гипотеза патогенеза аффективных психозов. 106
        3.5 Мелатониновая теория депрессий. 109
        3.6 Связь депрессий с биоритмами. 109
    Часть V. Влияние недостаточности серотонина на функции организма. 113
      Глава 1. Профилактика и лечение серотониновой недостаточности. 113
        1.1 Нарушения функции гладкой мускулатуры. 113
        1.2 Начало исследований. 114
        1.3 Клиническая практика восстановления функций кишечника. 114
        1.4 Применение препаратов серотонина. 115
        1.5 Разнообразие применения серотониновых препаратов. 117
      Глава 2. Серотонин и его рецепторы в генезе стресса и адаптации 119
        2.1 Неопределенность понятия «Стресс». 119
        2.2 Роль серотонина в генезе стресса. 119
        2.3 Польза серотонина при лечении ИБС. 122
        2.4 Конкретизация понятий «стресс» и «адаптация». 124
      Глава 3. Мексидол, серотонин и NO-содержащие потоки в профилактике нагноений и cтимуляции заживления послеоперационных ран. 126
        3.1 Описание 1-го эксперимента. 126
        3.2 Результаты 1-го эксперимента. 127
        3.3 Описание и результаты 2-го эксперимента. 129
    Часть VI. Влияние Эпифиза на половое развитие. 130
      Глава 1. Гипоталамическая регуляция репродукции при хроническом воздействии толуола и мелатонина 130
        1.1 Гонадотропное действие мелатонина. 130
        1.2 Как действует мелатонин на репродуктивную систему. 130
        1.3 Материалы и методы экспериментов 131
        1.4 Результаты и обсуждение 132
      Глава 2. Задержка полового развития у мальчиков. 136
        2.1 Характеристика ЗПР. 136
        2.2 Описание пубертатного периода. 136
        2.3 Гормональные механизмы полового развития. 138
        2.4 Этиология и патогенез. 140
        2.5 Классификация. 141
        2.6 Клиническая картина. 142
        2.7 Диагностика. 144
        2.8 Дифференциальная диагностика. 146
        2.9 Лечение. 147
    Часть VII. Влияние Эпифиза на старение и канцерогенез. 150
      Глава 1. Кандидаты на роль «часов» старения 150
        1.1 История и значение геронтологии. 150
        1.2 Связь старения и канцерогенеза. 151
        1.3 Теории и гипотезы относительно «часов» старения. 153
      Глава 2. Эпифиз и механизмы старения. 154
        2.1 Эпифиз - солнечные часы организма. 154
        2.2 Первые попытки повлилять на продолжительность жизни. 155
        2.3 Новые направления в изучении Эпифиза. 156
      Глава 3. Влияние мелатонина на механизмы старения. 160
        3.1 Опыты на мышах. 160
        3.2 Опыты на крысах. 165
        3.3 Опыты на Drosophila melanogaster. 166
        3.4 Опыты на червях. 167
        3.5 Влияние мелатонина на развитие новообразований. 167
        3.6 Механизмы геропротекторного действия мелатонина. 168
      Глава 4. Пептидные регуляторы функции эпифиза. 169
        4.1 Геропротекторный эффект пептидных биорегуляторов. 169
        4.2 Влияние пептидов, регулирующих функцию эпифиза, на развитие опухолей. 171
        4.3 Механизмы геропротекторного действия пептидов эпифиза. 171
        4.4 Влияние пептидных биорегуляторов на экспрессию генов. 175
        4.5 Применение пептидных биорегуляторов для предупреждения преждевременного старения у человека. 180
    Выводы. 181
    Список использованной литературы. 185

Вступление.

Сложное устройство человеческого тела с древних времен приводило учёных в благоговейное восхищение. На протяжении многих веков они безуспешно пытались обнаружить «верховного главнокомандующего» организмом. Того, кто управляет всеми жизненно важными функциями и согласует работу отдельных клеток, органов и систем с единым «производ- ственным графиком», в котором каждому действующему лицу отведено подобающее место и чётко очерчен круг обязанностей в повседневных условиях и чрезвычайных ситуациях. В конце концов титул правителя в суверенном королевстве организма отошёл к мозгу - головному и спинному.
Но при каждом короле, как правило, существует тайный советник, власть которого очень велика. Этим серым кардиналом, предпочитающим держаться в тени, и является эндокринная система.
Эндокринная система столь тщательно оберегала свои секреты, что была открыта учёными лишь в начале ХХ в. Правда, немного раньше исследователи обратили внимание на странные несоответствия в строении некоторых органов. По виду такие анатомические образования напоминали железы, а значит, должны были выделять определенные жидкости («соки», или «секреты»), подобно тому как слюнные железы вырабатывают слюну, слёзные - слёзы и т.п. Но не выделяли! Учёные не обнаружили ни «соков», ни специальных выводных протоков, по которым произведённая жидкость обычно вытекает наружу. Напрашивалось невероятное предположение: загадочные органы были… лишними!
Однако жизнь свидетельствовала об обратном. Если «неправильные» железы повреждали или случайно удаляли во время операции, организм человека приходил в тяжёлое расстройство.
Учёные - историки утверждали, что об органах эндокринной системы на Востоке знали ещё в глубокой древности и почтительно величали их «железами судьбы». По мнению восточных врачевателей, эти железы являлись приёмниками и трансформаторами космической энергии, вливающейся в невидимые каналы (чакры) и поддерживающей жизненные силы человека. Считалось, что слаженную работу «желёз судьбы» могут расстроить катастрофы, происходящие по воле злого рока.
События ХХ столетия подтвердили пророчества врачей и мудрецов далёкого прошлого. После Первой мировой войны в России и Германии учёные зафиксировали невиданный ранее рост заболеваний токсическим зобом и сахарным диабетом, свидетельствующих о нарушении функций эндокринной системы. Во время Второй мировой войны после сильных бомбёжек британских городов у многих англичан развилась болезнь щитовидной железы, которую врачи окрестили «зобом бомбоубежищ».
Вообще Эндокринная система - система желез, вырабатывающих гормоны, и выделяющих их непосредственно в кровь. Эти железы, называемые эндокринными или железами внутренней секреции, не имеют выводных протоков; они расположены в разных частях тела, но функционально тесно взаимосвязаны. Эндокринная система организма в целом поддерживает постоянство во внутренней среде, необходимое для нормального протекания физиологических процессов. Помимо этого, эндокринная система совместно с нервной и иммунной системами обеспечивают репродуктивную функцию, рост и развитие организма, образование, утилизацию и сохранение (“про запас” в виде гликогена или жировой клетчатки) энергии.
На сегодняшний день врачи изучили эндокринную систему достаточно хорошо, чтобы предупреждать расстройства гормональных функций и излечивать от них. Но самые главные открытия ещё впереди. На эндокринной “карте” организма есть немало белых пятен, представляющих интерес для пытливых умов. В третьем тысячелетии учёным предстоит найти способ замедлить возрастное угасание деятельности эндокринной системы, заставив солнце человеческой жизни подольше оставаться в зените.
В процессе изучения эндокринной системы возникает вопрос, аналогичный тому, который возникал при изучении всего организма в целом: А кто же является «верховным главнокомандующим» системы? Было установлено, что управляет функциями эндокринных желез - Гипоталамо-гипофизарная система. Гормонам этой системы подчиняются все железы внутренней секреции. Однако существует еще одна железа - Эпифиз, которую не так давно стали относить к эндокринной системе, а в некоторых справочниках (например, Энциклопедия «Кругозор») ее и сейчас называют - Рудиментарным органом. Тем не менее уже установлены некоторые функции данной железы и доказана ее важность для организма.
Один из исследователей, Вальтер Пьерпаоли, назвал эпифиз "дирижером" эндокринной системы, так как на основании своих исследований пришел к выводу о том, что активность гипофиза и гипоталамуса управляется шишковидной железой. Оказалось также, что при сахарном диабете, при депрессиях и онкологических заболеваниях снижен синтез мелатонина, либо нарушен нормальный ритм его секреции. Прием гормона при этих заболеваниях приводил к положительным результатам.
В данной работе я решил проанализировать различные научные данные связанные с Эпифизом, и несмотря на некоторую противоречивость сделанных на их основе выводов, попытаться подвести некоторые итоги проведенных исследований и показать, что Эпифиз никак не рудимент, а управляющая железа, сопоставимая по своему влиянию на организм с гипофизом и гипоталамусом.

Часть I. Общая характеристика эндокринной системы.

Глава 1. Гормоны

1.1 Что такое гормон.

Эндокринный орган отличается тем, что выделяет вещество, необходимое для регуляции клеточной активности каких-то других органов, непосредственно в кровяное русло (термин происходит от греч. endo - внутри и krinein - выделять). Такие органы называются эндокринными железами, а секретируемые ими вещества - гормонами (от греч. hormao - возбуждаю). Каждый гормон влияет на уровень функционирования специфических систем клеток-мишеней - обычно временно повышает их активность. Гормоны - сильнодействующие агенты, поэтому для получения специфического эффекта достаточны ничтожные их количества. Восприимчивые к гормонам клетки снабжены специальными поверхностными молекулами - «рецепторами», которые реагируют даже на очень низкие концентрации гормонов. После соприкосновения рецептора с гормоном внутри клетки происходит ряд изменений.
Гормоны - биологические активные вещества, обладающие строго специфическим и избирательным действием, способные повышать или понижать уровень жизнедеятельности организма.

1.2 Классификация гормонов.

Все гормоны делятся на:
Стероидные гормоны - производятся из холестерина в коре надпочечников, в половых железах.
Полипептидные гормоны - белковые гормоны (инсулин, пролактин, АКТГ и др.)
Гормоны производные аминокислот - адреналин, норадреналин, дофамин, и др.
Гормоны производные жирных кислот - простогландины.
По физиологическому действию гормоны подразделяются на:
Пусковые (гормоны гипофиза, эпифиза, гипоталамуса). Воздействуют на другие железы внутренней секреции.
Исполнители - воздействуют на отдельные процессы в тканях и органах.
Физиологическое действие гормонов направлено на:
обеспечение гуморальной, т.е. осуществляемой через кровь, регуляции биологических процессов;
поддержание целостности и постоянства внутренней среды, гармоничного взаимодействия между клеточными компонентами тела;
регуляцию процессов роста, созревания и репродукции.
Орган реагирующий на данный гормон является органом-мишенью (эффектор). Клетки этого органа снабжены рецепторами.
Гормоны регулируют активность всех клеток организма. Они влияют на остроту мышления и физическую подвижность, телосложение и рост, определяют рост волос, тональность голоса, половое влечение и поведение. Благодаря эндокринной системе человек может приспосабливаться к сильным температурным колебаниям, излишку или недостатку пищи, к физическим и эмоциональным стрессам. Изучение физиологического действия эндокринных желез позволило раскрыть секреты половой функции и чудо рождения детей, а также ответить на вопрос, почему одни люди высокого роста, а другие низкого, одни полные, другие худые, одни медлительные, другие проворные, одни сильные, другие слабые.
В нормальном состоянии существует гармоничный баланс между активностью эндокринных желез, состоянием нервной системы и ответом тканей-мишеней (тканей, на которые направлено воздействие). Любое нарушение в каждом из этих звеньев быстро приводит к отклонениям от нормы. Избыточная или недостаточная продукция гормонов служит причиной различных заболеваний, сопровождающихся глубокими химическими изменениями в организме.
Изучением роли гормонов в жизнедеятельности организма и нормальной и патологической физиологией желез внутренней секреции занимается эндокринология. Как медицинская дисциплина она появилась только в 20 в., однако эндокринологические наблюдения известны со времен античности. Гиппократ полагал, что здоровье человека и его темперамент зависят от особых гуморальных веществ. Аристотель обратил внимание на то, что кастрированный теленок, вырастая, отличается в половом поведении от кастрированного быка тем, что даже не пытается взбираться на корову. Кроме того, на протяжении веков кастрация практиковалась как для приручения и одомашнивания животных, так и для превращения человека в покорного раба.

1.3 Транспорт гормонов.

Гормоны, попав в кровоток, должны поступать к соответствующим органам-мишеням. Транспорт высокомолекулярных (белковых) гормонов изучен мало из-за отсутствия точных данных о молекулярной массе и химической структуре многих из них. Гормоны со сравнительно небольшой молекулярной массой быстро связываются с белками плазмы, так что содержание в крови гормонов в связанной форме выше, чем в свободной; эти две формы находятся в динамическом равновесии. Именно свободные гормоны проявляют биологическую активность, и в ряде случаев было четко показано, что они экстрагируются из крови органами-мишенями. Значение белкового связывания гормонов в крови не совсем ясно. Предполагают, что такое связывание облегчает транспорт гормона либо защищает гормон от потери активности.

Глава 2. Периферические эндокринные железы.

2.1 Щитовидная железа

Щитовидная железа (glandula thyreoidea), специализированный эндокринный орган у позвоночных животных и человека; вырабатывает и накапливает иодсодержащие гормоны, участвующие в регуляции обмена веществ и энергии в организме.
Анатомия. Щитовидная железа млекопитающих состоит из двух долей, соединённых перешейком, но у некоторых распадается на 2 отдельные части. У низших позвоночных последняя (5-я) пара жаберных дуг даёт начало ультимобранхиальным тельцам, выделяющим гормон тиреокальцитонин. У млекопитающих эта ткань представлена т. н. С-клетками щитовидной железы. У человека щитовидная железа полностью формируется к 8-9 мес. развития плода; состоит из 2 боковых долей и поперечного перешейка, соединяющего их близ нижних концов. Иногда от перешейка вверх отходит пирамидальная доля. Располагается на шее спереди дыхательного горла и на боковых стенках гортани, прилегая к щитовидному хрящу (отсюда название). Сзади боковые доли соприкасаются со стенками глотки и пищевода. Наружная поверхность щитовидной железы выпуклая, внутренняя, обращенная к трахее и гортани, вогнутая. Поперечник щитовидной железы около 50-60 мм, на уровне перешейка 6-8 мм. Масса около 15-30 г (у женщин несколько больше). Щитовидная железа обильно снабжена кровеносными сосудами; к ней подходят верхние и нижние щитовидные артерии.
Основная структурная и функциональная единица щитовидной железы - фолликул (шаровидной или геометрически неправильной формы), полость которого заполнена коллоидом, состоящим из иодсодержащего белка-тиреоглобулина. Фолликулы тесно прилегают друг к другу. Стенки фолликула выстланы однослойным железистым эпителием. Структуру щитовидной железы формирует и соединительнотканная строма, прилегающая к стенке фолликула и состоящая из коллагеновых и эластических волокон, с проходящими в ней сосудами и нервами. Форма, объём и высота клеток фолликулярного эпителия варьируют в зависимости от функционального состояния щитовидной железы: в норме эпителий кубический, при повышенной функциональной активности - высокий цилиндрический, при пониженной - плоский. Размеры комплекса Гольджи, число митохондрий и секреторных капель, содержащихся в тиреоидных клетках, увеличиваются в период активной секреторной деятельности. Число и длина микроворсинок, расположенных на апикальной поверхности эпителия и направленных в полость фолликула, также увеличиваются при повышении активности щитовидной железы. Плотность, размеры, число и локализация цитоплазматических гранул характеризуют как процессы биосинтеза, так и выделения специфических продуктов.
Физиология. От нормальной функции щитовидной железы зависят такие основные биологические процессы, как рост, развитие и дифференцировка тканей. Щитовидная железа секретирует 3 гормона:
тироксин
трииодтиронин
тирокальцитонин.
Тироксин: Усиливает процессы окисления жиров, углеводов и белков в клетках, ускоряя, таким образом, обмен веществ в организме. Повышает возбудимость центральной нервной системы.
Трийодтиронин: Действие во многом аналогично тироксину.
Тирокальцитонин: Регулирует обмен кальция в организме, снижая его содержание в крови, и увеличивая его содержание в костной ткани (оказывает действие, обратное паратгормону паращитовидных желез). Снижение уровня кальция в крови уменьшает возбудимость центральной нервной системы.
Биологические эффекты тиреоидных гормонов в физиологических дозах проявляются в поддержании на оптимальном уровне энергетических и биосинтетических процессов в организме. Действие гормонов на процессы биосинтеза, а следовательно, и на рост и развитие организма опосредовано через регуляцию тканевого дыхания. Гормоны в высоких дозах усиливают все виды обмена веществ с преобладанием процессов катаболизма, расхода веществ и энергии в виде тепла, продуктов неполного и извращённого метаболизма. Механизм действия тиреоидных гормонов представляется этапами "узнавания" и восприятия сигнала клеткой и генерирования мол. процессов, определяющих характер ответной реакции. В клетках различных тканей обнаружены специфические белки-рецепторы, которые "узнают" гормон и включают биохимические реакции Функция щитовидной железы регулируется центральной нервной системой. Щитовидная железа находится во взаимодействии и с другими железами внутренней секреции.
Заболевания щитовидной железы у человека (воспалительные ;опухоли; травмы; врождённая аномалия и др.) могут сопровождаться увеличением щитовидной железы и нарушением её функции: снижением продукции гормонов снижением продукции гормонов (гипотиреоз, вплоть до развития микседемы) или повышенным их образованием

2.2 Паращитовидные железы.

Паращитовидные железы, четыре небольшие железы, расположенные на шее подле щитовидной железы. Они имеют красновато-коричневую окраску, размеры каждой 5*3*1 мм, общий вес всех четырех желез - 130 мг. Как и другие эндокринные железы, они обильно снабжаются кровью. Выделяемый ими в кровоток гормон - паратиреоидный, или паратгормон - представляет собой белок, состоящий из 84 аминокислотных остатков, соединенных в одну цепь. Активность паращитовидных желез зависит от уровня кальция в крови: при его снижении секреция паратиреоидного гормона возрастает. Для заболеваний, связанных с низким содержанием кальция в крови, в частности рахита и почечной недостаточности, характерно повышение активности паращитовидных желез и увеличение их размеров. Основная функция этих желез заключается в поддержании практически постоянного, нормального уровня кальция в крови, несмотря на колебания поступления его с пищей.
Действие паратиреоидного гормона направлено на повышение концентрации кальция и снижение концентрации фосфора в крови (между этими показателями существуют реципрокные отношения.) Указанное действие обеспечивается влиянием паратиреоидного гормона на выведение почками кальция (тормозит) и фосфора (ускоряет), а также стимуляцией им выхода кальция и фосфора из костей в кровь. Основное количество (99%) всего кальция организма содержится в костях и зубах.
Гиперпаратиреоз. Избыточная активность паращитовидных желез, причиной которой может быть небольшая опухоль, называется первичным гиперпаратиреозом. Он характеризуется потерей кальция и фосфора из костной ткани, вследствие чего кости становятся хрупкими, болезненными и часто ломаются. Переломы позвонков при этом заболевании могут приводить к укорочению роста больного на целых 15 см. Иногда отмечается расшатывание зубов в лунках, но сами зубы при этом не разрушаются. Теряемые костями при гиперпаратиреозе кальций и фосфор попадают через почки в мочу, что часто приводит к образованию в почках и мочевом пузыре камней (от мелкого песка до камней размером с кулак). Установлено, что первичный гиперпаратиреоз служит причиной 5-10% случаев почечнокаменной болезни. Лечение гиперпаратиреоза сводится к хирургическому удалению гиперактивных желез.
Гипопаратиреоз. При разрушении паращитовидных желез вследствие патологического процесса или после их хирургического удаления возникает гипопаратиреоз - дефицит паратиреоидного гормона. Уровень кальция в крови при этом падает, а содержание фосфора нарастает. Для нормального функционирования тканей, в первую очередь нервной и мышечной, необходим стабильный, нормальный уровень кальция в крови. Его снижение при гипопаратиреозе вызывает приступы повышенной активности нервов и мышц, приводя к тетании - состоянию, характеризующемуся мышечными судорогами в руках и ногах, ощущением покалывания, тревогой и страхом. Основным средством лечения гипопаратиреоза в настоящее время является витамин D, большие дозы которого нормализуют концентрацию кальция в крови.
Изредка встречается псевдогипопаратиреоз - заболевание, обусловленное нечувствительностью костей и почек к действию паратиреоидного гормона. Оно тоже приводит к тетании, казалось бы указывающей на гипопаратиреоз, но все четыре паращитовидные железы в этом случае оказываются нормальными.

2.3 Тимус.

Тимус (вилочковая, или зобная, железа), эндокринная железа, играющая важнейшую роль в формировании иммунитета. Она стимулирует развитие Т («тимусных») - клеток как в собственной ткани, так и в лимфоидной ткани других частей тела. Т-клетки «атакуют» попавшие в организм чужеродные вещества, осуществляют контроль над выработкой антител против болезнетворных агентов, влияют на другие защитные реакции организма.
Тимус имеется у всех позвоночных животных, но его форма и местоположением могут быть различны. У человека тимус состоит из двух долей, расположенных в верхней части грудной клетки сразу за грудиной. У пресмыкающихся и птиц он обычно имеет вид двойной цепочки, тянущейся по обеим сторонам шеи. Тимус (как и поджелудочную железу) телят, ягнят и других молодых животных употребляют в пищу в качестве деликатеса («сладкое мясо»).
Развитие. У человека тимус формируется на 6-й неделе внутриутробной жизни, развиваясь, как и у других млекопитающих, из двух сегментов, которые объединяются, образуя единый орган, состоящий из двух долей. У австралийских сумчатых животных две половины тимуса так и остаются отдельными органами.
Наибольших размеров по отношению к весу тела тимус человека достигает к моменту рождения (около 15 г). Затем он продолжает расти, хотя уже гораздо медленнее, и в период полового созревания достигает максимального веса (примерно 35 г) и размеров (около 75 мм в длину). После этого начинается постепенное уменьшение железы, которое продолжается всю остальную жизнь. У разных видов животных этот процесс протекает с разной скоростью, и у некоторых (например, у морских свинок) относительно крупный тимус сохраняется на протяжении всей жизни.
Строение. У человека две доли тимуса удерживаются вместе соединительной тканью. Плотная соединительнотканная капсула покрывает обе доли, проникая внутрь и разделяя их на меньшие дольки. Каждая долька состоит из внешней зоны (коры), которая делится на поверхностный и глубокий корковые слои, и центральной внутренней зоны - мозгового слоя. В нем расположены пучки плоских клеток, т.н. тельца Гассаля, которые служат местом разрушения клеток.
Функция. Тимус выделяет всего один гормон - тимозин. Этот гормон влияет на обмен углеводов, а также кальция. В регуляции обмена кальция действие близко к паратгормону паращитовидных желез.
Регулирует рост скелета, участвует в управлении иммунными реакциями (увеличивает количество лимфоцитов в крови, усиливает реакции иммунитета) в течение первых 10-15 лет жизни.
Кровь доставляет в тимус незрелые стволовые клетки костного мозга (лимфобласты), где они вступают в контакт с эпителиальными клетками («воспитателями», или «няньками») поверхностного коркового слоя долек и под влиянием гормона тимуса трансформируются в белые кровяные клетки (лимфоциты) - клетки лимфатической системы. По мере созревания этих мелких лимфоцитов (называемых также тимоцитами) они переходят из коркового в мозговой слой долек. Некоторые лимфоциты здесь и погибают, тогда как другие продолжают развиваться и на различных стадиях, вплоть до полностью зрелых Т-клеток, выходят из тимуса в кровь и лимфатическую систему для циркуляции по организму.
Т-клеточная недостаточность. У человека недостаточность Т-клеток может быть врожденной или приобретенной. Крайне низкое число лимфоцитов - вплоть до полного их отсутствия - наблюдается при таких врожденных аномалиях, как дисплазия (нарушение структуры) тимуса, недостаточное его развитие и синдром Ди Джордже (частичное или полное отсутствие железы). Врожденное отсутствие как Т-, так и B-клеток (другого вида клеток иммунной системы), называют тяжелым комбинированным иммунодефицитом. Это состояние, при котором ребенок остается совершенно беззащитным перед болезнетворными микробами, иногда поддается лечению пересадкой костного мозга, трансплантацией тимуса плода или введением антител.

2.4 Поджелудочная железа.

Поджелудочная железа, пищеварительная и эндокринная железа. Имеется у всех позвоночных за исключением миног, миксин и других примитивных позвоночных. Вытянутой формы, по очертаниям напоминает кисть винограда. К эндокринной системе относится только внутренняя часть поджелудочной железы .
Строение. У человека поджелудочная железа весит от 80 до 90 г, расположена вдоль задней стенки брюшной полости и состоит из нескольких отделов: головки, шейки, тела и хвоста. Головка находится справа, в изгибе двенадцатиперстной кишки - части тонкого кишечника - и направлена вниз, тогда как остальная часть железы лежит горизонтально и заканчивается рядом с селезенкой. Поджелудочная железа состоит из двух типов ткани, выполняющих совершенно разные функции. Собственно ткань поджелудочной железы составляют мелкие дольки - ацинусы, каждый из которых снабжен своим выводным протоком. Эти мелкие протоки сливаются в более крупные, в свою очередь впадающие в вирсунгиев проток - главный выводной проток поджелудочной железы. Дольки почти целиком состоят из клеток, секретирующих сок поджелудочной железы (панкреатический сок, от лат. pancreas - поджелудочная железа). Панкреатический сок содержит пищеварительные ферменты. Из долек по мелким выводным протокам он поступает в главный проток, который впадает в двенадцатиперстную кишку. Главный проток поджелудочной железы расположен вблизи общего желчного протока и соединяется с ним перед впадением в двенадцатиперстную кишку. Между дольками вкраплены многочисленные группы клеток, не имеющие выводных протоков, - т.н. островки Лангерганса. Островковые клетки выделяют гормоны инсулин и глюкагон.
Функции. Поджелудочная железа имеет одновременно эндокринную и экзокринную функции, т.е. осуществляет внутреннюю и внешнюю секрецию. Экзокринная функция железы - участие в пищеварении.
Эндокринные функции. Островки Лангерганса функционируют как железы внутренней секреции (эндокринные железы), выделяя непосредственно в кровоток глюкагон и инсулин - гормоны, регулирующие метаболизм углеводов. Эти гормоны обладают противоположным действием: глюкагон повышает, а инсулин понижает уровень сахара в крови.
Заболевания. Недостаточная секреция инсулина приводит к снижению способности клеток усваивать углеводы, т.е. к сахарному диабету.
Сахарный диабет -- хроническое заболевание, при котором организм человека вырабатывает слишком мало инсулина или вообще его не вырабатывает. Если его не хватает, развиваются нарушения всех видов обмена веществ, потому что ткани тела не получают достаточного питательных веществ для получения энергии. Этому заболеванию подвержены в равной степени мужчины и женщины, а с возрастом риск заболеть повышается.
Одной из причин развития болезни является систематическое переедание. Также считается, что не последнюю роль играет наследственная предрасположенность и стрессы.
Важнейшим симптомом сахарного диабета является повышение уровня сахара в крови и его выделение с мочой. Человек начинает жаловаться сначала на постоянную сильную жажду и обильное выделение мочи (до 6 литров в день), может беспокоить кожный зуд, особенно в области промежности, возможны также гнойничковые заболевания и нарушения половой функции.
Если человек, который обнаружил у себя эти признаки заболевания, не обращается к врачу, то из-за отсутствия лечения болезнь прогрессирует и появляются тяжелые осложнения: боли в конечностях, нарушение зрения, нарушения в деятельности почек, развитие атеросклероза. Далее нарушение обмена веществ неуклонно прогрессирует и наблюдается снижение аппетита, еще большая жажда, слабость, сухость кожи и слизистых оболочек, тошнота, рвота. Самочувствие человека, если он все еще не обратился за помощью специалиста, ухудшается, и вялость переходит в бессознательное состояние. Это значит, что развивается самое тяжелое осложнение сахарного диабета -- диабетическая кома.
Лечение сахарного диабета проводится под наблюдением врача в течение всей жизни больного. Главная его цель -- добиться нормализации обменных процессов в организме. Показателем нормализации обмена служит снижение уровня сахара в крови и практически полное его отсутствие в моче. Обычно вместе с этим улучшается и общее состояние человека.
Профилактикой сахарного диабета является рациональное питание, сохранение нормального веса тела и своевременное лечение воспалительных заболеваний желчных путей и поджелудочной железы. А при наследственной предрасположенности необходимо периодическое обследование, чтобы вовремя распознать болезнь и начать лечение.

2.5 Надпочечники.

Надпочечники, маленькие уплощенные парные железы желтоватого цвета, расположенные над верхними полюсами обеих почек. Правый и левый надпочечники различаются по форме: правый треугольный, а левый в форме полумесяца. Это эндокринные железы, т.е. выделяемые ими вещества (гормоны) поступают непосредственно в кровоток и участвуют в регуляции жизнедеятельности организма. Средний вес одной железы от 3,5 до 5 г. Каждая железа состоит из двух анатомически и функционально различных частей: внешнего коркового и внутреннего мозгового слоев.
В надпочечниках выделяют корковое и мозговое вещество. Корковое вещество включает клубочковую, пучковую и сетчатую зоны. В клубочковой зоне происходит синтез минералокортикоидов, основным представителем которых является альдостерон. В пучковой зоне синтезируются глюкокортикоиды. В сетчатой зоне вырабатывается небольшое количество половых гормонов.
Альдостерон усиливает в дистальных канальцах почек реабсорбцию ионов Na+, одновременно увеличивая при этом выведение с мочой ионов К+. Аналогичное усиление натрий-калиевого обмена происходит в потовых слюнных железах, а также в кишечнике. Это приводит к изменению электролитного состава плазмы крови (гипернатриемия и гипокалиемия). Кроме того, под влиянием альдостерона резко возрастает почечная реабсорбция воды, которая всасывается пассивно по осмотическому градиенту, создаваемому ионами Na+. Это приводит к существенным изменениям гемодинамики -- увеличивается объем циркулирующей крови, возрастает АД. Вследствие усиленного обратного всасывания воды уменьшается диурез. При повышенной секреции альдостерона увеличивается склонность к отекам, что обусловлено задержкой в организме натрия и воды, повышением гидростатического давления крови в капиллярах и в связи с этим -- усиленной экссудацией жидкости из просвета сосудов в ткани. За счет усиления процессов экссудации и отечности тканей альдостерон способствует развитию воспалительной реакции и является провоспалительным гормоном. Под влиянием альдостерона увеличивается также секреция ионов Н+ в канальцевом аппарате почек, что приводит к снижению их концентрации во вне­клеточной жидкости и изменению кислотно-основного состояния (алкалоз).
Снижение секреции альдостерона вызывает усиленное выведение натрия и воды с мочой, что приводит к дегидратации тканей, снижению объема циркулирующей крови и уровня АД. В результате в организме возникают явления циркуляторного шока. Концентрация калия в крови при этом, наоборот, увеличивается, что является причиной нарушения электрической стабильности сердца и развития сердечных аритмий.
Основным фактором, регулирующим секрецию альдостерона, является функционирование ренин-ангиотензин-альдостероновой системы. При снижении уровня АД наблюдается возбуждение симпатической части автономной нервной системы, что приводит к сужению почечных сосудов. Уменьшение почечного кровотока способствует усиленной выработке ренина в юкстагломерулярных нефронах почек. Ренин является ферментом, который действует на плазменный
б2-глобулин ангиотензиноген, превращая его в ангиотензин I. Образовавшийся ангиотензин I затем превращается в ангиотензин II, который увеличивает секрецию альдостерона. Выработка альдостерона может усиливаться также по механизму обратной связи при изменении электролитного состава плазмы крови, в частности при гипонатриемии или гиперкалиемии. В незначительной степени секреция этого гормона стимулируется кортикотропином.
Глюкокортикоиды вызывают следующие эффекты:
1. Влияют на все виды обмена веществ:
а) на белковый обмен. Под влиянием глюкокортикоидов стимулируются процессы распада белка. В основе этого эффекта лежит угнетение транспорта аминокислот из плазмы крови в клетки, что вызывает торможение последующих стадий белкового синтеза. Катаболизм белка приводит к снижению мышечной массы, остеопорозу; уменьшается также скорость заживления ран. Распад белка приводит к уменьшению содержания белковых компонентов в защитном мукоидном слое, покрывающем слизистую оболочку пищеварительного тракта. Последнее способствует увеличению агрессивного действия соляной кислоты и пепсинах что может привести к образованию пептических язв (ульцерогенный эффект глюкокортикоидов);
б) на жировой обмен. Глюкокортикоиды усиливают мобилизацию жира из жировых депо и увеличивают концентрацию жирных кислот в плазме крови. Вместе с тем увеличивается отложение жира в области лица, груди и на боковых поверхностях туловища;
в) на углеводный обмен. Введение глюкокортикоидов приводит к увеличению содержания глюкозы в плазме крови (гипергликемия). В основе этого эффекта лежит стимулирующее действие на процессы глюконеогенеза. Избыток аминокислот, образовавшихся в результате катаболизма белка, используется для синтеза глюкозы в печени. Кроме того, глюкокортикоиды ингибируют активность фермента гексокиназы, что препятствует утилизации глюкозы тканями. Поскольку при избытке глюкокортикоидов основным источником энергии являются жирные кислоты, образующиеся за счет усиленной мобилизации жира, определенное количество глюкозы сберегается от энергетических трат, что также способствует гипергликемии. Гипергликемический эффект является одним из компонентов защитного действия глюкокортикоидов при стрессе, поскольку в виде глюкозы в организме создается запас энергетического субстрата, расщепление которого помогает преодолеть действие экстремальных стимулов.
Таким образом, по характеру своего влияния на углеводный обмен глюкокортикоиды являются антагонистами инсулина. При длительном приеме этих гормонов с целью лечения или повышенной их выработке в организме может развиться стероидный диабет.
2. Противовоспалительное действие. Глюкокортикоиды угнетают все стадии воспалительной реакции (альтерацию, экссудацию и пролиферацию), стабилизируют мембраны лизосом, что предотвращает выброс протеолитических ферментов, способствующих разви­тию воспалительной реакции. Глюкокортикоиды нормализуют повышенную проницаемость сосудов и тем самым уменьшают процессы экссудации и отечность тканей, а также выделение медиаторов воспалительной реакции. Глюкокортикоиды угнетают процессы фагоцитоза в очаге воспаления. Кроме того, они уменьшают выраженность лихорадочной реакции, сопутствующей воспалительному процессу, за счет снижения выброса интерлейкина-1 из лейкоцитов, что снижает его стимулирующий эффект на центр теплопродукции в гипоталамусе.
3. Противоаллергическое действие. Изложенные выше эффекты, лежащие в основе противовоспалительного действия, во многом определяют также ингибирующее действие глюкокортикоидов на развитие аллергической реакции (стабилизации лизосом, угнетение образования факторов, усиливающих аллергическую реакцию, снижение экссудации и др.). Гиперпродукция глюкокортикоидов приводит к снижению числа эозинофилов в крови, увеличенное количество которых обычно является «маркером» аллергии.
4. Подавление иммунитета. Глюкокортикоиды угнетают как клеточный, так и гуморальный иммунитет, что связано со снижением образования антител и процессов фагоцитоза. Длительный прием глюкокортикоидов приводит к инволюции тимуса и лимфоидной ткани, являющихся иммунокомпетентными органами, вследствие чего уменьшается количество лимфоцитов в крови. Подавление иммунитета может являться серьезным побочным эффектом при длительном приеме глюкокортикоидов, поскольку при этом возрастает вероятность присоединения вторичной инфекции. С другой стороны, этот эффект может являться терапевтическим при использовании глюкокортикоидов для подавления роста опухолей, происходящих из лимфоидной ткани, или для торможения реакций отторжения при трансплантации органов и тканей.
5. Участие в формировании необходимого уровня АД. Глюкокортикоиды повышают чувствительность сосудистой стенки к действию катехоламинов, что приводит к гипертензии. Повышению уровня АД способствует также выраженное в небольшой степени минералокортикоидное действие глюкокортикоидов (задержка в организме натрия и воды, сопровождающаяся увеличением объема циркулирующей крови). Гипертензивный эффект является одним из компонентов противошокового действия (шок всегда сопровождается резким падением АД). Противошоковая активность этих гормонов связана также с гипергликемией. Поскольку утилизация глюкозы мозговой тканью не зависит от инсулина, поступление глюкозы в клетки мозга определяется исключительно ее концентрацией в плазме крови. В связи с этим вызванная глюкокортикоидами гипергликемия может расцениваться как важный фактор адекватного энергетического обеспечения мозга, что противодействует развитию шока.
В организме существует определенный суточный ритм выработки глюкокортикоидов. Основная масса этих гормонов вырабатывается в утренние часы (6--8 ч утра). Последнее учитывают при распре­делении суточной дозы гормонов в процессе длительного лечения глюкокортикоидами.
Продукция глюкокортикоидов регулируется кортикотропином. Его выделение усиливается при действии на организм стрессорных стимулов различной природы, что является пусковым моментом для развития адаптационного синдрома.
Половые гормоны. При избыточном образовании половых гормонов в сетчатой зоне развивается адреногенитальный синдром двух типов -- гетеросексуальный и изосексуальный. Гетеросексуальный синдром развивается при выработке гормонов противоположного пола и сопровождается появлением вторичных половых признаков, присущих другому полу. Изосексуальный синдром наступает при избыточной выработке гормонов одноименного пола и проявляется ускорением процессов полового развития.
Катехоламины. В мозговом веществе надпочечников содержатся хромаффинные клетки, в которых синтезируются адреналин и норадреналин. Примерно 80% гормональной секреции приходится на адреналин и 20% -- на норадреналин. Продукция этих гормонов резко усиливается при возбуждении симпатической части автономной нервной системы. В свою очередь выделение этих гормонов в кровь приводит к развитию эффектов, аналогичных действию стимуляции симпатических нервов. Разница состоит лишь в том, что гормональный эффект является более длительным. К наиболее важным эффектам катехоламинов относятся стимуляция деятельности сердца, вазоконстрикция, торможение перистальтики и секреции кишечника, расширение зрачка, уменьшение потоотделения, усиление процессов катаболизма и образования энергии. Адреналин имеет большее сродство к в-адренорецепторам, локализующимся в миокарде, вследствие чего вызывает положительные инотропный и хронотропный эффекты в сердце. С другой стороны, норадреналин имеет более высокое сродство к сосудистым б-адренорецепторам. Поэтому, вызываемые катехоламинами вазоконстрикция и увеличение периферического сосудистого сопротивления в большей степени обусловлены действием норадреналина.

2.6 Половые железы.

В “Диалогах” греческого философа Платона упоминается миф о совершенном человеке - андрогине, сочетавшем в себе мужские и женские половые признаки и в могуществе равном богам. Опасавшийся за свою власть, Зевс лишил андрогина сверхъестественной силы, расколов его тело надвое и положив начало двум полам. Принадлежность к каждому из них программирует половые железы - яичники у женщин и яички у мужчин. Но полностью разделить “половинки” олимпийскому богу так и не удалось: в мужском организме всегда вырабатывается небольшое количество женских гормонов, а в женском - мужских. Если их соотношение нарушается, мужчина начинает принимать женоподобные формы - врачи называют это феминизацией. И наоборот, подобно Магдалене Вентура, дама может обзавестись усами и бородой, густой растительностью на теле; такое отклонение именуют вирилизом.
Мужские половые железы. В мужских половых железах (яички) происходят процессы сперматогенеза и образование мужских половых гормонов -- андрогенов. Сперматогенез осуществляется за счет деятельности сперматогенных эпителиальных клеток, которые содержатся в семенных канальцах. Выработка андрогенов происходит в интерстициальных клетках -- гландулоцитах (клетки Лейдига), локализующихся в интерстиции между семенными канальцами и составляющих примерно 20% от общей массы яичек. Небольшое количество мужских половых гормонов вырабатывается также в сетчатой зоне коркового вещества надпочечников. К андрогенам относится несколько стероидных гормонов, наиболее важным из которых является тестостерон. Продукция этого гормона определяет адекватное развитие мужских первичных и вторичных половых признаков (маскулинизирующий эффект). Под влиянием тестостерона в период полового созревания увеличиваются размеры полового члена и яичек, появляется мужской тип оволосения, меняется тональность голоса. Кроме того, тестостерон усиливает синтез белка (анаболический эффект), что приводит к ускорению процессов роста, физического развития, увеличению мышечной массы. Тестостерон влияет на процессы формирования костного скелета -- он ускоряет образование белковой матрицы кости, усиливает отложение в ней солей кальция. В результате увеличиваются рост, толщина и прочность кости. При гиперпродукции тестостерона ускоряется обмен веществ, в крови возрастает количество эритроцитов.
Механизм действия тестостерона обусловлен его проникновением внутрь клетки, превращением в более активную форму (дигидротестостерон) и дальнейшим связыванием с рецепторами ядра и органелл, что приводит к изменению процессов синтеза белка и нуклеиновых кислот. Секреция тестостерона регулируется лютеинизирующим гормоном аденогипофиза, продукция которого возрастает в период полового созревания. При увеличении содержания в крови тестостерона по механизму отрицательной обратной связи тормозится выработка лютеинизирующего гормона. Уменьшение продукции обоих гонадотропных гормонов -- фолликулостимулирующего и лютеинизирующего, происходит также при ускорении процессов сперматогенеза.
У мальчиков в возрасте до 10--11 лет в яичках обычно отсутствуют активные гландулоциты (клетки Лейдига), в которых вырабатываются андрогены. Однако секреция тестостерона в этих клетках происходит во время внутриутробного развития и сохраняется у ребенка в течение первых недель жизни. Это связано со стимулирующим действием хорионического гонадотропина, который продуцируется плацентой.
Недостаточная секреция мужских половых гормонов приводит к развитию евнухоидизма, основными проявлениями которого являются задержка развития первичных и вторичных половых признаков, диспропорциональность костного скелета (несоразмерно длинные конечности при относительно небольших размерах туловища), увеличение отложения жира на груди, в нижней части живота и на бедрах. Нередко отмечается увеличение молочных желез (гинекомастия). Недостаток мужских половых гормонов приводит также к определенным нервно-психическим изменениям, в частности к отсутствию влечения к противоположному полу и утрате других ти­пичных психофизиологических черт мужчины.
Женские половые железы. В женских половых железах (яичники) происходит выработка эстрогенов и прогестерона. Секреция этих гормонов характеризуется определенной цикличностью, связанной с изменением продукции гипофизарных гонадотропинов в течение менструального цикла. Эстрогены, помимо яичников, в небольшом количестве могут также вырабатываться в сетчатой зоне коркового вещества надпочечников. Во время беременности секреция эстрогенов существенно увеличивается за счет гормональной активности плаценты. Наиболее активным представителем этой группы гормонов является в-эстрадиол. Прогестерон представляет собой гормон желтого тела; его продукция возрастает в конце менструального цикла.
Под влиянием эстрогенов ускоряется развитие первичных и вторичных женских половых признаков. В период полового созревания увеличиваются размеры яичников, матки, влагалища, а также наружных половых органов. Усиливаются процессы пролиферации и рост желез в эндометрии. Эстрогены ускоряют развитие молочных желез, что приводит к увеличению их размеров, ускоренному формированию протоковой системы. Эстрогены влияют на развитие костного скелета посредством усиления активности остеобластов. Вместе с тем за счет влияния на эпифизарный хрящ тормозится рост костей в длину. Действие этих гормонов приводит к увеличению биосинтеза белка; усиливается также образование жира, избыток которого откладывается в подкожной основе, что определяет внешние особенности женской фигуры. Под влиянием эстрогенов развивается оволосение по женскому типу: кожа становится более тонкой и гладкой, а также хорошо васкуляризованной.
Основное назначение прогестерона заключается в подготовке эндометрия к имплантации оплодотворенной яйцеклетки. Под дей­ствием этого гормона усиливается пролиферация и секреторная активность клеток эндометрия, в цитоплазме накапливаются липиды и гликоген, усиливается васкуляризация. Усиление пролиферации и секреторной активности происходит также в молочных железах, что приводит к увеличению их размера.
Недостаточная секреция женских половых гормонов влечет за собой развитие характерного симптомокомплекса, основными признаками которого являются прекращение менструаций, атрофия молочных желез, влагалища и матки, отсутствие характерного оволосения по женскому типу. Существенные изменения претерпевает костная система -- задерживается окостенение зоны эпифизарного хряща, что стимулирует рост кости в длину. Как правило, это больные высокого роста, с несоразмерно удлиненными конечностями, суженным и уплощенным тазом. Внешний вид приобретает мужские черты, тембр голоса становится низким.
Выработка эстрогенов и прогестерона регулируется гипофизарными гонадотропинами, продукция которых возрастает у девочек, начиная с возраста 9--10 лет. Секреция гонадотропинов тормозится при высоком содержании в крови женских половых гормонов.

Глава 3. Управляющие эндокринные железы.

3.1 Гипоталамус

Гипоталамус, или подбугровая область промежуточного мозга, является высшим центром интеграции и регуляции вегетативных функций организма. Он принимает участие в корреляции различных соматических функций, регуляции работы желудочно-кишечного тракта, сна и бодрствования, водно-солевого, жирового и углеводного обмена, поддержания температуры тела и гомеостаза. Одна из наиболее важных функций гипоталамуса связана с регуляцией деятельности эндокринной системы организма.

Разнообразие функции гипоталамуса обусловлено сложностью его морфологического строения и обилием связей с различными отделами нервной системы, органами чувств, внутренними органами и внутренней средой организма.

Строение гипоталамуса. Гипоталамус относится к филогенетически древним образованиям мозга и хорошо развит уже у низших позвоночных. Он образует дно третьего желудочка и лежит между перекрестом зрительных нервов и задним краем маммилярных тел. В состав гипоталамуса входит серый бугор, срединное возвышение, воронка и задняя или нервная доля гипофиза. Спереди он граничит с преоптической областью, которую отдельные авторы также включают в систему подбугорья.

Гипоталамус развивается в ранний период эмбриогенеза из переднего мозгового пузыря. В процессе развития головного мозга, после обособления больших полушарий, передний мозговой пузырь дает начало межуточному мозгу, а его полость превращается в третий желудочек. В дне этого желудочка путем выпячивания образуется мозговая воронка, дистальный конец которой превращается в заднюю долю гипофиза. Основание воронки значительно утолщается и дает начало серому бугру. В ка-удальной части образуются парные маммилярные тела. Боковые стенки третьего желудочка образуют зрительные бугры, связанные с большими полушариями головного мозга. Центральное серое вещество гипоталамуса без резкой границы переходит в центральное серое вещество среднего мозга. Нервные клетки в гипоталамусе собраны в более или менее обособленные группы или ядра, которые занимают в нем определенное место и состоят из различных по своему строению невронов. Разнообразие нейрального состава ядер гипоталамуса обусловлено их функциональной дифференциройкой.

В литературе пока отсутствует единая номенклатура гипоталамических ядер. Пинес и Майман выделяют в гипоталамусе передний, средний и задний отделы. В каждом отделе они различают следующие ядра.

Передний отдел:

супрахиазматическое;

супраоптическое (передние, латеральные и медиальные отделы);

пара-вентрикулярное.

Средний отдел:

супраоптическое (задние отделы);

туберальные (верхние, средние и нижние);

паллидо-инфундибулярное;

маммило-инфундибулярное.

Задний отдел:

маммило-инфундибулярные;

ядра маммилярных тел (внутреннее, наружное, вставочное);

супра-маммилярные.

Филогенетически наиболее древними образованиями гипоталамуса являются паравентрикулярное и супраоптическое ядра. Они гомологичны преоптическим ядрам низших позвоночных. Супраоптическое ядро лежит в переднем гипоталамусе над хиазмой и проходит в дорсолатеральном направлении от зрительного перекреста до середины серого, бугра.

Оно подразделяется на отдельные группы нейронов, соединенных между собой клеточными мостиками. Не менее характерной группировкой клеток гипоталамуса является паравентрикулярное ядро, расположенное под передней коммисурой в стенке третьего желудочка. Паравентрикулярное ядро развивается из того же самого клеточного материала, что и супраоптическое ядро. В строении клеток этих ядер обнаруживается значительное сходство. Они имеют округлую, грушевидную или удлиненную форму и от нейронов других ядер гипоталамуса и центрального серого вещества отличаются значительно более крупными размерами.
Васкуляризация гипоталамуса. Гипоталамическая область характеризуется обильным кровоснабжением. Наибольшей васкуляризацией отличается паравентрикулярное и супраоптическое ядра, в которых каждая клетка связана с 2--3 капиллярами. Здесь на площадь 1 мм2 приходится до 2650 капилляров. Электронно-микроскопические исследования показали, что в местах контакта между телом нейрона и сильно утонченной базальной мембраной эндотелия капилляров часто совсем нет глиальной прослойки. Вследствие этого сосуды обладают очень хорошей проницаемостью даже для высокомолекулярных белковых соединений. Из крови в клетки супраоптических и паравентрикулярных ядер легко поступают питательные вещества, гормоны и другие химические соединения. Гипоталамические образования поэтому обладают высокой чувствительностью к отклонениям в составе гуморальной среды организма и отвечают на них изменением физиологической активности.
Важнейшее значение в механизме гипоталамической регуляции гормональной функции гипофиза имеет общность их васкуляризации. Между гипоталамусом и передней долей гипофиза существует специальная система кровообращения, получившая название воротной, или портальной, системы сосудов гипофиза. Она состоит из артериол, которые берут начало от артерий виллизиевого круга. Артериолы проникают в срединное возвышение серого бугра и здесь распадаются на большое количество капилляров. В срединном возвышении клубочки и петли этих капилляров вступают в тесный контакт с окончаниями нервных волокон клеток нейросекреторных ядер гипоталамуса и образуют с ними так называемые вазоневральные синапсы. Первичные капилляры в сером бугре собираются в портальные вены, которые по гипофизарной ножке идут в переднюю долю гипофиза, и в его паренхиме распадаются в густую сеть синуооидных капилляров (вторичная капиллярная сеть). В заднюю долю гипофиза сосуды портальной системы не проникают, и кровь в нее поступает из других источников. Движение крови по портальной системе от гипоталамуса к гипофизу происходит в результате сокращения стенок сосудов. В переднюю долю гипофиза кровь поступает еще по средней и задней гипофизарным артериям, а также по сосудистым анастомозам из нейрогипофиза.
Связи гипоталамуса. Гипоталамическая область имеет обширные связи с различными отделами центральной нервной системы, в том числе с ретикулярной формацией ствола мозга, гипофизом и т. д. Среди проводящих путей гипоталамуса различают эфферентные, афферентные и внутригипоталамические связи.
Эфферентные пути от гипоталамуса идут к таламусу (гипоталамо-таламический путь), покрышке (маммилотегментальный путь), от всех ядер гипоталамуса к нижележащим симпатическим образованиям и узлам (диффузные нисходящие связи), от гипоталамуса к гипофизу (гипоталамо-гипофизарный тракт). В гипоталамо-гипофизарных путях выделяют супраоптикогипофизарный, а также туберогипофизарный пути. Первый путь образован большим количеством (до 100000) аксонов клеток супраоптического и паравентрикулярного ядер, которые по ножке гипофиза поступают в заднюю долю гипофиза. Эти волокна проходят во внешнем слое срединного возвышения и не проникают из задней в переднюю долю гипофиза.
В регуляции функций эндокринной системы особое значение имеет тубероинфундибулярный путь, который передает эфферентацию из гипоталамуса в переднюю долю гипофиза. Волокна этого пути прослеживаются до срединного возвышения, где их окончания с петлями и клубочками первичных капилляров портальной системы образуют рассмотренные выше вазоневральные синапсы.
Афферентные пути к ядрам гипоталамуса идут от таламуса, лобных долей, гиппокампа, зрительного бугра, амигдалоидного комплекса, миндалин, экстрапирамидной системы и ретикуляр-ной формации ствола мозга.
Ретикулярной формации приписывается большое значение в регуляции функции гипоталамуса и эндокринной системы. Ис-следованиями Грина, Русселя и др. установлено, что ядра гипо-таламуса находятся в тесной анатомической и функциональной связи с ретикулярной формацией. Последняя образована слож-ным комплексом невронов различной величины, которые диф-фузно рассеяны в стволе мозга. Для отростков клеток ретику-лярной формации характерно наличие большого количества коллатералей, через посредство которых один аксон может вступать в функциональные связи с множеством нервных клеток (до 20 000). Ретикулярная формация, как впервые было установлено Мэгуном и Мурицци, оказывает общее активирующее действие на различные отделы мозга и состоит из восходящей и нисходя-щей систем. Волокна восходящей системы от каудальных частей продолговатого мозга, варолиева моста и среднего мозга прое-цируются на различные участки коры больших полушарий; нис-ходящие же волокна связывают ретикулярную формацию с си-стемой спинного мозга. В ретикулярную формацию проецируется огромное количество волокон от ядерных образований ствола мозга, рецепторов внутренних органов, от аппаратов зрения, слуха и проводников чувствительности. Ретикулярная формация отличается высокой чувствительностью к изменениям гумораль-ной среды организма. На воздействие гормонов и различных хи-мических соединений она быстро отвечает изменением своей фи-зиологической активности.
Гипоталамус получает восходящие волокна преимущественно от ретикулярной формации среднего мозга. Через покрышку среднего мозга и задний отдел гипоталамуса эти волокна дости-гают серого бугра. На этой морфологической основе осуществляется функциональная связь между ретикулярной форма-цией, гипоталамусом и эндокринными железами. Ретикулярная формация среднего мозга передает импульсы через гипоталамус к эндокринным железам организма и оказывает активизирующее действие на ядра подбугорья.
Нейросекреторная деятельность гипоталамуса. Нейроны от-дельных ядер гипоталамуса проявляют способность к секретор-ной деятельности (нейрокринии) и вырабатывают особые веще-ства (нейросекреты), которые играют важную роль в регуляции функции эндокринной системы. Пионерами в изучении гипоталамической нейросекреции являются Шаррер и Гаупп, которые еще в 1933 г. обнаружили в клетках переднего гипоталамуса гранулы и капельки нейросекрета. Последующими исследованиями было установлено широкое распространение явлений нейросекреции не только у позвоночных, но и беспозвоночных животных.
Нейросекреторные невроны гипоталамуса одновременно сочетают в себе свойства нервных и железистых клеток. Они относятся к мультиполярным невронам с относительно крупным ядром и содержат нейрофибриллы, хорошо развитую систему эргастоплазмы (субстанцию Ниссля) с рибосомами и общие для всех клеток органоиды.
Нейросекреторные процессы наиболее полно изучены в клетках супраоптического и паравентрикулярного ядер. Нейросекрет представлен гранулярными образованиями, обладающими известным постоянством своего строения. Гранулы имеют вид гомогенных шариков и пузырьков, окруженных мембраной. В зависимости от специфического отношения к красителям различают гомориположительный и гомориотрицательный нейросекрет. Первый хорошо окрашивается хромовоквасцовым гематоксилином по Гомори в темно-синий цвет; гомориотрицательное или оксифильное нейросекреторное вещество при окраске по Гомори красится флоксином в розовый цвет.
Химическая природа нейросекрета окончательно не выяснена. Гомориположительное вещество обладает относительно высокой химической устойчивостью и является сложным белково-полиса-харидо-липидным соединением. Гомориотрицательный нейросекрет является относительно простым протеином, богатым аминокислотами с сульфгидрильными и дисульфидными группами.
Первичный биосинтез нейросекрета в клетках происходит в приядерной зоне цитоплазмы. В перинуклеарной области он появляется в виде мелких пылевидных зернышек, которые затем распространяются по всей клетке. Образование нейросекрета связано с уменьшением размеров ядра и ядрышка, а также заметной редукцией субстанции Ниссля. Электронномикро-скопические исследования показывают, что в синтезе нейросекрета главную роль играет эргастоплазма с ее системой рибосом и аппарат Гольджи (Шаррер и др.). Считают, что образование нейросекрета в клетках ядер гипоталамуса протекает по апокриновому, меракриновому и голокриновому типам (Поленов).
Интенсивность синтеза секрета и выведения его из клеток меняется в зависимости от времени года, условий температурного и светового режимов, физиологического состояния организма, стадии полового цикла и т. д. При дегидратации организма, например, в клетках паравентрикулярного и супраоптического ядер значительно уменьшается содержание нейросекреторного вещества.
Возрастные изменения гипоталамической нейросекреции изучены еще недостаточно. Образование нейросекрета в супраоптических и паравентрикулярных ядрах гипоталамуса начинается уже в ранний период индивидуального развития. В ранний период развития в гипоталамусе содержится меньше нейросекрета, чем у взрослых.
Нейросекрет оказывает физиологическое действие через гуморальную среду организма. В связи с этим значительный интерес представляет вопрос о путях его выведения из нейронов ядер гипоталамуса. Микроскопическими исследованиями установлено, что из невронов супраоптических и паравентрикулярных ядер гранулы гомориположительного нейросекрета по длинным аксонам гипоталамо-гипофизарного тракта токами аксоплазмы смещаются в заднюю долю гипофиза. По мере передвижения от места образования до окончания нервных отростков изменяются химические и тинкториальные свойства нейросекрета. По данным отдельных исследователей, нейросекрет может синтезироваться и в терминалях аксонов, лежащих в задней доле гипофиза (Дипен). Задняя доля гипофиза является, таким образом, резервуаром для гипоталамического гомориположительного нейросекрета. Отсюда нейросекрет поступает в кровеносное русло. Часть нейросекреторного вещества может попадать в кровеносное русло и через ликвор третьего желудочка. Кроме того, нейросекреторные клетки посылают свои аксоны к обонятельным ядрам и эпендиме боковых желудочков переднего мозга. Депонированный в задней доле гипофиза, гомориположительный нейросекрет является носителем физиологически высокоактивных гормонов вазопрессина и окситоцина. По мнению некоторых авторов,_окситоцин образуется в паравентрикулярном, а вазопресин в супраоптическом ядрах. Другие же исследователи считают, что, в зависимости от физиологического состояния организма, клетки одного и того же ядра могут синтезировать оба гормона.
Гипоталамический нейросекрет поступает также в переднюю долю гипофиза и контролирует ее гормональную функцию. Однако сюда он поступает из подбугорья не по нервным окончаниям, а с током крови, циркулирующей по сосудам портальной системы. Гуморальный путь транспортировки вырабатываемых клетками гипоталамуса веществ в переднюю долю гипофиза доказывается прямыми экспериментами. Бенуа и Ассенмахер указывают, что перерезка только одной ножки не оказывает существенного влияния на гормональную функцию гипофиза. Перерезка же портальной системы сосудов, при сохранении целостности гипофизной ножки, приводит к угнетению физиологической активности передней доли гипофиза. Показано также, что кровь, взятая из портальных сосудов, стимулирует гипофиз, тогда как кровь из сонной артерии этими свойствами не обладает. Эти эксперименты показывают, что из гипоталамуса в переднюю долю гипофиза действительно поступают вещества, которые активируют его гормональную деятельность. Однако природа этих веществ изучена еще недостаточно.
Микроскопическими исследованиями установлено, что во вну-треннем слое срединного возвышения амиэлиновые волокна тубероинфундибулярного пучка, берущие начало от клеток ядер серого бугра, своими окончаниями вступают в связь с располо-женными здесь короткими петлями и клубочками первичных ка-пилляров портальной системы.
В этих вазоневральных синапсах отростки нервных клеток гипоталамуса отдают в кровь портальной системы секреторное вещество, которое поступает затем в паренхиму передней доли гипофиза. Этот нейросекрет, выделяемый ядрами серого бугра, однако, не окрашивается по Гомори. Отдельные исследователи отождествляли его с медиаторами нервных клеток (ацетилхолином и норадреналином). В настоящее время эта теория уже почти совсем не имеет сторонников. Исследования показали, что нейросекрсторное вещество от обычных метаболитов нервных клеток отличается более высокой энзиматической устойчивостью и спо-собностью оказывать физиологическое действие на значительном расстоянии от места своего образования в гипоталамусе. Значи-тельный интерес представляет тот факт, что при электролитиче-ском повреждении отдельных участков срединного возвышения в передней доле гипофиза подавляется образование и выведение в кровь не всех, а только какого-либо одного гормона, активи-рующего функцию строго определенной периферической эндо-кринной железы. На этом основании считают, что от-дельные нервные волокна от различных клеток гипоталамуса не-сут в срединное возвышение и отдают в кровь портальной системы не одно, а несколько особых веществ или нейрогуморов (Каррато и др.), которые реализуют различные функции передней доли гипофиза (гонадотропную, тиреотропную и адренокортикогропную). Возможно, различные нейрогуморы сосудами портальной системы проецируются на определенные зоны паренхимы передней доли гипофиза.
Как уже отмечалось, значение гомориположительного нейросекрета в регуляции гормональной функции гипофиза изучено еще недостаточно. Обычными методами окрашивания его не удается выявить в туберогипофизарном пути и в крови портальной системы. Вместе с тем вокруг капилляров, в их эндотелии и между секреторными клетками передней доли гипофиза часто накапливается значительное количество гранул, которые проявляют такие же реакции, как и гипоталамический неиросекрет. При избыточном введении в организм поваренной соли происходит быстрое выведение нейросекрета из задней доли гипофиза, супраоптического и паравентрикулярного ядер. В этих условиях нейросекретом обогащаются и секреторные клетки передней доли гипофиза (Войткевич и др.). Отдельные исследователи допускают, что в осуществлении связи гипоталамуса с гипофизом важную роль могут играть вазопресин и окситоцин, носителями которых является неиросекрет паравентрикулярного и супраоптического ядер (Мартини и др.). Следует, однако, отметить, что методом хроматографии Саффрон удалось отделить в экстрактах задней доли гипофиза от вазопресина и окситоцина вещество, которое активирует адренокортикотропную функцию передней доли гипофиза.
Приведенные данные показывают, что вопрос о природе нейросекрета, ответственного за регуляцию функции гипофиза, еще нуждается в дальнейшей разработке. Тем не менее, обширный фактический материал указывает на ведущее значение в гнпоталамическом контроле функции эндокринной системы васкулярных связей. Срединное возвышение серого бугра гипоталамуса и является тем участком, во внутреннем слое которого через посредство вазоневральных синапсов осуществляется передача влияний с гипоталамуса на переднюю долю гипофиза.
Значение гипоталамуса в регуляции функции эндокринной системы. Гипоталамус принимает участие в нервной и гуморальной регуляции физиологических функций организма. Особенно велико его значение в контроле гормональной деятельности эндокринной системы. Прежде всего гипоталамус сам продуцирует вещества, которые гуморальным путем влияют на отдельные функции организма. Уже отмечалось, что нейроны супраоптического и паравентрикулярного ядер подбугорья синтезируют неиросекрет, который перемещается по нервным отросткам гипоталамо-гипофизарного тракта и аккумулируется в задней доле гипофиза. Этот нейросекрет является носителем физиологически высокоактивных гормонов вазопресина и окситоцина.
Клинические наблюдения и многочисленные эксперименталь-ные исследования последних лет показывают, что гипоталамус оказывает доминирующее влияние на гормональную деятель-ность передней доли гипофиза и через нее на многие перифериче-ские железы внутренней секреции. Этот вывод основан прежде всего на экспериментах по нарушению анатомической связи между гипоталамусом и гипофизом. Так, при перерезке гипофизарной ножки резко пони-жается выделение гипофизом в кровь кринотропных гормонов, активирующих функцию половых желез, коры надпочечников и щитовидной железы. При нарушении связи между гипофизом и гипоталамусом периферические железы переходят в состояние физиологической депрессии. Эта операция особенно сильно от-ражается на функциональном состоянии половых желез. Если после перерезки ножки портальные сосуды регенерируют и вос-станавливается транспортировка из гипоталамуса нейросекрста, то тогда опять нормализуется работа передней доли гипофиза и периферических желез.
Представления о механизмах передачи регулирующих влия-ний с гипоталамуса на гипофиз за короткую историю разработки этой важной проблемы современной эндокринологии претерпели существенные изменения. На первых этапах ее разработки мно-гие исследователи считали, что влияние гипоталамуса на гипофиз осуществляется через посредство парасимпатической и симпа-тической нервной системы. Поскольку, однако, прямая нервная связь между ними, отсутствует, то Шаррер уже давно высказал предположение, что гипоталамическая регуляция гормональных функций гипофиза осуществляется преимущест-венно гуморальным путем при участии нейросекрета. Это поло-жение в дальнейшем подтвердилось не только в опытах с перерезкой портальных сосудов, но и в экспериментах по транс-плантации гипофиза в различные органы. При пересадке его гипофизэктомированным животным в почку или в височную долю (Гаррис и Якобсон) гипофиз приживляется, васкуляризируется, но в этих условиях угнетается его гормональная деятельность. Если же этот гипофиз затем подсадить в область срединного воз-вышения, то после врастания портальных сосудов его гормональ-ная деятельность быстро восстанавливается. Такой же результат получен при совместной инкубации вне организма гипофиза с фрагментами гипоталамуса или при добавлении в культуру экстракта из срединного возвышения подбугорья.
Многочисленные экспериментальные исследования подтвер-ждают, что гипоталамический контроль гормональной функции гипофиза действительно осуществляется через кровь уже рас-смотренными прежде нейрогуморами (реализующими факто-рами). В экспериментальных условиях на функцию передней доли гипофиза может оказывать влияние и суммарный экстракт из нейрогипофиза. На этом основании отдельные исследователи допускают, возможность действия на гормонопоэз передней доли гипофиза и нейросекрета, который поступает в кровеносное русло из нейрогипофиза.
Значительный интерес представляет вопрос о локализации в гипоталамусе участков, ответственных за регуляцию различных гормональных функций гипофиза. При его разработке в настоящее время используются различные приемы. Наиболее широкое применение получил метод точечной электрокаугуляции гипоталамуса, осуществляемой с помощью стереотаксического аппарата, позволяющего производить строго координированные передвижения электродов. Следует, однако, отметить, что и применение стереотаксической техники не устраняет затруднений в решении поставленного вопроса о топографической локализации в гипоталамусе различных зон, регулирующих отдельные функции гипофиза, так как входящие в его состав клеточные компоненты находятся в сложных морфологических и функциональных взаимоотношениях между собой и другими отделами нервной системы. Поэтому повреждение одного участка неизбежно приводит к морфологическим и функциональным нарушениям других компонентов системы. Кроме того, в строении и функциональной дифференцировке отдельных частей гипоталамуса наблюдаются и видовые различия. Вследствие этого полученные различными исследователями данные о значении отдельных участков гипоталамуса в регуляции эндокринных функций организма порою носят противоречивый характер. В настоящее время вполне определенно можно говорить лишь о том, что гипоталамус контролирует гонадотропную, тиреотропную и аденокортикотропную функции передней доли гипофиза. Для осуществления этих функций, по Бенуа, например, необходима целостность зоны переднего гипоталамуса, расположенной под паравентри-кулярным ядром на границе с преоптическим и туберальным участками.
Рассмотренные выше данные показывают, что гипоталамус и гипофиз в морфологическом и функциональном отношении образуют единую гипоталамо-гипофизарную систему, в которой нервные импульсы переключаются на гуморальные. Значительный интерес, представляет вопрос о механизме работы этого своеобразного пульта управления эндокринными функциями организма. Обширный материал экспериментальных исследований позволяет рассматривать гипоталамус, гипофиз и периферические железы (железы-мишени) как звенья единой системы, функциональная деятельность которой подчиняется принципу обратных связей с самонастройкой на оптимальный для данных условий жизни организма режим работы.
Разработке этих вопросов в свое время много внимания уделял М. М. Завадовский. Давно известно, что избыток в крови гормонов желез-мишеней автоматически приводит к угнетению, а их недостаток -- к стимуляции соответствующих тронных функций передней доли гипофиза. Причем угнетение тронной функции наступает в результате повышения концентрации в крови гормона железы-мишени, при некоторых условиях, может осуществляться и непосредственно через гипофиз. Обратный же механизм регуляции, т. е. стимуляция тропной функции гипофиза понижением содержания в крови гормона железы-мишени, осуществляется при обязательном участии гипоталамуса. Изменение уровня гормона в крови является, таким образом, сигналом, который воспринимается клетками соответствующих ядер гипоталамуса.
При описании васкуляризации гипоталамуса уже отмечалось, что особенности строения стенок капилляров и их проницаемости для сложных химических соединений обеспечивают высокую чувствительность нейронов подбугорья к гормонам. Факт непосредственного действия на нейроны гормонов доказывается многочисленными экспериментами подсадки в соответствующие зоны гипоталамуса ткани эндокринных желез или аппликации синтетическими гормонами. Например, имплантация с помощью стереотаксического аппарата кристаллов полового гормона угнетает гонадотропную функцию гипофиза и физиологическую активность половой железы. Сходный результат дает и трансплантация кусочков яичника. Таким образом, через посредство гормонов гипоталамус получает информацию об уровне активности желез-мишеней и посылает в гипофиз сигналы, в ответ на которые последний через продукцию соответствующих тройных гормонов устраняет неблагоприятные для организма отклонения в функции эндокринной системы. Экспериментальные исследования вместе с тем показывают, что в некоторых случаях афферентная сигнализация от желез-мишеней к гипоталамусу может передаваться и нервнопроводниковым путем. Настройка рассмотренной системы обратных связей носит динамический характер и изменяется прежде всего в различные периоды онтогенеза.
В регуляции функций эндокринных желез принимают также участие внегипоталамические центры нервной системы и прежде всего ретикулярная формация. Хотя разработка этого вопроса находится еще в начальной стадии, тем не менее уже теперь имеются многочисленные доказательства ее участия в контроле гормональной активности отдельных эндокринных желез. Эксперименты показывают, что при блокировании фармакологическими средствами, частичном повреждении или раздражении ретикулярной формации электрическим током наступают значительные изменения в уровне гормональной активности отдельных эндокринных желез.
Ретикулярной формации приписывается большое значение в механизме передачи к эндокринным железам разнообразных воздействий на организм, идущих из внешней среды. Характерные изменения в гормональной деятельности надпочечников, щитовидной железы и гонад, наступающие под воздействием не обычных раздражителей в так называемых реакциях «напряжения», или «стресса», многие исследователи также связывают с деятельностью ретикулярной формации.
Пути действия ретикулярной формации на периферические эндокринные железы изучены еще недостаточно. Имеющиеся экспериментальные данные пока не позволяют решить вопрос о том, оказывает ли она только общее активирующее действие на гипоталамус и переключает в него информацию от внешней среды и внутренних органов или же и сама принимает непосредственное участие в регуляции физиологической активности периферических эндокринных желез. Последнее предположение подтверждается отдельными наблюдениями. Известно, что после удаления гипофиза гормональная деятельность отдельных эндокринных желез полностью не прекращается, а сохраняется на уровне так называемой базальной активности, для которой характерна суточная ритмичность. Последняя, контролируется ретикулярной формацией. Рассмотренные факты приводят отдельных исследователей к заключению, что импульсы от ретикулярной формации могут достигать периферических желез без участия гипофиза. Таким образом, возможен и парагипофизарный путь регуляции эндокринных желез. Ретикулярная формация не только оказывает влияние на гуморальную среду организма, но и сама реагирует на ее изменения. Это указывает на возможность участия ретикулярной формации в рассмотренном выше механизме обратных связей.

3.2 Гипофиз.

В гипофизе выделяют переднюю (аденогипофиз) и заднюю (нейрогипофиз) доли. У многих животных представлена также промежуточная доля (pars intermedia), однако у человека она практически отсутствует. В аденогипофизе вырабатывается 6 гормонов, из них 4 являются тропными (адренокортикотропный гормон, или кортикотропин, тиреотропный гормон, или тиреотропин и 2 гонадотропина -- фолликулостимулирующий и лютеинизирующий гормоны), а 2 -- эффекторными (соматотропный гормон, или соматотропин, и пролактин). в нейрогипофизе происходит депонирование окситоцина и антидиуретического гормона (вазопрессин). Синтез этих гормонов осуществляется в супраоптическом и паравентрикулярном ядрах гипоталамуса. Нейроны, составляющие эти ядра, имеют длинные аксоны, которые в составе ножки гипофиза образуют гипоталамо-гипофизарный тракт и достигают задней доли гипофиза. Синтезированные в гипоталамусе окситоцин и вазопрессин доставляются в нейрогипофиз путем аксонального транспорта с помощью специального белка-переносчика, получившего название «нейрофизин».
Гормоны аденогипофиза.
Адренокортикотропный гормон, или кортикотропин. Основной эффект этого гормона выражается в стимулирующем действии на образование глюкокортикоидов в пучковой зоне коркового вещества надпочечников. В меньшей степени выражено влияние гормона на клубочковую и сетчатую зоны. Кортикотропин ускоряет стероидогенез и усиливает пластические процессы (биосинтез белка, нуклеиновых кислот), что приводит к гиперплазии коркового вещества надпочечников. Оказывает также вненадпочечниковое действие, проявляющееся в стимуляции процессов липолиза, анаболическом влиянии, усилении пигментации. Влияние на пигментацию обусловлено частичным сов­падением аминокислотных цепей кортикотропина и меланоцитостимулирующего гормона.
Выработка кортикотропина регулируется кортиколиберином гипоталамуса.
Тиреотропный гормон, или тиреотропин. Под влиянием тиреотропина стимулируется образование в щитовидной железе тироксина и трийодтиронина. Тиреотропин увеличивает секреторную активность тиреоцитов за счет усиления в них пластических процессов (синтез белка, нуклеиновых кислот) и увеличенного поглощения кислорода. В результате ускоряются практически все стадии биосинтеза гормонов щитовидной железы. Под влиянием тиреотропина активируется работа «йодного насоса», усиливаются процессы йодирования тирозина. Кроме того, увеличивается активность протеаз, расщепляющих тиреоглобулин, что способствует высвобождению активного тироксина и трийодтиронина в кровь. Выработка тиреотропина регулируется тиреолиберином гипоталамуса.
Гонадотропные гормоны, или гонадотропины. В аденогипофизе вырабатывается 2 гонадотропина -- фолликулостимулирующий (ФСГ) и лютеинизирующий (ЛГУ). ФСГ действует на фолликулы яичников, ускоряя их созревание и подготовку к овуляции. Под влиянием ЛГ происходит разрыв стенки фолликула (овуляция) и образуется желтое тело. ЛГ стимулирует выработку прогестерона в желтом теле. Оба гормона влияют также на мужские половые железы. ЛГ действует на яички, ускоряя выработку тестостерона в интерстициальных клетках -- гландулоцитах (клетки Лейдига).ФСГ действует на клетки семенных канальцев, усиливая в них процессы сперматогенеза. Регуляция секреции гонадотропинов осуществляется гипоталамическим гонадолиберином. Существенное значение имеет также механизм отрицательной обратной связи -- секреция обоих гормонов тормозится при повышенном содержании эстрогенов и прогестерона в крови; выработка ЛГ уменьшается при увеличении продукции тестостерона.
Соматотропный гормон, или соматотропин. Является гормоном, специфическое действие которого проявляется в усилении процессов роста и физического развития. Органами-мишенями для него являются кости, а также образования, богатые соединительной тканью, -- мышцы, связки, сухожилия, внутренние органы. Стимуляция процессов роста осуществляется за счет анаболического действия соматотропина. Последнее проявляется в усилении транспорта аминокислот в клетку, ускорении процессов биосинтеза белка и нуклеиновых кислот. Одновременно происходит торможение реакций, связанных с распадом белка. Вероятной причиной этого эффекта является наблюдающаяся под действием соматотропина усиленная мобилизация жира из жировых депо с последующим использованием жирных кислот в качестве основного источника энергии. В связи с этим определенное количество белка сберегается от энергетических трат, поэтому скорость катаболизма белков снижается. Поскольку в этой ситуации процессы синтеза белка преобладают над процессами его распада, в организме происходит задержка азота (положительный азотистый баланс). Благодаря анаболическому действию соматотропин стимулирует активность остеобластов и способствует интенсивному образованию белковой матрицы кости. Кроме того, усиливаются также процессы минерализации костной ткани, в результате чего в организме происходит задержка кальция и фосфора.
Несмотря на то, что в организме соматотропин активно стимулирует образование костной и хрящевой ткани, при введении данного гормона в изолированную культуру клеток заметного усиления роста последних обычно не наблюдается. В связи с этим возникло пред­положение, что стимуляция процессов роста, наблюдаемая в условиях целостного организма, не является результатом прямого действия этого гормона. Скорее всего под действием соматотропина происходит образование определенных посредников, влияние которых и приводит к анаболическому эффекту. Данные посредники получили название «соматомедины». К настоящему времени идентифицировано по крайней мере 4 различных соматомедина. Все они по своей химической структуре являются белками, образование которых происходит в печени под влиянием соматотропина. Показано, что нарушение синтеза соматомединов может приводить к задержке роста и физического развития, хотя концентрация соматотропина в плазме крови при этом может оставаться нормальной или даже повышенной. Влияние соматомединов на углеводный обмен соответствует эффектам, наблюдаемым при введении инсулина, по­этому их называют также «инсулиноподобные факторы роста».
Соматотропин обладает выраженным действием на углеводный. обмен. Под влиянием данного гормона увеличивается содержание глюкозы в плазме крови. Механизм данного эффекта имеет несколько объяснений. Прежде всего тормозится использование глюкозы на энергетические траты, поскольку, как указывалось выше, основным источником энергии в данных условиях являются жирные кислоты. Кроме того, гормон роста тормозит утилизацию глюкозы в тканях и снижает их чувствительность к действию инсулина. Под влиянием соматотропина увеличивается также активность фермента инсулиназы. Этот гормон обладает «диабетогенным» эффектом. Наблюдаемая при его введении гипергликемия является стимулом для выработки инсулина в-клетками поджелудочной железы. Выработка инсулина увеличивается также и за счет прямого стимулирующего влияния соматотропина на в-клетки. В результате может произойти истощение их секреторной функции, которое в сочетании с повышенной активностью инсулиназы приводит к развитию так называемого гипофизарного диабета.
Секреция гормона роста регулируется соматолиберином и соматостатином, которые вырабатываются в гипоталамусе. Отмечено усиление выработки соматотропина при стрессорных воздействиях, истощении запасов белка в организме. Увеличение секреции происходит также при сниженном содержании глюкозы и жирных кислот в плазме крови.
Пролактин. Эффекты этого гормона заключаются в следующем:
усиливаются пролиферативные процессы в молочных железах, и ускоряется их рост;
усиливаются процессы образования и выделения молока. Секреция пролактина возрастает во время беременности и стимулируется рефлекторно при кормлении грудью. Благодаря специфическому действию на молочную железу пролактин называют маммотропным гормоном;
увеличивается реабсорбция натрия и воды в почках, что имеет значение для образования молока. В этом отношении он является синергистом альдостерона;
стимулируются образование желтого тела и выработка им прогестерона.
Продукция пролактина регулируется посредством выработки в гипоталамусе пролактостатина и пролактолиберина.
Гормоны нейрогипофиза.
Антидиуретический гормон (АДГ). В общем виде действие АДГ сводится к двум основным эффектам:
стимулируется реабсорбция воды в дистальных канальцах почек. В результате увеличивается объем циркулирующей крови, повышается АД, снижается диурез и возрастает относительная плотность мочи. В результате усиленного обратного всасывания воды снижается осмотическое давление межклеточной жидкости. Под действием АДГ происходит активация фермента аденилатциклазы, локализующегося на поверхности базолатеральной (обращенной к интерстицию) мембраны клеток эпителия почечных канальцев. Активация аденилатциклазы приводит к накоплению в цитоплазме этих клеток цАМФ. Последний диффундирует в область апикальной (обращенной в просвет почечного канальца) мембраны и стимулирует образование в цитоплазме белковых везикул, которые затем включаются в структуру апикальной мембраны и образуют в ней каналы, высокопроницаемые для воды. В результате вода из просвета почечных канальцев поступает в цитоплазму клеток эпителия канальцев, перемещается к базолатеральной мембране и, проникая через нее, попадает в интерстициальную ткань. После разрушения АДГ белковые везикулы элиминируются из структуры апикальной мембраны. В результате этого последняя становится непроницаемой для воды;
в больших дозах АДГ вызывает сужение артериол, что приводит к увеличению АД. Развитию гипертензии способствует также наблюдающееся под влиянием АДГ повышение чувствительности сосудистой стенки к констрикторному действию катехоламинов. В связи с тем, что введение АДГ приводит к повышению АД, этот гормон получил также название «вазопрессин». Однако поскольку эффект вазоконстрикции возникает только при действии больших доз АДГ, то считают, что в физиологических условиях значимость его вазоконстрикторного влияния невелика. С другой стороны, развитие вазоконстрикции может иметь существенное адаптивное значение при некоторых патологических состояниях, например при острой кровопотере, сильных болевых воздействиях, поскольку в этих условиях в крови может присутствовать большое количество АДГ.
Основная часть АДГ синтезируется в супраоптическом ядре гипоталамуса (примерно 5/6 от общего количества), меньшая часть -- в паравентрикулярном ядре. Секреция этого гормона усиливается при повышении осмотического давления крови. Последнее можно продемонстрировать путем введения гипертонического раствора в сосуды, питающие гипоталамус. В этом случае происходит раздражение осморецепторов, что приводит к увеличению выработки гормона в супраоптическом и паравентрикулярном ядрах и повышенной его секреции из задней доли гипофиза в кровь. Важным стимулом для регуляции секреции АДГ является также изменение объема циркулирующей крови. Показано, что при снижении последнего на 15--20% количество образующегося АДГ может увеличиваться в несколько десятков раз. В этом случае интенсивность секреции гормона меняется в зависимости от характера информации, поступающей в гипоталамус от волюморецепторов, реагирующих на растяжение кровью и локализующихся в правом предсердии, и барорецепторов, расположенных в аортальной и синокаротидной зонах, а также в легочной артерии.
Недостаточная секреция АДГ приводит к развитию несахарного мочеизнурения (diabetes insipidus), основными проявлениями которого являются сильная жажда (полидипсия) и потеря большого количества жидкости с выделяемой мочой (полиурия). Наблюдается учащенное мочеиспускание (поллакиурия), в результате которого больной за сутки выделяет до 10--20 л мочи низкой относительной плотности. Симптомы этого заболевания проходят при введении синтетического вазопрессина или препаратов, приготовленных из задней доли гипофиза животных.
Окситоцин. Эффекты этого гормона реализуются главным образом в двух направлениях:
окситоцин вызывает сокращение гладкой мускулатуры матки. Установлено, что при удалении гипофиза у животных родовые схватки становятся длительными и малоэффективными. Таким образом, окситоцин является гормоном, обеспечивающим нормальное протекание родового акта (отсюда произошло и его название -- от лат. oxy -- сильный, tokos -- роды). Адекватное проявление этого эффекта возможно при условии достаточной концентрации в крови эстрогенов, которые усиливают чувствительность матки к окситоцину;
окситоцин принимает участие в регуляции процессов лактации. Он усиливает сокращение миоэпителиальных клеток в молочных железах и тем самым способствует выделению молока.
Содержание окситоцина в крови возрастает в конце беременности, в послеродовом периоде. Кроме того, его продукция стимулируется рефлекторно при раздражении соска в процессе грудного вскармливания.

3.3 Эпифиз.

ЭПИФИЗ (шишковидная, или пинеальная, железа), небольшое образование, расположенное у позвоночных под кожей головы или в глубине мозга; функционирует либо в качестве воспринимающего свет органа либо как железа внутренней секреции, активность которой зависит от освещенности. У некоторых видов позвоночных обе функции совмещены. У человека это образование по форме напоминает сосновую шишку, откуда и получило свое название (греч. epiphysis - шишка, нарост).

Эпифиз развивается в эмбриогенезе из свода (эпиталамуса) задней части (диэнцефалона) переднего мозга. У низших позвоночных, например у миног, могут развиваться две аналогичных структуры. Одна, располагающаяся с правой стороны мозга, носит название пинеальной, а вторая, слева, парапинеальной железы. Пинеальная железа присутствует у всех позвоночных, за исключением крокодилов и некоторых млекопитающих, например муравьедов и броненосцев. Парапинеальная железа в виде зрелой структуры имеется лишь у отдельных групп позвоночных, таких, как миноги, krugosvet.ru/articles/02/1000232/1000232a1.htm ящерицы и лягушки.
Функция. Там, где пинеальная и парапинеальная железы функционируют в качестве органа, воспринимающего свет, или «третьего глаза», они способны различать лишь разную степень освещенности, а не зрительные образы. В этом качестве они могут определять некоторые формы поведения, например вертикальную миграцию глубоководных рыб в зависимости от смены дня и ночи.
У земноводных пинеальная железа выполняет секреторную функцию: она вырабатывает гормон мелатонин, который осветляет кожу этих животных, уменьшая занимаемую пигментом площадь в меланофорах (пигментных клетках). Мелатонин обнаружен также у птиц и млекопитающих; считается, что у них он обычно оказывает тормозящий эффект, в частности снижает секрецию гормонов гипофиза.
У птиц и млекопитающих эпифиз играет роль нейроэндокринного преобразователя, отвечающего на нервные импульсы выработкой гормонов. Так, попадающий в глаза свет стимулирует сетчатку, импульсы от которой по зрительным нервам поступают в симпатическую нервную систему и эпифиз; эти нервные сигналы вызывают угнетение активности эпифизарного фермента, необходимого для синтеза мелатонина; в результате продукция последнего прекращается. Наоборот, в темноте мелатонин снова начинает вырабатываться.
Таким образом, циклы света и темноты, или дня и ночи, влияют на секрецию мелатонина. Возникающие ритмические изменения его уровня - высокий ночью и низкий в течение дня - определяют суточный, или циркадианный, биологический ритм у животных, включающий периодичность сна и колебания температуры тела. Кроме того, отвечая на изменения продолжительности ночи изменением количества секретируемого мелатонина, эпифиз влияет на сезонные реакции, такие как зимняя спячка, миграция, линька и размножение.
У человека с деятельностью эпифиза связывают такие явления, как нарушение суточного ритма организма в связи с перелетом через несколько часовых поясов, расстройства сна и «зимние депрессии».

Часть II. Анатомия и физиология Эпифиза.

Глава 1. Сложность устройства Эпифиза.

1.1 Эмбриогенез.

Эпифиз человека очень мал, его величина варьируется от 50 до 200 мг, но кровоток в нём чрезвычайно интенсивен, что косвенно свидетельствует о важной роли его в организме. Открытие дерматологом А. Лернером в 1958 г. эпифизарного гормона - мелатонина, названного так потому, что он вызывает скопление меланиновых зёрен вокруг ядер меланоцитов, в результате чего происходит посветление кожи некоторых земноводных.
Это открытие и последующие экспериментальные исследования дали достаточно оснований для признания того, что эпифиз действительно железа внутренней секреции и её секрет - мелатонин. За последние десятилетия, после появления чувствительного специфического теста для определения мелатонина, об этом органе накоплено много информации, подчас противоречивой.
У зародыша эпифиз образуется из выпячивания крыши промежуточного мозга, из которого берут свое начало и глаза, и гипоталамус. Исторически все эти образования возникли как единое целое - некий механизм, способный реагировать на циклические изменения в световом режиме. У холоднокровных позвоночных и у птиц эпифиз выполняет хорошо известную роль “третьего глаза”, снабжая организм этих животных информацией о суточной и сезонной освещенности. Однако у млекопитающих верхний мозговой придаток, “погребенный” под разросшимися полушариями и мощным черепом, потерял непосредственные афферентные (центростремительные) и эфферентные (центробежные) связи с мозгом и превратился в железу внутренней секреции. Так случилось у всех млекопитающих, за исключением неполнозубых (муравьедов, ленивцев), панцирных (броненосцев) и китообразных (китов, дельфинов), у которых эпифиз попросту исчез.
Развивается шишковидная железа в виде эпителиального дивертикула верхней части межуточного мозга, позади сосудистого сплетения, на втором месяце эмбриональной жизни. В дальнейшем стенки дивертикула утолщаются и из эпендимальной выстилки образуются две доли - в начале передняя, затем задняя. Между долями прорастают сосуды. Постепенно междолевая бухта суживается (от неё остаётся только recessus pinealis), доли сближаются и сливаются в единый орган. Паренхима передней доли образуется из клеток передней выстилки эпифизарной бухты, задней - из секреторной эпендимы задней стенки бухты.

1.2 Строение.

Эпифиз представляет собой вырост крыши III желудочка мозга. Он покрыт соединительнотканной капсулой, от которой внутрь отходят тяжи, разделяющие орган на доли. Размеры железы: до 12 мм в длину, 3-8 мм в ширину и 4 мм в толщину. Величина и вес меняются с возрастом. Масса эпифиза у взрослого человека составляет примерно 120 мг. Артерии шишковидной железы отходят от сосудистого сплетения III желудочка. Особенностью сосудов эпифиза является, отсутствие тесных контактов между эндотелиальными клетками, в силу чего гематоэнцефалический барьер в этом органе оказывается несостоятельным.
Большинство нервов эпифиза представлено волокнами клеток верхних шейных симпатических ганглиев.
Маленький вырост мозга, скрытый под большими полушариями, за свой внешний вид получил название шишковидной железы. Тело в виде сосновой шишки изображалось когда-то в тех местах папирусов, где говорилось о вхождении душ покойных в судный зал Осириса. Весьма архаичное значение шишки (а ведь "шишки" бывают важными) - символ вечной жизни, а также восстановления здоровья.

1.3 Гистология.

Гистологически различают паренхиму и соединительнотканную строму. Гистологическое строение эпифиза новорожденных отличается от его строения у взрослого. Ядра клеток имеют обычно овальную форму, резко контурированны. Хроматиновые зерна расположены преимущественно по периферии ядра. Строма состоит из коллегановых, эластичных и аргирофильных волокон и клеточных элементов.
Эпифиз окружён мягкой мозговой оболочкой, к которой непосредственно прилежит. Мягкая мозговая оболочка формирует капсулу. Капсула и отходящие от неё трабекулы содержат трабекулярные сосуды и постганглионарные синаптические волокна. Капсула и прослойки соединительной ткани построены из рыхлой волокнистой соединительной ткани образуют строму железы и разделяют её паренхиму на дольки. Исследователи указывают на несколько типов строения стромы; целлюллрный, ретикулярный, альвеолярный. Соединительная ткань становится более развитой в старческом возрасте, образует прослойки, по которым ветвятся кровеносные сосуды.
Паренхима эпифиза состоит ли плотно прилегающих одна к другой клеток. Паренхима эпифиза выглядит довольно гомогенизированной при малом увеличении. Небольшое количество сосудов пронизывают железу. Гистологически паренхима шишковидной железы имеет санцитальное строение и состоит из пинеальных и глиальных клеток. Кроме того имеются преваскулярные фагоциты.
В эпифизе находят два типа клеток: пинеалоциты (около 95% клеток, большие, светлые клетки) и астроциты (глиальные клетки, тёмные, овальные ядра). На большом увеличении видно три типа ядер. Маленькие тёмные ядра принадлежат астроцитам. Пинеалоциты имеют большие, светлые ядра, окруженные небольшим количеством светлой цитоплазмы. Большинство ядер -это ядра пинеалоцитов. Эндотелиальные клетки ассоциированы с сосудам. Пинеалоциты и астроциты имеют длинные отростки.
Клетки эпифиза - пинеалоциты обнаруживаются во всех дольках, располагаются преимущественно в центре, это секретирующие клетки. Они имеют большое овальное пузыревидное с крупными ядрышками ядро. От тела пинеалоцита отходят длинные отростки, ветвящиеся наподобиедендритов, которые переплетаются с отростками глиальных клеток. Отростки, булавовидно расширяясь, направляются к капиллярам и контактируют с ними. Многочисленные длинные отростки пинеалоцитов заканчиваются расширениями на капиллярах и среди клеток эпендимы. В концевых отделах части отростков присутствуют непонятного назначения структуры - плотные трубчатые элементы, окружённые т.е. синоптическими сфероидами. В цитоплазме этих булавовидных расширений содержаться осмиофильные гранулы, вакуоли и митохондрии. Они содержат большие везикулы, дольчатые ядра с впячиваниями цитоплазмы. Пинеалоциты лучше всего демонстрируются при импрегнации серебром. Среди пинеалоцитов различают светлые пинеалоциты (endochrinocytis lucidus), характеризующеся светлой гомогенной цитоплазмой и темные пинеалоциты меньшего размера с ацидофильным (а иногда базофильными) включениями в цитоплазме. обе названные формы являются не самостоятельными разновидностями, а представляют собой клетки, находящиеся в различных функциональных состояниях, или клетки, подвергающиеся возростным изменениям. В цитоплазме пинеалоцитов обнаруживаются многочисленные митохондрии, хорошо развитый комплект Гольджи, лизосомы, пузырьки агранулярной эндоплазматической стеи, рибосомы и полисомы. Пинеальные клетки, большие, светлые с крупными ядрами, многоугольной формы.Величина и форма пинеальных клеток меняется с возрастом и отчасти связаны с полом. К 10-15 годам в жизни в них появляется пигмент (липохром) пинеалоциты располгаются группами; различают светлые (менее активные) и тёмные (более активные) пинеалоциты. Светлые и тёмные пинеалоциты, представляют разные функциональные состояния одной клетки.
пинеалоциты образуют аксо-вазальные синапсы с сосудми, поэтому выделяемые ими гормон попадают в кровоток
пинеалоциты синтехируют серотонин и мелатонин, возможно и другие белковые гормоны
эпифиз находится вне гематоэнцефалического барьера, так как пинеалоцитыимеют прямые связи с капиллярами (аксо-вазальные синапсы)
Морфологические проявления секреции шишковидной железы: ядерные пары бледно-базофильные обраования внутри ядер пинеальных клеток, вакуолизация их цитоплазмы, базофильные или оксифильные капли колоида в клетках тканевой коллоид) и в сосудах тиа венул (внутрисосудистый коллоид). Секреториальная активность в эпифизе стимулируется светом и темнотой.
Между секреторными клетками и фенистрированными капиллярами располагаются глиальные клетки. Глиальные клетки преобладают на периферии долек. Их отростки направляются к междольковым соединительнотканным перегородкам, образуя своего рода краевую кайму дольки. Гиальные - мелкие с компактой цитоплазмой, гиперхроными ядрами, многочисленными отростками Глиальные клетки являются астроглией. Они же - интерстициальные клетки - напоминают астроциты (Они не отличаются от астроцитов нервной ткани, содержат скопления глиальных филаментов, располагаются периваскулярно), имеют многочисленные ветвящиеся отростки, округлое плотное ядро, элементы гранулярной эндоплазматической сети и структуры цитоскелета: микротрубочки, промежуточные филамены и множество микрофиламетнтов.

1.4 Физиология

Достоверных морфологических признаков, свидетельствующих о секреторной функции, нет. Однако дольчатость и тесные контакты паренхиматозных клеток с соединительнотканными и нейроглиальными элементами позволяют судить о железистой структуре эпифиза. Изучение ультраструктуры клеток также показывает способность пинеалоцитов к выделению секреторного продукта. Кроме того, в цитоплазме пинеалоцитов обнаружены плотные пузырьки (dens core vesicles) диаметром 30-50нм, свидетельствующие о секреторном процессе. В эндотелии капилляров эпифиза найдены норы диаметром 25 - 4нм. Капилляры с такой ультраструктурой обнаружены в гипофизе, щитовидной железе, паращитовидных и поджелудочной железах, т. е. в типичных органах внутренней секреции. По мнению Wolfe и А. М. Хелимского, поры в эндотелии капилляров являются ещё одним признаком, указывающим на его секреторную функцию. Исследования последних лет установили, что эпифиз - метаболически активный орган. В его ткани обнаруживаются биогенные амины и ферменты, катализирующие процессы синтеза и инактивации этих соединении. Установлено, что в эпифизе происходит интенсивный обмен липидов, белков, фосфора и нуклеиновых кислот. Изучены три физиологически активных вещества, обнаруженных в эпифизе:
серотонин,
мелатонин,
норадреналин.
Есть немало данных и об аптигипоталамическом факторе, который связывает эпиталамо-эпифизарный комплекс с гипоталамо - гипофизарной системой. Так, например, в нем вырабатываются:
аргинин-вазотоцин (стимулирует секрецию пролактина);
эпифиз-гормон, или фактор «Милку»;
эпиталамин -суммарный пептидный комплекс и др.
В эпифизе обнаружены пептидные гормоны и биогенные амины, что позволяет отнести его клетки (пинеалоциты) к клеткам АПУД-системы. Не исключено, что в эпифизе могут также синтезироваться и накапливаться и другие гормональные соединения. Эпифиз участвует в регуляции процессов протекающих в организме циклически (например овариально-менструального цикла), деятельность эпифиза связывают с функцией поддержания биоритма (смена сна и бодрствования). Эпифиз - звено реализации биологических ритмов ритмов, в т.ч. околосуточных.
Пинеалоциты продуцируют мелатонин, производное серотонина, который подавляет гонадотропную секрецию и препятствует раннему половому созреванию. Разрушение этой железы, ее недоразвитие или удаление эпифиза у инфантильных животных в эксперименте имеют следствием наступление преждевременного полового созревания.
Ингибирующее влияние эпифиза на половые функции обусловливается несколькими факторами: пинеалоциты вырабатывают серотонин, который в них же превращается в мелатонин. Этот нейроамин, ослабляет или угнетает секрецию гонадолиберина гипоталамусом и гонадотропинов передней доли гипофиза. В то же время пинеалоциты продуцируют ряд белковых гормонов и в их числе антигонадотропин, ослабляющий секрецию лютропна передней доли гипофиза. Наряду с антигонадотропином пинеалоциты образуют другой белковый гормон, повышающий уровень калия в крови, следовательно, участвующий в регуляции минеарльного обмена. Число регуляторных пепидов продуцируемых пинеалоцитами, приближается к 40. Из них наиболее важны аргинин - вазотоцин, тиролиберин, люлиберин и даже тиротропин.
Эпифиз моделирует активность гипофиза, панкреатических островков, паращитовидных желез, надпочечников, половых желез и щитовидной железы. Влияние эпифиза на эндокринную систему носит в основном ингибиторный характер. Доказано действие его гормонов на систему гипоталамус-гипофиз-гонады. Мелатонин угнетает секрецию гонадотропинов как на уровне секреции либеринов гипоталамуса, так и на уровне аденогипофиза. Мелатонин определяет ритмичность гонадотропных эффектов, в том числе продолжительность менструального цикла у женщин.
Колебания уровня мелатонина влияют на образование гипофизом ряда гормонов, регулирующих сексуальную активность: лютенизирующего гормона, необходимого для овуляции секреции эстрогена; фолликул-стимулирующего гормона, регулирующего образование спермы у мужчин и созревания яичников у женщин; пролактина и окситоцина, стимулирующих образование молока и проявление материнской привязанности. Ряд исследований показал, что уровень мелатонина у женщин изменяется в зависимости от фазы менструального цикла. Гормоны эпифиза угнетают биоэлектрическую активность мозга и нервно-психическую деятельность, оказывая снотворный, анальгезирующий и седативный эффект. Экстракты эпифиза вызывают инсулиноподобный (гипогликемический), паратиреоподобный (гиперкальциемический) и диуретический эффекты. Имеются данные об участии в иммунной защите. Участие в тонкой регуляции почти всех видов обмена веществ.
Также обнаружено существенное иммуностимулирующее влияние мелатонина на иммунные процессы. Он стимулирует образование антителообразующих клеток. Введение гормона в организм полностью восстанавливает нарушение иммунных реакций, наблюдающихся после блокады функций эпифиза, вызванной сменой светового режима или блокатором бета-адренергических рецепторов пропанолом. Поскольку блокатор опиоидных рецепторов налтрексон полностью отменяет стимулирующий эффект мелатонина при введении in vivo, предполагается, что опиоидные пептиды могут вовлекаться в реализацию влияния этого гормона на иммунную систему.

1.5 История исследований.

Функции этой железы оставались непонятными многие-многие годы. Кое-кто расценивал железу как рудиментарный глаз, ранее предназначавшийся для того, чтобы человек мог оберегать себя сверху. Но структурным аналогом глаза такую железу - эпифиз можно признать лишь у миног, у пресмыкающихся, а не у нас. В мистической литературе периодически встречалось утверждение о контакте именно этой железы с таинственной нематериальной нитью, связывающей голову с парящим над каждым эфирным телом.
Из сочинения в сочинение перекочевывало описание этого органа, способного якобы восстанавливать образы и опыт прошлой жизни, регулировать поток мысли и баланс интеллекта, осуществлять телепатическое общение. Французский философ Р. Декарт (XVII век) считал, что железа выполняет посреднические функции между духами, то есть впечатлениями, поступающими от парных органов - глаз, ушей, рук. Здесь, в эпифизе, под влиянием "паров крови" формируются гнев, радость, страх, печаль. Фантазия великого француза наделила желёзку возможностью не только двигаться, но и направлять "животные духи" через поры мозга по нервам к мышцам. Это потом уже выяснили, что двигаться эпифиз не в состоянии.
Доказательством исключительности эпифиза ряд лет служило и то, что сердце тоже не имеет пары, а лежит "посреди". Да и существует шишковидная железа, как Декарт ошибочно предполагал, только у человека. В старинных русских медицинских руководствах железа эта называлась "душевной".
В двадцатых годах прошлого века многие специалисты пришли к заключению, что и говорить-то об этой железе не следует, ибо какой-либо значимой функции у предполагаемого рудиментарным органа нет. Появлялись сомнения в том, что эпифиз массой в двести миллиграммов и величиной с горошину функционирует не только в эмбриогенезе, а и после рождения. Все это привело к тому, что на ряд десятилетий из поля зрения исследователей этот "третий глаз" выпал. Правда, были и объективные причины. Среди них сложность изучения, требовавшая новых методов, и топографическое неудобство - уж очень трудно извлечь этот орган. Теософы, в свою очередь, не сомневались, что эпифиз пока большинству не очень нужен, а вот в будущем окажется необходимым для передачи мыслей от одного человека к другому.
В 1965 году в Москве врач В. Юровский представил к защите диссертацию о шишковидной железе. На основании своих анатомических исследований автор опровергал взгляды древних философов о локализации разума в эпифизе. Это исследование можно считать началом объективного, материалистического подхода к изучению этой таинственной железы. Таинственной потому, что никто из последующих исследователей на основании своих работ не смог предложить сколь-нибудь правдоподобной гипотезы о роли шишковидной железы в организме.
Основная информация о физиологическом значении эпифиза была получена наукой в последние десятилетия. Биологи подтверждают, что эволюционно эпифиз оказался в центре головного мозга не сразу. Первоначально он выполнял функцию "затылочного глаза", и только позднее, по мере развития полушарий мозга, эта железа оказалась практически в центре. Еще в эпифизе почти всех взрослых людей обнаружили достаточно прочные неорганические песчинки - мозговой песок - отложения солей кальция. Е.П. Блаватская писала в "Тайной Доктрине": "…этот песок весьма таинственный и ставит в тупик исследования всех материалистов. Только этот знак внутренней самостоятельной активности шишковидной железы не позволяет физиологам классифицировать ее как абсолютно бесполезный атрофировавшийся орган". Так в действительности и было. Например, уже не так давно, рентгенологи предлагали использовать рентгеноконтрастность эпифизарного песка для выявления смещений мозговых структур при внутричерепных объемных процессах. И только после открытия в 1958 году мелатонина ученые снова заинтересовались эпифизом.

Глава 2. Гормоны Эпифиза.

2.1 Серотонин, его строение и синтез.

Серотонин является промежуточным продуктом метаболизма триптофана, образующегося в основном в энтерохромаффинных клетках тонкого кишечника, в серотонинэргических нейронах мозга, в тромбоцитах крови. Почти весь серотонин в циркулирующей крови сконцентрирован в тромбоцитах. Изменение концентрации циркулирующего серотонина наблюдается при хронической головной боли, шизофрении, гипертензии, болезни Хантингтона, мышечной дистрофии Дюшенна и ранней стадии острого аппендицита. Определение уровней сывороточного серотонина имеет большое клиническое значение для диагностической оценки карциноидного синдрома.
Первым этапом биосинтеза в эпифизе является превращение аминокислоты триптофана под воздействием триптофангидроксилазы в 5-окситриптофан. С помощью декарбоксилазы ароматических аминокислот из этого соединения образуется серотонин, часть которого ацетилируется, превращаясь в N-ацетилсеротонин. Заключительный этап синтеза (превращение N-ацетилсеротонина под действием ОНОМТ), специфичен для эпифиза. Неацетилированный серотонин дезаминируется моноаминоксидазой и преобразуется в 5- оксииндолуксусную кислоту и 5-окситриптофол.
Значительное количество серотонина поступает также в нервные окончания, где захватываются гранулами, препятствующими ферментативному разрушению этого моноамина.
Полагают, что синтез серотонина происходит в светлых пинеалоцитах и контролируется норадренергическими нейронами. Холенергические парасимпатические волокна регулируют высвобождение серотонина из светлых клеток и тем самым его доступность для тёмных пинеалоцитов, в которых также имеет место норадренергическая модуляция образования и секреции мелатонина.
Серотонин метаболизируется в организме до 5-гидроксииндолуксусной кислоты, которая затем выводится с мочой.

2.2 Физиологические функции серотонина.

Серотонин играет роль нейромедиатора в ЦНС. Большое количество серотонинергических нейронов найдено в лимбической системе, в гипоталамусе, в триггерной зоне и многих других местах центральной нервной системы.

Патологическое понижение серотонинергической нейротрансмиссии отмечается при депрессивных состояниях, различных хронических болевых синдромах, при тревожных состояниях, навязчивостях, бессоннице и ряде других психических патологий. При шизофрении отмечается нарушение нормального соотношения серотонина и дофамина в мезолимбической, мезокортикальной областях мозга и в лобных долях коры большого мозга.

Серотонин наряду с дофамином играет важную роль в механизмах гипоталамической регуляции гормональной функции гипофиза. Стимуляция серотонинергических путей, связывающих гипоталамус с гипофизом, вызывает увеличение секреции пролактина и некоторых других гормонов передней доли гипофиза -- действие, противоположное эффектам стимуляции дофаминергических путей.

Серотонин также играет важную роль в процессах свёртывания крови. Тромбоциты крови содержат значительные количества серотонина и обладают способностью захватывать и накапливать серотонин из плазмы крови. Серотонин повышает функциональную активность тромбоцитов и их склонность к агрегации и образованию тромбов. Стимулируя специфические серотониновые рецепторы в печени, серотонин вызывает увеличение синтеза печенью факторов свёртывания крови. Выделение серотонина из повреждённых тканей является одним из механизмов обеспечения свёртывания крови по месту повреждения.

Серотонин также является одним из важных медиаторов аллергии и воспаления. Он повышает проницаемость сосудов, усиливает хемотаксис и миграцию лейкоцитов в очаг воспаления, увеличивает содержание эозинофилов в крови, усиливает дегрануляцию тучных клеток и высвобождение других медиаторов аллергии и воспаления. Местное (например, внутримышечное) введение экзогенного серотонина вызывает сильную боль в месте введения. Предположительно серотонин наряду с гистамином и простагландинами, раздражая рецепторы в тканях, играет роль в возникновении болевой импульсации из места повреждения или воспаления.

Также большое количество серотонина производится в кишечнике. Серотонин играет важную роль в регуляции моторики и секреции в желудочно-кишечном тракте, усиливая его перистальтику и секреторную активность. Кроме того, серотонин играет роль фактора роста для некоторых видов симбиотических микроорганизмов, усиливает бактериальный метаболизм в толстой кишке. Сами бактерии толстой кишки также вносят некоторый вклад в секрецию серотонина кишечником, поскольку многие виды симбиотических бактерий обладают способностью декарбоксилировать триптофан. При дисбактериозе и ряде других заболеваний толстой кишки продукция серотонина кишечником значительно снижается.

Массивное высвобождение серотонина из погибающих клеток слизистой желудка и кишечника при воздействии цитотоксических химиопрепаратов является одной из причин возникновения тошноты и рвоты, диареи при химиотерапии злокачественных опухолей. Аналогичное состояние бывает при некоторых злокачественных опухолях, эктопически продуцирующих серотонин.

Большое содержание серотонина также отмечается в матке. Серотонин играет роль в паракринной регуляции сократимости матки и маточных труб и в координации родов. Продукция серотонина в миометрии возрастает за несколько часов или дней до родов и ещё больше увеличивается непосредственно в процессе родов. Также серотонин вовлечён в процесс овуляции -- содержание серотонина (и ряда других биологически активных веществ) в фолликулярной жидкости увеличивается непосредственно перед разрывом фолликула, что, приводит к увеличению внутрифолликулярного давления.

Серотонин участвует в регуляции сосудистого тонуса, вызывает спазм сосудов. Нарушение серотонинергической регуляции сосудистого тонуса является, одной из причин мигрени.

2.3 Синтез и метаболизм мелатонина.

Эпифиз продуцирует в основном индол-N-ацетил-5-метокситриптамин (мелатонин). В отличие от своего предшественника серотонина это вещество синтезируется, исключительно в шишковидной железе. Поэтому его концентрация в ткани, равно как и активность ОНОМТ, служат показателями функционального состояния эпифиза. Подобно другим О-метилтрансферазами ОНОМТ в качестве донора метильной группы использует S-аденозилметионил.
Субстратами метилирования в эпифизе могут служить как серотонин, так и другие 5-оксииндолы, но N-ацетилсеротонин оказывается более (в 20 раз) предпочтительным субстратом этой реакции. Это означает, что в процессе синтеза мелатонина N-ацетилирование предшествует О-метилированию.
Имеются данные о продукции эпифизом не только индолов, ни и веществ полипептидной природы, причём, по мнению ряда исследователей, именно они и являются истинными гормонами шишковидной железы. Так, из неё выделен обладающий антигонадотропной активностью пептид (или смесь пептидов) с молекулярной массой 1000-3000 дальтон. Другие авторы постулируют гормональную роль выделенного из эпифиза аргинин-вазотоцина. Третьи - получили из эпифиза два пептидных соединения, одно из которых стимулировало, а другое ингибировало секрецию гонадотропинов культурой гипофизарных клеток.
Основной путь метаболизма мелатонина варьирует от вида к виду. В печени человека происходит его гидроксиляция и коньюгация с сульфатом (и глюкуронидом) с образованием 6-сульфатоксимелатонина (6-СОМ) - главного метаболита, который выводится с мочой. Его суточная экскреция достоверно отражает продукцию мелатонина. Выявлена очень тесная корреляция между уровнем мелатонина плазмы и уровнями 6-СОМ плазмы и мочи. Лишь незначительная часть мелатонина - около 10% - экскретируется в неизменном состоянии.

2.4 Регуляция синтеза мелатонина.

Активность эпифиза зависит от периодичности освещения. На свету синтетические и секреторные процессы в нём ингибируются, а в темноте усиливаются. Световые импульсы воспринимаются рецепторами сетчатки и поступают в центры регуляции симпатической нервной системы головного и спинного мозга и далее - в верхние шейные симпатические ганглии, дающие начало иннервации шишковидной железы. В темноте ингибиторные нервные влияния исчезают, и активность эпифиза возрастает. Удаление верхних шейных симпатических ганглиев приводит к исчезновению ритма активности внутриклеточных ферментов эпифиза, принимающих участие в синтезе его гормонов. Содержащие норадреналин нервные окончания через клеточные рецепторы повышают активность этих ферментов. Это обстоятельство как будто противоречит данным об ингибирующем влиянии возбуждения симпатических нервов на синтез и секрецию мелатонина. Однако, с одной стороны, показано, что в условиях освещения содержание серотонина в железе снижается, а с другой - обнаружена и роль холинергических волокон в регуляции активности оксиндол-О-метилтрансферазы (ОНОМТ) эпифиза.
Холингерическая регуляция активности эпифиза подтверждается присутствием в этом органе ацетилхолинэстеразы. Источником холинергических волокон также служат верхние шейные ганглии.

2.5 Мелатонин в организме.

Кроме неясной в отношении истинной природы гормона (гормонов) шишковидной железы, существуют разногласия и в вопросе о путях его поступления в организм: в кровь или в цереброспинальную жидкость. Большинство данных свидетельствует о том, что подобно другим эндокринным железам, эпифиз выделяет свои гормоны в кровь. Помимо крови и цереброспинальной жидкости, мелатонин обнаружен в моче, слюне, амниотической жидкости.
Большая часть выброшенного в кровь гормона связывается с альбумином - основным белком плазмы. Таким способом мелатонин защищается от быстрого распада и транспортируется к клеткам-мишеням. По разным данным, период его полужизни в организме человека составляет от 30 до 50 мин. Свою активность мелатонин теряет в печени, где окисляется системой ферментов, связанных с белком Р-450, а затем выводится из организма.
Несмотря на то, что геометрически эпифиз располагается в самом центре мозга, управляется он, как обычный периферический орган, при помощи вегетативной нервной системы. Зрительная информация от сетчатки через ответвление зрительного нерва попадает в супрахиазмальные ядра (СХЯ), находящиеся в глубине полушарий над зрительным перекрестом. Затем эти сигналы нисходят вниз (через гипоталамус по проводящим путям вдоль ствола головного мозга), в шейный отдел спинного мозга, откуда по симпатическим нервам через отверстия в черепе проникают обратно в головной мозг и, наконец, достигают эпифиза. Ночью, в темноте, когда большинство нейронов супрахиазмальных ядер бездействует, эти нервные окончания выделяют норадреналин, активирующий в клетках эпифиза (пинеалоцитах) синтез ферментов, образующих мелатонин. Эпифиз здорового взрослого человека, имеющий массу немногим более 100 мг, еженощно выделяет в кровь около 30 мкг мелатонина. Яркий свет мгновенно блокирует его синтез, в то время как в постоянной темноте суточный ритм выброса, поддерживаемый периодической активностью СХЯ, сохраняется.
При этом эпифизарный гормон взаимодействует с веществами, модулирующими активность супрахиазмальных ядер: нейромедиаторами (глутамат и серотонин) и нейропептидами (нейропептидтирозин и вещество П). Таким способом в системе внутрисуточной ритмики млекопитающих и человека поддерживается динамический гомеостаз.
Зародыши и новорожденные млекопитающие, включая человека, сами не образуют мелатонина, а пользуются материнским, поступающим через плаценту, а потом - с молоком матери. Секреция гормона начинается лишь на третьем месяце развития ребенка. С возрастом синтез мелатонина в эпифизе резко увеличивается и достигает максимума уже в первые годы жизни (не позднее 5 лет), а затем в течение всей жизни человека постепенно и плавно снижается (резкое падение наблюдается лишь в период полового созревания).
Очевидно, что возрастная динамика мелатонина носит в основном адаптивный характер: ведь по мере ослабления выброса гормонов гипофизом и угасания деятельности периферических эндокринных желез потребность в их периодическом ночном торможении снижается и может вовсе исчезнуть. Недавно аутопсия подтвердила наличие в эпифизе рецепторов половых стероидов. Значит, эпифиз действительно получает обратную информацию о циркулирующих в крови гормонах. Сейчас это явление интенсивно изучается в ряде лабораторий мира.

2.6 Ритм секреции мелатонина.

У всех исследованных животных независимо от времени их активности (ночной, дневной образ жизни) установлен суточный ритм секреции мелатонина.
Ритмичность секреции мелатонина у людей впервые была описана в 1973 г. Pelham и с этого времени неоднократно подтверждалась. Днём его уровни в крови и в других биологических жидкостях низкие, часто неопределяемые.
Ночью наблюдается повышение содержания мелатонина в крови с максимумом около 2 ч.
Установлена первостепенная важность цикла свет-темнота в определении высоты и продолжительности секреции мелатонина. Воздействие интенсивного света в ночное время быстро и резко снижает ночной подъём гормона. Наиболее эффективно подавление секреции мелатонина у человека монохроматическим светом с длинной волны 509 нм, которая активирует родопсин. Предполагается, что родопсин может быть фотопигментом, медиирующим ингибиторные эффекты света на циркадианный ритм мелатонина. Воздействие темноты утром также изменяет мелатониновый ритм. «Навязанная» длина суток - увеличенная или уменьшенная - приводила к частичной десинхронизации суточного ритма секреции мелатонина с циклом сон-бодрствование.
Влияние светового цикла на ритм секреции мелатонина показано в наблюдении за слепыми. У большинства из них обнаружена ритмичная секреция гормона, но со свободно меняющимся периодом, на несколько часов отличающимся от суточного. То есть у человека ритм секреции мелатонина имеет вид циркадианной мелатониновой волны, «свободно бегущей» в отсутствие смены циклов свет-темнота. Она возникает у зрячих в тёмный период и может быстро прерываться при воздействии интенсивного света. Сдвиг ритма секреции мелатонина происходит и при перелёте через часовые пояса.
Нарушения суточного ритма могут возникать при повреждении иннервации эпифиза и периферической адренерической блокаде. У больных с повреждением проводящих нервных путей (при деструкции гипоталамуса опухолью, дегенеративных заболеваниях этой же зоны) описано снижение амплитуды кривой секреции мелатонина, исчезновение ночного подъёма. Аритмичность секреции отмечена и у больных с квадриплегией при травматической перерезке шейного отдела спинного мозга.
Поскольку изменение продолжительности светового дня сказывается на характере кривой мелатониновой секреции, то можно предположить и сезонные колебания у людей, живущих в крайних широтах, Арктике и Антарктике. У них поддерживается циркадианный ритм секреции индола во все четыре сезона с максимумом зимой.
Кроме суточных, существуют и сезонные ритмы колебания уровня мелатонина, причем не только у млекопитающих с сезонным циклом размножения, но и у человека. Посмертные исследования (аутопсия) показали, что у людей, живших в средних широтах Северного полушария и умерших в ноябре-январе, эпифизы достоверно больше по размеру и массе, чем у лиц, соответственно подобранных по возрасту, полу и месту проживания, умерших в мае-июле. Видимо, именно с ритмом эпифизарного мелатонина связаны в конечном счете сезонные изменения общей активности и эмоционального состояния человека (включая так называемые сезонные депрессии).

Глава 3. Влияние Эпифиза на различные функции организма.

3.1 Влияние эпифиза на репродуктивную функцию.

Предположение о возможности секреторной роли эпифиза человека впервые было высказано исходя из его связи с функцией гонад. Невропатолог О. Марбург в 1909 г. описал двух мальчиков с пинеальной опухолью, сочетающейся с преждевременным половым развитием, и допустил, что в норме эпифиз вырабатывает вещество, тормозящее половое созревание. В 1963 г. было обнаружено, что раствор мелатонина может воспроизводить ингибиторные эффекты экстрактов эпифиза на созревание гонад у животных, т.е. предположительно мелатонин является гормоном. Однако последующие экспериментальные попытки доказать гонадоподавляющее действие эпифиза давали неоднозначные результаты. Оказалось, что преждевременное половое созревание у больных с пинеаломой в ряде случаев не связано с дефицитом мелатонина, а связано с продукцией герминативными клетками опухоли хорионического гонадотропина. Установлено также, что помимо мелатонина антигонадотропная активность присуща эпифизарному пептиду аргининвазотоцину.

3.2 Влияние эпифиза на функции гипофиза.

В экспериментах на животных установлено, что эпифизарная регуляция репродуктивной функции осуществляется за счёт влияния шишковидной железы на гипоталамо-гипофизарную систему, а не непосредственно на половые железы. Более того, введение мелатонина в III желудочек мозга снижало уровни лютеинизирующего (ЛГ) и фолликулостимулирующего (ФСГ) гормонов и повышало содержание пролактина в крови, тогда как инфузия мелатонина в портальные сосуды гипофиза не сопровождалась изменением секреции гонадотропинов. Одним из мест приложения действия мелатонина в мозге является срединное возвышение гипоталамуса, где продуцируются либерины и статины, регулирующие активность передней доли гипофиза. Однако остается неясным, меняется ли продукция этих веществ под действием самого мелатонина или он модулирует активность моноаминергических нейронов и таким образом участвует в регуляции продукции рилизинг-факторов. Следует подчеркнуть, что центральные эффекты гормонов эпифиза не доказывают их прямой секреции в цереброспинальную жидкость, поскольку они могут попадать туда и из крови.
Кроме того, имеются данные о действии мелатонина и на уровне семенников (где это вещество тормозит образование андрогенов) и других периферических желез внутренней секреции (например, ослабление влияния ТТГ на синтез тироксина в щитовидной железе). Длительное введение мелатонина в кровь снижает массу семенников и уровень тестостерона в сыворотке даже у гипофизэктомированных животных. Опыты показали также, что безмеланиновый экстракт эпифиза блокирует влияние гонадотропинов на массу яичников у гипофизэктомированных крыс.
Таким образом, продуцируемые этой железой биологически активные соединения обладают, не только центральным, но и периферическим действием.
Среди множества разнообразных эффектов этих соединений наибольшее внимание привлекает их влияние на секрецию гонадотропинов гипофиза. Данные о нарушении полового созревания при опухолях эпифиза явились первым указанием на его эндокринную роль. Такие опухоли могут сопровождаться как ускорением, так и замедлением полового созревания, что связывают с разной природой исходящих из паренхиматозных и непаренхиматозных клеток эпифиза новообразований. Основные доказательства антигонадотропного влияния гормонов шишковидной железы получены на животных (хомяках). В темноте, т. е. в условиях активации функции эпифиза) у животных наблюдается выраженная инволюция половых органов и снижение уровня ЛГ в крови. У эпифизэктомированных особей или в условиях перерезки нервов эпифиза темнота не оказывает такого действия. Полагают, что антигонадотропное вещество эпифиза препятствует выделению люлиберина или его действию на гипофиз.
Аналогичные, хотя и менее четкие данные получены на крысах, у которых темнота несколько задерживает половое созревание, а удаление эпифиза приводит к повышению уровней ЛГ и ФСГ в крови. Особенно отчетливо антигонадотропное влияние эпифиза наблюдается у животных с нарушенной функцией гипоталамо-гипофизарно-гонадной системы введением половых стероидов в раннем постнатальном периоде.
Эпифизэктомия у таких крыс восстанавливает половое развитие. Антигонадотропные эффекты шишковидной железы и ее гормонов усиливаются также в условиях аносмии и голодания.
Ингибирующим действием на секрецию ЛГ и ФСГ обладает не только мелатонин, но и его производные -- 5-метокситриптофол и 5-окситриптофол, а также серотонин. Как уже отмечалось, способностью влиять на секрецию гонадотропинов in vitro и in vivo обладают и недостаточно идентифицированные полипептидные продукты эпифиза. Один из таких продуктов (с молекулярной массой 500-1000 дальтон) оказался в 60-70 раз активнее мелатонина в отношении блокады гипертрофии оставшегося яичника у односторонне овариэктомированных мышей. Другая фракция пептидов эпифиза, напротив, обладала прогонадотропным эффектом.
Удаление эпифиза у неполовозрелых крыс приводит к увеличений содержания пролактина в гипофизе с одновременным снижением его уровня в крови.
Аналогичные сдвиги имеют место у животных, содержащихся в условиях постоянного освещения, а противоположные -- у крыс, находящихся в темноте.
Полагают, что шишковидная железа выделяет вещество, препятствующее влиянию пролактинингибирующего фактора (ПИФ) гипоталамуса на синтез и секрецию пролактина в гипофизе, в результате чего содержание гормона в этой железе уменьшается. Эпифизэктомия вызывает противоположные изменения. Активным веществом эпифиза в данном случае является мелатонин, так как его инъекция в III желудочек мозга транзиторно повышала уровень пролактина в крови.
В условиях постоянного отсутствия света замедляется рост животных и значительно уменьшается содержание гормона роста в гипофизе. Эпифизэктомия снимает эффект темноты и иногда сама по себе ускоряет рост. Введение экстрактов эпифиза уменьшает стимулирующее рост влияние препаратов гипофиза. В то же время мелатонин не действует на скорость роста животных.
Возможно, какой-то иной эпифизарный фактор (факторы) тормозит синтез и выделение соматолиберина или стимулирует продукцию соматостатина.
В экспериментах было показано, что влияние эпифиза на соматотропную функцию гипофиза не опосредовано дефицитом андрогенов или тиреоидных гормонов.
У эпифизэктомированных крыс транзиторно возрастает секреция кортикостерона, хотя стрессорная реакция надпочечников после удаления эпифиэа существенно ослабляется. Секреция же кортикостерона повышается в условиях постоянного освещения, которое, как известно, тормозит активность шишковидной железы. Имеются данные о том, что удаление эпифиза ослабляет компенсаторную гипертрофию оставшегося надпочечника после односторонней адреналэктомии и нарушает циркадный ритм секреции глюкокортикоидов. Это указывает на значение эпифиза для осуществления адренокортикотропной функции передней доли гипофиза, что подтверждается изменением продукции АКТГ тканью гипофиза, удаленного у эпифизэктомированных животных.
Относительно действующего начала эпифиза, влияющего на адренокортикотропную активность гипофиза, в литературе нет единого мнения.
Удаление эпифиза повышает содержание меланоцитстимулирующего гормона (МСГ) в гипофизе, тогда как введение мелатонина в III мозговой желудочек снижает его содержание. Уровень последнего в гипофизе крыс, живущих на свету, возрастает, а введение мелатонина блокирует этот эффект. Считают, что мелатонин стимулирует гипоталамическую продукцию меланотропинингибирующего фактора МИФ.

3.3 Влияние эпифиза на функции щитовидной железы.

Влияние эпифиза и его гормонов на другие тропные функции гипофиза менее изучено. Изменение активности периферических эндокринных желез может возникать благодаря непосредственному действию эпифизарных факторов. Так, удаление эпифиза приводит к некоторому увеличению массы щитовидной железы даже в отсутствие гипофиза. Скорость секреции тиреоидных гормонов при этом возрастает очень мало и кратковременно. Однако, по другим данным, эпифиз оказывает ингибиторное влияние на синтез и секрецию ТТГ у неполовозрелых животных.
В большинстве экспериментов подкожное, внутрибрюшинное, внутривенное и даже внутрижелудочковое введение мелатонина приводило к уменьшению йодконцентрирующей функции щитовидной железы.

3.4 Влияние эпифиза на функции надпочечников.

Подсадка эпифиза к надпочечникам, не влияя на состояние пучковой и сетчатой зон коры, почти вдвое увеличивала размеры клубочковой зоны, что свидетельствует о непосредственном действии продуктов эпифиза на клетки, вырабатывающие минералокортикоиды. Более того, из эпифиза было выделено вещество (1-метокси-1,2,3,4-тетрагидро-карболин), стимулирующее секрецию альдостерона и поэтому получившее название адреногломерулотропин. Однако вскоре были получены данные, отрицающие физиологическую роль этого соединения и даже ставящие под сомнение само существование специфического адреногломерулотропного фактора эпифиза.

3.5 Влияние эпифиза на функции околощитовидных желёз.

Имеются сообщения о том, что удаление эпифиза снижает функциональную активность околощитовидных желез. Существуют и противоположные наблюдения.
Результаты исследования влияния эпифиза на эндокринную функцию поджелудочной железы в основном оказываются отрицательными.
В настоящее время остается еще много нерешенных вопросов, касающихся, в частности, характера продуцируемых этой железой соединений. Меньше всего вызывает сомнения влияние эпифиза на секрецию тропных гормонов гипофиза, но нельзя исключить возможность непосредственного его воздействия на периферические эндокринные железы и другие органы. под действием стимулов внешней среды эпифиз продуцирует не одно, а несколько соединений, попадающих преимущественно в кровь. Эти вещества модулируют активность моноаминергических нейронов в центральной нервной системе, контролирующих выработку либеринов и статинов определенными структурами мозга и тем самым влияющих на синтез и секрецию тропных гормонов гипофиза.
Влияние эпифиза на гипоталамические центры носит преимущественно тормозной характер.

3.6 Эпифиз и психика.

Одна из функций эпифиза -- регуляция ритмов в организме. Нарушения последних, например расстройства сна, сочетаются с психическими заболеваниями. Поэтому эпифиз привлекает внимание психиатров.
Исследования показали снижение либо отсутствие ночного подъема уровня мелатонина у больных с депрессией. Одно из звеньев патогенеза этого заболевания предполагает сниженную серотонина и норадренергическую функцию мозга. Оба эти продукта вовлечены в синтез мелатонина: один как предшественник, другой как нейротрансмиттер. Поэтому факт обнаружения низкого уровня мелатонина при депрессии не был неожиданностью.
С другой стороны, многие антидепрессанты стимулируют продукцию мелатонина, воздействуя на уровень норадреналина и серотонина в мозге. Опиоидные пептиды имеют антидепрессантную активность и также контролируют функцию эпифиза на гипоталамическом уровне, повышая выработку мелатонина.
Высокие уровни мелатонина могут обнаруживаться у пациентов с манией. Больные с маниакально-депрессивным синдромом сверхчувствительны к свету даже в период ремиссии. Мелатонин может служить маркером этой патологии -- супрессия секреции мелатонина выявляется у таких больных при воздействии света слабой интенсивности,
недостаточной для подобных изменений у здоровых.
Признается причастность эпифиза к своеобразному психическому расстройству -- синдрому зимней депрессии, или сезонной аффективной болезни, описанной Rosenthal и сотр. (1984). Это рецидивирующая зимняя депрессия, сопровождающаяся сонливостью, тягой к углеводам, увеличением массы тела.
Возможно, что она связана с удлинением темного периода суток. Отмечен быстрый положительный эффект лечения интенсивным светом с целью искусственного снижения уровней мелатонина.

3.7 Эпифиз и сон

В настоящее время участие, по крайней мере косвенное, эпифизарного мелатонина в сезонной и внутрисуточной ритмике, сне-бодрствовании, репродуктивном поведении, терморегуляции, иммунных реакциях, внутриклеточных антиокислительных процессах, старении организма, опухолевом росте и психиатрических заболеваниях - не оставляет сомнений. Это доказано многочисленными исследованиями.

Однако не столь всестороннее до недавнего времени изучение влияния мелатонина на сон млекопитающих давало весьма противоречивые результаты. Известно, что звери по характеру своей активности подразделяются на дневных, ночных и сумеречных (не считая тех, чья активность не связана со сменой освещенности, например, крота-слепыша). У всех животных мелатонин выбрасывается эпифизом в темноте и блокируется на свету, а активность супрахиазмальных ядер подавляется мелатонином. Спрашивается, как может вещество, выделяющееся в одно и то же время, управлять столь непохожими типами поведения у разных видов млекопитающих? Пока окончательного ответа на этот вопрос нет, но очевидно, что мелатонин влияет на поведение косвенно, через какие-то еще не известные механизмы. В этой связи весьма важными представляются следующие недавно полученные данные:

межвидовые различия в распределении областей связывания мелатонина в головном мозге млекопитающих, о чём было сказано выше;

различия в распределении подтипов рецепторов мелатонина внутри областей связывания;

особая роль нейронов в области переднего гипоталамуса, находящейся в непосредственной близости к СХЯ и образующей с ними единый функциональный комплекс. В этой области обнаружены клетки, которые связаны с реальным ритмом активности-покоя у данного животного. Видимо, они преобразуют периодическую активность нейронов СХЯ, адаптируя ее к наиболее адекватному поведенческому ритму.

Было изучено действие небольших (физиологических) доз мелатонина на кроликах, животных с преимущественно сумеречной активностью. Исходя из литературных данных, за рабочую гипотезу приняли, что введение мелатонина в противофазе с суточным ритмом его продукции (т.е. в светлое время суток) должно вызывать обращение суточного хода кривой активности-покоя. Иными словами, ожидалось, что в модели мелатонин лишь немного увеличит время бодрствования и уменьшит медленную и парадоксальную фазу сна.

Однако на самом деле все оказалось гораздо сложнее: в некоторых сериях опытов мелатонин, действительно, подавлял сон, но в других - не влиял на него или даже увеличивал долю парадоксального сна. По некоторым данным, в ряде случаев он также увеличивал парадоксальный сон у крыс, животных с выраженной ночной активностью. Аналогичное действие обнаружили и у некоторых здоровых испытуемых, когда после приема мелатонина скорее наступал быстрый (парадоксальный) сон и увеличивалась его доля в первых двух ночных циклах. Некоторые пациенты, которым вводили мелатонин по показаниям, отмечали появление необычайно ярких и эмоциональных сновидений.

Причина разнообразного влияния мелатонина на сон не вполне ясна. Можно предположить, что его эффекты возникают вследствие изменения гормонального баланса и отражают взаимодействие с некоторыми важнейшими регуляторными пептидами, такими как соматолиберин, соматостатин, вазоинтестинальный полипептид и кортикотропиноподобный пептид из промежуточной доли гипофиза (CLIP).

В то же время у диурнальных (дневных) млекопитающих, к которым относится человек, выброс мелатонина действительно совпадает с привычными часами сна. Это делает весьма привлекательной гипотезу о наличии и причинно-следственной связи между этими явлениями. У человека, однако, подъем уровня мелатонина не служит обязательным сигналом к началу сна. В различных лабораториях мира, в том числе и в исследованиях сотрудников Сомнологического центра Московской медицинской академии им. И.М.Сеченова, выполненных под руководством недавно ушедшего из жизни академика РАМН А.М.Вейна, прием мелатонина (от 0.3 до 3 мг) у большинства испытуемых вызывал лишь мягкий седативный эффект: способствовал некоторому общему расслаблению, снижал реактивность на обычные окружающие стимулы, что приводило к спокойному бодрствованию и плавному засыпанию. В отличие от сильных снотворных (феназепама, элениума, ивадала, имована и пр.), воздействующих на белки-рецепторы гамма-аминомасляной кислоты в мозге, мелатонин не вызывает ощущения невыносимой усталости и непреодолимой тяги ко сну. При необходимости человек легко преодолевает снотворные свойства мелатонина. Объективные и субъективные характеристики классических снотворных и мелатонина резко отличаются друг от друга.

Исходя из корреляции между субъективно ощущаемым и объективно подтвержденным ежевечерним нарастанием сонливости, с одной стороны, и увеличением концентрации мелатонина в крови, с другой, можно предположить, что он не прямо воздействует на сомногенные структуры головного мозга, а, скорее, создает некоторую “предрасположенность ко сну”, тормозит механизмы бодрствования. Благодаря высокой насыщенности СХЯ и смежных участков преоптической области высокочувствительными рецепторами, мелатонин, наряду с другими физическими (ярким светом) и вышеперечисленными биохимическими факторами, оказывает мощные модулирующие воздействия на активность главного осциллятора в организме млекопитающих, в том числе и человека. Так, при утреннем приеме он вызывает задержку фазы суточного ритма человека, а при вечернем - наоборот, сдвиг фазы вперед, причем не более чем на 30-60 мин/сут. Значит, ежедневно принимая мелатонин, можно сместить суточный цикл активности-покоя на несколько часов в ту или другую сторону. Такая потребность обычно возникает при трансмеридиональных авиаперелетах или сменной работе, когда сон нарушается и количественно, и качественно.

Использование мелатонина для коррекции биоритмов при сменной работе зависит от ее характера, освещенности и особенностей данного субъекта. Вопросы о необходимости приема гормона, его дозы и времени решаются в каждом случае индивидуально с обязательным учетом формы кривой мелатонина (до и после применения). Разработанные в настоящее время весьма чувствительные (от 0.5 пг/мл) методы определения этого эпифизарного гормона не только в плазме крови, но и в моче и слюне, делают его использование вполне возможным.

Несколько лет назад появились многочисленные публикации о “безвредности” и даже необходимости постоянного возмещения возрастной “нехватки” мелатонина. Это якобы должно улучшить общее состояние здоровья пожилых людей и продлить жизнь. Такое совершенно необоснованное с позиций современных знаний представление привело к беспрецедентному в истории фармацевтики явлению: в США гормон человека - синтетический мелатонин - был рекомендован в качестве пищевой добавки. Бесконтрольное по сути использование препарата, повышающее его концентрацию в десятки, сотни и даже тысячи раз по сравнению с естественным ночным уровнем, может не только нарушить суточный ритм и цикл сон-бодрствование, но и вызвать общую эндокринную недостаточность из-за неадекватного и чрезмерного торможения гормонов гипофиза и периферических эндокринных желез тогда, когда в подобном торможении уже нет нужды. Говоря другими словами, чрезмерная еженощная концентрация мелатонина может ухудшить здоровье и укоротить жизнь - т.е. привести к результатам, прямо противоположным тем, которые декларируются адептами “мелатонинового чуда”!

3.8 Эпифиз и канцерогенез.

В литературе обсуждается возможная роль эпифиза в противоопухолевой резистентности организма. В 1929 г. Georgion отметил, что эпифизэктомия у животных тормозила туморогенез, и сделал заключение о стимуляции эпифизом опухолевого роста. Большинство последующих исследований дало обратные результаты. Угнетение функциональной активности эпифиза (избыточным освещением) и эпифизэктомия оказывали стимулирующее воздействие на развитие и рост перевиваемых, индуцированных канцерогенами и спонтанных новообразований молочной железы. С другой стороны, стимуляция функции эпифиза (содержанием животных в темноте), введение экстрактов эпифиза либо мелатонина в ряде случаев обладают противоопухолевым эффектом.
Некоторые больные раком молочной железы демонстрируют малое повышение мелатонина плазмы ночью. Уровни мелатонина были ниже у пациентов с эстроген-рецепторноположительными опухолями. Зарегистрирована отрицательная корреляция между концентрацией эстрогеновых рецепторов в опухоли и мелатонина в плазме.
Обратная корреляция отмечена и для прогестероновых, но не для
глюкокортикоидных рецепторов. Связи прироста уровня мелатонина в крови ночью с концентрацией гормонов -- эстрогена, эстрадиола, прогестерона, ЛГ, ФСГ -- не выявлено. Эти данные предполагают, что отсутствие суточного ритма мелатонина может быть связано и с наличием гормональнозависимого рака молочной железы.
Ряд исследований свидетельствует о снижении амплитуды ночной волны мелатонина и даже о ее отсутствии при других гормональнозависимых опухолях -- раке матки, яичников, предстательной железы. Есть данные, что введение мелатонина либо экстракта эпифиза таким больным дополнительно к традиционному лечению улучшало его результаты.
До настоящего времени природа веществ, ответственных за антиканцерогенное действие эпифиза, механизмы их действия окончательно не известны. Каких-либо определенных морфологических изменений эпифиза у больных со злокачественными опухолями не обнаружено. Установлено выраженное тормозящее влияние мелатонина на клеточное деление. Он оказывает ингибирующее действие на некоторые из обменных нарушений, характерных для опухолевого роста: снижает уровень гормона роста в гипофизе и крови, уровень глюкозы, холестерина, неэтерифицированных жирных кислот в крови.

Часть III. Биологические ритмы организма.

Глава 1. Ритмы живых организмов.

1.1 Ритмы вокруг нас.

Мы без труда замечаем ритмические изменения, происходящие в окружающем нас мире: весна, лето, осень и зима образуют привычный цикл; солнце всходит каждый день, движется по небу и садится; луна прибывает и убывает; в океане приливы чередуются с отливами. Задолго до того, как люди узнали о вращении Земли и движении планет вокруг Солнца, они наблюдали эти изменения, задумывались об их смысле, устраивали в их честь церемонии и праздники, приурочивали к ним свою каждодневную деятельность. Популярные в средневековой Европе «часословы» описывали различные виды сезонной и суточной активности и предлагали верующим для каждого случая специальные молитвы.
В организме тоже есть свои ритмы, многие из которых связаны с земными циклами и даже приспособлены к ним. Большинство ритмических изменений мы даже не замечаем - таковы, например, гормональные приливы и отливы, циклы быстрой и медленной активности мозга, циклические колебания температуры тела. Хотя нам мало что известно об отдельных исполнителях, мы определенно знаем, что роль дирижера, управляющего биологическими ритмами, в человеческом организме принадлежит мозгу.
Однако ритмы существуют и у организмов с менее развитым мозгом и даже совсем без мозга. На песчаных пляжах залива Кейп-Код встречается один вид золотистых водорослей. Во время прилива эти одноклеточные организмы находятся в песке, но как только начинается дневной отлив, водоросли продвигаются между песчинками и выбираются на солнце, чтобы подзарядить свой аппарат фотосинтеза. Незадолго до того как волны возвращающегося прилива накроют их, водоросли вновь уходят на безопасную глубину.
Разумеется, приливы не происходят каждый день в одно и то же время. Наши часы отражают 24-часовые солнечные сутки, а цикл приливов и отливов связан с лунными сутками, длина которых 24,8 ч. Поэтому если в понедельник водоросли атлантического побережья северо-востока Соединенных Штатов должны успеть зарыться в песок в 14 ч 1 мин, то во вторник - в 14 ч 57 мин, в среду - в 15 ч 55 мин и т.д.
Зависит ли поддержание столь сложного ритма у этих одноклеточных растений от их реакции на сигналы, поступающие из внешней среды? Чтобы выяснить это, представителей популяции водорослей перенесли с песчаного пляжа в лабораторию и поместили в сосуд, находившийся в условиях постоянного освещения. Приливов - или их имитации - в лаборатории тоже не было. Оказалось, что, несмотря на отсутствие показателей времени - дней и ночей, приливов и отливов, - водоросли упорно карабкались на поверхность, когда на их родном пляже начинался отлив, и вновь зарывались в песок незадолго до того, как подступала вода. Водоросли были настолько пунктуальны, что экспериментаторы всегда могли судить по ним об уровне воды на берегу океана, находившемся на расстоянии более 27 миль. Очевидно, что поведением водорослей управляли биологические часы, установленные по лунному времени

1.2 Типы ритмов.

Золотистые водоросли демонстрируют суточный ритм, хотя их сутки и составляют 24,8 ч. Подобные ритмы называются циркадианными (от латинских слов circa - около и dies - день) или околосуточными.

Цикл сна и бодрствования у человека, суточные колебания температуры тела, концентрации гормонов, мочеотделения, спады и подъемы умственной и физической работоспособности - все это примеры циркадианных ритмов.

Ритмы с периодом более суток называются инфрадианными (infra - меньше, т.е. цикл повторяется меньше одного раза в сутки). Некоторые грызуны, например, ежегодно впадают в зимнюю спячку; при этом температура тела у них падает, и они на протяжении нескольких месяцев пребывают в состоянии полного покоя. Этот годичный цикл относится к инфрадианным ритмам, так же как, например, менструальные циклы у женщин.

Ритмы с периодом меньше суток называются улътрадианными (ultra - сверх, т.е. частота больше одного раза в сутки). Цикличность фаз, чередующихся на протяжении 6-8-часового нормального сна у человека, - один из многих примеров подобных ритмов.

Интерес к биоритмам не ограничивается только стремлением узнать, как функционируют живые существа. Сведения о «приливах» и «отливах» тех иных продуктов, синтезируемых организмом, мог подсказать, например, какое время дня наибе благоприятно для приема определенных лекарств. Эксперименты на мышах показали, что чувствительность этих животных к токсичным веществам резко меняется на протяжении суток. Мыши активны ночью, и в это время они могут без последствий переносить такую дозу препарата, которая днем окажется смертельной или вызовет сильную реакцию. Как показали результаты одного исследования, из мышей, получавших бактериальный токсин в ранние вечерние часы, погибло 80%, а из животных, получавших такую же дозу среди ночи, - лишь 20% (Halberg, 1960). Далее, диагностика многих заболеваний связана с измерением концентрации некоторых веществ в крови или моче. Зная суточные колебания этих показателей, мы сможем поставить более точный диагноз.

Большинство исследований по биологическим ритмам проводилось на растениях, птицах, других животных (эксперименты на человеке допустимый лишь в том случае, если они не причиняют вреда, так что возможности здесь весьма ограниченны). Исследователи пытаются выяснить:

какова функциональная организация ритма;

где находятся структуры, задающие ритм («пейсмейкеры»), и каков физиологический механизм их действия;

какие клеточные и биохимические механизмы обусловливают генерацию ритма в самих пейсмейкерах.

1.3 Изучение ритмов у живых организмов (кроме человека)

Более 250 лет назад французский астроном Жан-Жак д'Орту де Меран, заметив, что цветок гелиотропа раскрывается днем и закрывается ночью, решил проверить, обусловлено ли движение лепестков реакцией на свет и темноту. Он спрятал растение в темную комнату и начал наблюдать за ним. Оказалось, что цветок не только продолжал раскрываться и закрываться в отсутствие света, но его цикл в точности соответствовал смене дня и ночи. Астроном пришел к выводу, что ритмы растения контролируются каким-то внутренним механизмом.

Цветы с такой пунктуальностью ежедневно раскрывают и закрывают свои лепестки, что великий биолог Карл Линней спроектировал цветочные часы, состоящие из различных видов цветущих растений, которые распускались поочередно от 6 часов утра до 6 часов вечера.

Реакция цветка на свет - он раскрывается на свету и закрывается в темноте - называется - фототропизм.

Простые организмы

Водоросли, с такой поразительной регулярностью осуществляющие свои циклы на песчаных пляжах залива Кейп-Код, состоят всего лишь из одной клетки. Следовательно, механизм, ответственный за циркадианные ритмы их активности, должен находиться внутри клетки. Однако и по сей день все попытки идентифицировать (в анатомических или функциональных понятиях) пейсмейкер или хотя бы какую-то его часть не увенчались успехом. Водоросль подвергали воздействию высоких температур или потенциально разрушительных химикалий, но она упорно продолжала делать свое дело.

У другого одноклеточного организма - Gonyaulax - наблюдаются четыре различных циркадианных ритма, затрагивающих соответственно четыре функции: фотосинтез, люминесценцию, раздражимость, клеточное деление. Определяются ли эти ритмы одним и тем же пейсмейкером или четырьмя различными? Ответ на этот вопрос пока не получен. Даже после удаления клеточного ядра микрохирургическим способом ритмы сохраняются.

Один из хорошо изученных многоклеточных организмов - Aplysia califopnica, слизнеподобное существо, жизнь которого тесно связана с тихоокеанскими приливами. Аплизия - очень удобный объект для исследований, так как связи и функции ее крупных нейронов довольно легко поддаются выявлению. Феликс Штрумвассер обнаружил у некоторых нейронов наружного края глаза определенный ритм частоты импульсного разряда - она возрастает на свету и уменьшается в темноте. Если эти нейроны выделить, поместить в ванночку с морской водой и выдерживать в абсолютной темноте, то их импульсация останется такой же, как если бы они находились внутри живого организма. Очевидно, ритм этих нейронов, помогающий организму согласовывать суточные циклы питания и покоя со сменой дня и ночи, приливами и отливами, регулировался процессами, происходящими внутри самих нейронов. Но каковы эти процессы, пока еще, как и в случае с одноклеточной водорослью, не установлено, хотя ученые полагают, что существует какая-то связь между скоростью белкового синтеза в клетке и ее ритмом.

Птицы и млекопитающие

Каждую осень пеночки-веснички мигрируют из Центральной и Северной Европы, где они выводили потомство, в теплые края Центральной и Южной Африки. Подобного рода миграции свойственны многим видам птиц. Золотистая ржанка летит размножаться в Юкон из такой далекой южной страны, как Аргентина, покрывая расстояние около 7000 миль; полярная крачка гнездится в северной Европе, Азии или Северной Америке и мигрирует в Антарктику. Что служит пусковым механизмом миграции? Что ощущают птицы: то, что дни становятся короче, или то, что температура постепенно снижается? Для того чтобы выяснить это, ученые вынули весной только что оперившихся птенцов пеночки из европейских гнезд и разделили их на четыре группы. Одна группа осталась в естественных условиях. Вторую поместили в лаборатории, расположенной неподалеку от мест обитания птиц, но в условиях постоянной температуры (11,6°С) и чередующихся 12-часовых периодов света и темноты. Две оставшиеся группы были самолетом перевезены в Африку, в места их зимовки, причем одну из них содержали здесь в тех же лабораторных условиях, что и вторую европейскую группу, а другую оставили жить в природных условиях. Оказалось, что у всех четырех групп сохранился один и тот же годичный цикл поведения. Где бы они ни находились, весной и осенью у них проявлялись признаки миграционного беспокойства (ночная активность, не характерная для других сезонов), а в промежуточные периоды происходила смена оперения. Этот основной ритм, определялся каким-то внутренним механизмом.

Другой ультрадианный цикл поведения, свойственный многим млекопитающим, - это зимняя спячка. Золотистый суслик, коренной житель Скалистых гор, на время суровых тамошних зим впадает в спячку. В лаборатории в условиях постоянной температуры (как при 0°С, так и при обычной комнатной температуре) и чередующихся 12-часовых периодах света и темноты суслики все-таки в сентябре - октябре начинали больше есть и набирали вес, а затем впадали в спячку, причем температура тела у них снижалась почти до 0°С. Весной они просыпались, приступали к еде и становились подвижными. Этот годичный цикл для золотистого суслика, генетически запрограммирован. Действительно, зверьки, родившиеся и выращенные в лаборатории при постоянных световых и температурных условиях, обнаруживали характерные циклы поведения на протяжении трех лет.

1.4 Роль средовых сигналов.

Наследственность, которая заставляет пеночек-весничек готовиться к перелету, а золотистого суслика приблизительно в то же самое время года - к спячке, без сомнения, отражает длительную эволюционную историю вида. Если бы животные, прежде чем начать готовиться к смене сезонной активности, стали дожидаться наступления определенных внешних событий, их выживание было бы более проблематичным. Продолжительное «бабье лето» в Скалистых горах могло бы, например, замедлить процесс отложения жира у суслика, и внезапная снежная буря оказалась бы для него гибельной. Вот почему биологические часы суслика должны игнорировать большую часть внешних сигналов.

Это, однако, не значит, что они вообще неподвластны воздействию внешних условий. Когда экспериментаторы содержали сусликов при постоянной температуре 35°С, близкой к нормальной температуре тела этих животных, спячка у них не наступала, но годичные циклы прибавки и потери веса сохранялись. Таким образом, по крайней мере один из факторов среды - температура - может воздействовать на некоторые генетически запрограммированные ритмы.

Другой фактор, который может иметь решающее значение для синхронизации ряда ритмов, - это свет. Цветок гелиотропа, занесенный в помещение и находившийся все время в полной темноте, продолжал раскрываться и закрываться в том же ритме, что и раньше на свету. Однако дальнейшие эксперименты показали, что у сеянцев некоторых видов, выращенных в полной темноте, характерные ритмы вообще отсутствовали до тех пор, пока растение хотя бы однажды не было выставлено на свет. Этого было достаточно для запуска генетического механизма, ответственного за открывание и закрывание лепестков под влиянием света и темноты (Bunning, 1967).

Ритмы, наблюдаемые у некоторых птиц, тоже зависят от количества и интенсивности света. Зяблики, подобно большинству птиц, активны в дневные часы и отдыхают ночью. Однако, если их почти круглосуточно держать в полумраке и лишь на 15 минут каждый день включать яркий свет, то цикл активности у этих птиц будет определяться периодами сильной освещенности. Если такой период наступает рано, вскоре после пробуждения птиц, они раньше становятся активными и их цикл ускоряется; если же свет включать позднее, то будет запаздывать и период наибольшей активности (Ashoff et al., 1971).

Ученые пользуются термином «времязадатели» (перевод немецкого слова Zeitgeber) для обозначения средовых факторов, влияющих на биологические ритмы. Как могут времязадатели воздействовать на биологические часы организма? И какие физиологические механизмы лежат в основе самих часов?

1.5 Эпифиз

Любые биологические часы, зависящие от света, должны включать три элемента:

входной канал, по которому свет или информация о нем достигает пейсмейкера и воздействует на него;

пейсмейкер-генератор и регулятор ритма;

выходной канал, по которому передаются сигналы, возбуждающие ритмическую деятельность.

У многих животных роль биологических часов, подверженных действию света, выполняет эпифиз (шишковидная железа).

Входной канал

Пути, по которым информация об освещенности передается эпифизу, у разных животных различны. У крыс это определенные волокна зрительного тракта, образующие отдельную ветвь, не связанную со зрением. У птиц восприятие света осуществляется как с помощью глаз, так и прямо сквозь череп. Эпифиз, удаленный у курицы и помещенный в питательную среду, реагирует на изменения освещенности. Этот эксперимент показывает, что по крайней мере в курином эпифизе имеются собственные фоторецепторы.

Пейсмейкерная активность
В эпифизе происходит превращение серотонина в гормон мелатонин, который выделяется в кровяное русло. Мелатонин, служит посредником в тех функциях эпифиза, которые связаны с учетом времени и световыми циклами. Например, у некоторых ящериц мелатонин, видимо, вызывает посветление кожи, наблюдаемое при наступлении темноты. У воробьев и кур содержание циркулирующего в крови мелатонина обусловливает нормальные циркадианные ритмы дневной активности и ночного покоя, а также циклические изменения температуры тела. (После инъекции мелатонина воробьи, например, засыпают.)
Процесс превращения серотонина в мелатонин состоит из двух этапов, и его осуществляют два фермента, синтезируемые в эпифизе. Один из этих ферментов - N-ацетилтрансфераза. От ее активности зависит количество мелатонина, выделяемого эпифизом в кровь, а оно в свою очередь контролирует такие физиологические ритмы, как циклические изменения температуры тела, и такие поведенческие ритмы, как цикл сна и бодрствования. Поэтому некоторые ученые считают, что N-ацетилтрансфераза служит для этих функций синхронизирующим фактором.
У многих животных как с дневным, так и с ночным образом жизни наивысшая активность N-ацетилтрансферазы всегда приходится на темное время суток. У кур активность N-ацетилтрансферазы ночью в 27 раз выше, чем днем, а количество мелатонина в 10 раз выше, причем пики обеих величин приблизительно совпадают по времени. При возрастании количества мелатонина куры садятся на насест, засыпают и температура тела у них понижается.
Поскольку число светлых и темных часов в сутках на протяжении года изменяется, свет должен каким-то образом влиять на активность N-ацетилтрансферазных «часов». Эксперименты на курах показали, как это происходит (Binkle, 1979). У кур, все время находящихся в темноте, сохраняется 24-часовой ритм N-ацетилтрансферазы, а при непрерывном освещении количество фермента уменьшается. Но еще интереснее то, что у кур, выращенных в условиях чередования 12-часовых периодов света и темноты и внезапно подвергшихся действию света во время одного из «темных» периодов, активность фермента резко падает. Эта реакция указывает на чувствительность эпифиза к свету. Правда, обратной реакции при внезапном выключении света во время обычного светлого периода исследователи не отмечали. Возможно, это означает, что эпифиз не всегда одинаково чувствителен к изменениям освещенности - что в течение суток есть периоды, когда его ритм не подвержен влиянию внешних условий.
Эпифиз чувствителен к изменениям освещенности во время периодов темноты - в ночные часы в курятнике. С помощью этого органа птицы могли бы как-то определять разницу в продолжительности следующих друг за другом ночей. Утренний свет, достигая эпифиза, уменьшает активность N-ацетилтрансферазы, что в свою очередь снижает количество выделяемого мелатонина. С уменьшением концентрации мелатонина в крови у кур повышается температура тела, и они приступают к своей каждодневной деятельности - кормежке и разгребанию сора. Поскольку рассвет летом может начинаться в 4.30, а зимой - в 6.30, эпифизарные биологические часы должны ежедневно устанавливаться заново, сохраняя при этом общую продолжительность цикла, равную 24 часам.
Механизм биологических часов у кур ясен. Однако у человека хронометрическая роль эпифиза до конца не установлена. Даже между курами и крысами существуют большие различия в способе воздействия света на эпифиз, в нервной регуляции активности N-ацетилтрансферазы и в химических процессах, влияющих на этот фермент. Например, у крыс норадреналин, выделяемый симпатическими нервами эпифиза, стимулирует активацию фермента, а у кур - тормозит ее. У человека некоторые из «часов», определяющих физиологические ритмы, быть может, тоже используют механизм, сходный с внутренним ритмом активности N-ацетилтрансферазы в эпифизе. Однако ничего пока нельзя сказать с уверенностью, так как возможности проведения экспериментов на человеке ограниченны.

Глава 2. Циркадианные ритмы у человека

2.1 Ритмы у человека.

Всем нам хорошо известен один суточный ритм - наш собственный цикл сна и бодрствования. На самом деле человеческому организму свойственно более 100 таких ритмов, хотя многие из них скоординированы с циклом сон - бодрствование. Так, например, температура тела на протяжении каждых суток изменяется примерно на 0,6°С. В дневное время она выше, достигает максимума где-то во вторую половину дня и снижается до минимума ночью - между 2 и 5 часами утра. Вспомните те случаи, когда вы не ложились спать до позднего времени, готовясь к экзамену или ожидая посадки на ночной самолет. Если у вас при этом возникало чувство озноба, то это не только потому, что вы устали больше обычного, но и потому, что в этот момент у вас была самая низкая температура тела.

Выделение мочи тоже подчиняется определенному ритму - медленнее всего оно идет ночью во время сна. Это важный охранительный механизм. Мы ежедневно проводим около 8 часов в лежачем положении, ничего не потребляя. Поэтому, если бы ночью организм терял много жидкости, это грозило бы уменьшением объема крови. Скорость экскреции мочи определяется ритмическим выбросом различных гормонов. Ученые обнаружили отчетливый циркадианный ритм в содержании вазопрессина - антидиуретического гормона, выделяемого задней долей гипофиза, - в крови здоровых людей.

Один из гормонов, вырабатываемых корой надпочечников, - кортизол (гидрокортизон) - выделяется в наибольшем количестве перед рассветом, тем самым подготавливая организм к заботам грядущего дня. У ночных животных пик выброса этого гормона приходится на ранние вечерние часы.

Все эти ритмы явно синхронизированы с ритмом сна и бодрствования.

2.2 Сон и бодрствование.

Сон - это специфическое состояние нервной системы с характерными особенностями и циклами мозговой деятельности. Человек засыпает не постепенно, а сразу - переход от состояния бодрствования к состоянию сна совершается мгновенно. Это было показано Уильямом Дементом. Суть его опытов заключалась в следующем: испытуемому, который лежал и готовился ко сну, пластырем закрепляли веки так, что глаза его оставались открытыми, а затем через каждые одну или две секунды включали световую вспышку; испытуемый должен был при виде вспышки каждый раз нажимать на кнопку. Постепенного угасания реакции нажатия на кнопку обнаружено не было. Действие - а значит, и восприятие - прекращалось внезапно, когда испытуемый засыпал, хотя глаза его оставались широко открытыми.

Ученые пока не знают, каково назначение сна, но он, очевидно, представляет собой биологическую потребность нашего вида. Кто-то сказал, что сон существует для того, чтобы «помешать нам бродить в потемках и натыкаться на вещи». Тот, кто хоть раз устраивался на ночлег в дикой местности, как это делали наши примитивные предки, найдет в этой фразе больше здравого смысла, нежели простого остроумия.

Сон, регулируется взаимодействием групп нейронов, находящихся в разных участках мозга, в том числе в ретикулярной формации, ядрах шва и голубом пятне. Ретикулярная формация - это особая структура внутри моста и верхней части мозгового ствола в пределах заднего мозга, которая играет важную роль в процессе пробуждения. Ядра шва, тоже находящиеся в осевой части заднего мозга, вызывают сон путем торможения ретикулярной формации. Серотонин - основной медиатор ядер шва - и является тем фактором, который индуцирует сон. Недостаток серотонина заставляет животное бодрствовать. Норадреналин, с другой стороны, стимулирует пробуждение, а голубое пятно - одна из областей моста - это главное скопление нейронов, содержащих норадреналин. При повреждении голубого пятна животные спят намного больше, чем обычно.

Как именно взаимодействуют между собой эти мозговые структуры и их медиаторы, сказать достаточно сложно, но то, что они взаимодействуют в процессе регуляции сна и бодрствования, не вызывает сомнений. Например, после перерезки нервных путей, идущих от голубого пятна к ядрам шва, у животного наблюдается временное сокращение сна - как фазы БДГ, так и остальных фаз.

Другие образования - супрахиазменные ядра гипоталамуса, ответственны за распределение сна в суточном цикле, но не за его общую продолжительность. Разрушение этих ядер у крыс приводит лишь к тому, что животные спят урывками в разное время суток - вместо обычного для них длительного сна в дневное время (Ibuka, Kawamura, 1977).

Далеко не всем людям требуется 8 часов ночного сна. Продолжительность сна, в котором они нуждаются или думают, что нуждаются, сильно варьирует: одни превосходно чувствуют себя после 4 или 5 часов ночного сна, тогда как другие не ощущают себя отдохнувшими, не проспав 8-9 часов. Но какова бы ни была длительность сна, для всех людей характерна склонность всегда придерживаться одного и того же распорядка сна и бодрствования.

Большинство из нас строит свою жизнь на основе определенных «стандартов». Помимо циклической смены света и темноты мы находим в окружающей среде (или создаем сами) много других «времязадателей». В определенное время мы едим, ходим на работу или в школу, возвращаемся домой. Наша культурная жизнь тоже упорядочена: мы ходим в гости или в кино обычно по вечерам и крайне редко - утром. У большинства из нас, конечно же, есть при себе часы, или мы «следим за временем» с помощью городских часов. Какое влияние оказывают эти внешние временные сигналы на наши биологические ритмы? И во что превратятся наши дни и ночи, если мы лишимся таких сигналов?

В ряде экспериментов испытуемые добровольно соглашались провести длительное время в изоляции - не только без других людей, но и без каких бы то ни было внешних сигналов, позволяющих судить о времени. Удивительнее всего то, что у этих людей после нескольких недель изоляции обнаруживалась тенденция к установлению циклов, близких к 24,8-часовым лунным суткам.

Если человек долго не получает никаких указаний относительно времени, его циркадианный ритм становится, как говорят, «свободнотекущим». Как показали наблюдения над Мишелем Сиффром, находившимся в течение двух месяцев в изоляции под землей, его «сутки» по большей части были длиннее 24 или 25 часов и крайне редко короче.

Другой испытуемый, Дэвид Лафферти, провел в пещере 127 дней. Вначале его циклы были абсолютно беспорядочны. Иногда его «сутки» составляли 19 часов, из которых 10 он бодрствовал, а 9 - спал; иногда - 53 часа, из которых он бодрствовал 18, а спал-35. К концу эксперимента установился цикл длительностью около 25 часов.

Таким образом, при полном отсутствии внешних времязадателей наши цикль сна и бодрствования утрачивают свою регулярность. Значение общественного распорядка отчетливо проявляется в Арктике, где зимой царит постоянная тьма, а летом все время светло. Тем не менее у живущих там эскимосов сохраняются регулярные циклы сна и бодрствования.

Некоторые обстоятельства современной жизни, однако, способствуют нарушению циклов сна: путешествия на самолетах, работа в разные смены, бессонница. Влияют ли эти изменения на другие ритмы нашего тела? Вызывают ли они десинхронизацию различных процессов, и если да, то каковы физические и психологические последствия этого?

2.3 Когда сдвигаются фазы ритма.

В длительных экспериментах с испытуемыми, живущими в пещере, при свободнотекущем ритме «сутки» у них значительно удлинялись по сравнению с обычными 24-часовыми, и это действительно приводило к десинхронизации ритма температуры тела и цикла сон-бодрствование. Обычно, как вы помните, максимальная температура тела отмечается где-то после полудня, когда большинство людей очень активны. Минимальная температура наблюдается в 2-5 часов утра, когда мы обычно спим. У одного «пещерного жителя» сутки удлинились в среднем до 33 часов, но его температурный цикл остался почти прежним - 24,8-часовым. Поэтому иногда и подъем, и спад температуры тела приходились у него на активную часть «суток», а на 12-й день, например, он испытал два подъема и два спада за одни «сутки».

Температура тела очень сильно влияет на продолжительность сна у изолированных испытуемых со свободнотекущими ритмами. Если отход ко сну совпадает у субъекта с минимальной температурой тела, сон длится относительно недолго - около 8 часов. Напротив, если человек ложится спать при высокой температуре тела, длительность сна может достигать 14 часов. Люди с нормальным 24-часовым циклом дневного бодрствования и ночного сна обычно засыпают, когда температура тела у них начинает понижаться, и просыпаются, когда она идет на подъем. Несомненно, суточный ритм температуры тела влияет на продолжительность сна, но большинство из нас не ощущает этого влияния, так как живет по жесткому распорядку дня. Если иногда нам и случится проспать 12 часов, то мы припишем это переутомлению или лишней рюмке вина. Но, может быть, длительный сон наступил из-за того, что мы заснули, когда температура тела у нас была максимальной.

Полетная десинхронизация

Один из обычных факторов современной цивилизации, нарушающих четкий ритм жизни многих людей, - это перелеты на дальние расстояния. За 5 часов мы переправляемся с одного океанского побережья Соединенных Штатов на другое, пересекая несколько часовых поясов. А если вы полетите из Сан-Франциско в Лондон, путешествие займет около 8 часов, и когда вы сойдете с самолета, местное время будет на 8 часов опережать соответствующую фазу вашего циркадианного цикла. Скажем, если вы вылетите в полдень, то прилетите в 10 часов вечера (по вашим часам), а в Лондоне в это время будет 6 часов утра.

Большинству из нас знакомы ощущения, связанные с длительными перелетами, по крайней мере по путешествиям с одного океанического побережья на другое. В течение некоторого времени мы чувствуем усталость и раздражительность, плохо спим, иногда испытываем расстройства пищеварения; мы немного угнетены и чувствуем себя - умственно и физически - не в своей тарелке. Эти ощущения возникают в результате десинхронизации ритмов нашего тела, несогласованности двух или нескольких ритмов, которые обычно взаимосвязаны. Десинхронизация происходит из-за сдвига фаз, т.е. изменения соотношений между биологическими часами нашего организма и обычными часами, по которым идет жизнь. Обычно мы ложимся спать, когда температура тела у нас начинает опускаться, а оказавшись в новом месте, мы пытаемся уснуть при ее подъеме. Обычно выброс кортизола надпочечниками происходит перед нашим пробуждением; теперь же волна кортизола захлестывает наше тело в середине дня или перед сном. Иногда в течение нескольких дней после перелета мы просыпаемся разбитыми, а ночью лежим с широко открытыми глазами.

В конце концов ритмы приходят в норму и синхронизируются. Но, поскольку одни ритмы восстанавливаются раньше, а другие позже, для полной их синхронизации требуется некоторое время. Какое именно - зависит от нескольких причин.

Во-первых, скорость восстановления зависит от того, в каком направлении произошел сдвиг. При перелетах в западном направлении биологические часы отстают по отношению к 24-часовому суточному циклу, и для того, чтобы приспособиться к распорядку дня в новом месте, должна произойти фазовая задержка, а после перелетов в восточном направлении - разовое ускорение. организму легче осуществить фазовую задержку, нежели ее ускорение: после перелетов в западном направлении ритмы синхронизируются быстрее. С другой стороны, время, необходимое для адаптации к новым временным рамкам, зависит от физиологии индивида. Люди сильно различаются по своей приспособляемости.
Чтобы успешнее справиться с проблемой полетной десинхронизации, необходимо как можно скорее организовать режим дня в новых условиях таким образом, чтобы многочисленные внешние времязадатели сразу же начали воздействовать на ваши ритмы. В одном исследовании испытуемые совершали перелет через шесть часовых поясов. По прилете одни из них оставались в своем гостиничном номере, а другие включались в активную жизнь. Те, кто не выходил из помещения, приспосабливались к новым условиям намного медленнее. Если вы прилетите в Лондон в 6 часов утра по лондонскому времени, постарайтесь не ложиться спать, хотя для вашего организма уже 10 часов вечера. Позавтракайте и займитесь делами. Если в тот день вы ляжете спать одновременно с лондонцами, у вас будет больше шансов, что, проснувшись, вы почувствуете себя лондонцем, а не проведшим бессонную ночь жителем Сан-Франциско.
Говоря о воздействии времязадателей на человеческий организм, нужно упомянуть об одном факторе, который редко играет роль в жизни животных. Это индивидуальная мотивация. Эффективность одного назойливого времязадателя - будильника - зависит от того, в какой из дней недели раздается его звонок и что произойдет, если мы его проигнорируем. В будни люди почти всегда подчиняются его диктату и встают с постели, но в выходные дни они, несмотря на звонок, могут поспать дольше, что обычно и делают. «Хандра по утрам в понедельник» - это своеобразная «полетная» деадаптация, которая связана с тем, что в пятницу, субботу и воскресенье люди обычно ложатся и встают все позже и позже. Поэтому к утру понедельника в нашей циркадианной системе происходит фазовый сдвиг относительно общепринятого времени, и нам приходится вставать намного раньше по сравнению с субъективным временем нашего организма.

Сменная работа

Некоторые предприятия и организации функционируют 24 часа в сутки. На авиалиниях, например, пилоты и обслуживающий персонал часто работают по различным скользящим графикам. В больницах и аэропортах необходимо круглосуточное дежурство персонала, на многих заводах работа ведется в три 8-часовые смены. Поскольку большинство рабочих не любят постоянно трудиться в вечернюю (с 16.00 до 24.00) или ночную (с 24.00 до 8.00) смену, их график организован таким образом, что они работают одну неделю вечером, одну - ночью, одну - днем, а затем опять вечером.

Изменения рабочего графика, конечно, не обходятся без сдвигов в режиме сна; поэтому при переходе из одной смены в другую часто возникают явления, сходные с «полетной деадаптацией». Десинхронизация биологических ритмов приводит к снижению работоспособности. Из-за того что некоторым людям после 8-часового сдвига в режиме сна и бодрствования требуется 5-6 дней для восстановления ритма и синхронизации фаз, многие из тех, кто работает по сменному недельному графику, так и не успевают к нему по-настоящему приспособиться.

По сменам обычно дежурят авиадиспетчеры, проводя несколько дней в одной из них и следующие две недели в другой. Наиболее интенсивное движение со взлетами и посадками буквально каждые несколько секунд приходится на определенные смены, и поэтому скользящий график дежурств позволяет разделить эту тяжелую для нервной системы нагрузку поровну между всеми. Диспетчеры относятся к категории людей, особенно подверженных патологическим процессам, вызываемым длительным стрессом, например язве желудка и гипертонии. Трудно сказать, какие особенности этой работы вносят наибольшую лепту, но сменный график с присущей ему десинхронизацией ритмов определенно играет неблагоприятную роль.

С пониженной работоспособностью пилотов, не успевших приспособиться к работе в другую смену, связан целый ряд происшествий, едва не закончившихся трагически. Однажды Боинг-707, который должен был по графику приземлиться в Международном аэропорту Лос-Анджелеса, своевременно появился на дисплее слежения, но продолжал двигаться на высоте более 10000 метров, удаляясь на запад над Тихим океаном. Пришедшие в замешательство и обеспокоенные авиадиспетчеры смогли включить сигнал тревоги в кабине самолета. Оказалось, что вся команда заснула и самолет управлялся автопилотом. К счастью, в самолете хватило топлива для возвращения в Лос-Анджелес.

Неблагоприятное воздействие сменного графика, возможно, послужило одной из причин едва не разразившейся катастрофы на ядерном заводе «Три-Майл-Айленд». Бригада, находившаяся у пульта управления, пропустила несколько сигналов, предупреждавших о грозящей опасности. Оказалось, что эта бригада только что приступила к работе в ночную смену после шести недель непрерывного сменного графика.

Новые сведения о циркадианной системе человека и растущее понимание опасности для здоровья, возможной при скользящем графике работы, привели к тому, что биологические ритмы начали учитывать в промышленности при составлении сменных графиков. Во время обследования, проведенного недавно Чарлзом Цейслером и его коллегами на круглосуточно функционирующем предприятии «Грейт-Солт-Лейк Минералз энд Кемикалз Корпорейшн» в Огдене (штат Юта), фиксировались все жалобы сотрудников на ухудшение здоровья и сна, а также сообщения о случаях, когда они засыпали во время работы. Согласно принятому на заводе графику, бригады работали посменно по 8 часов в течение 7 дней - неделю в дневную смену, неделю в ночную и неделю в вечернюю, а затем опять в дневную. Помимо того что неделя была, по мнению исследователей, слишком коротким периодом для полного восстановления нормального ритма, рабочим приходилось испытывать фазовое опережение, особенно ощутимое при переходе от дневной смены к ночной. Новый график был составлен на основе принципа фазовой задержки: бригады переходили от ночной смены к дневной, а затем к вечерней. Кроме того, продолжительность каждой смены возросла втрое - до 21 дня. Через 9 месяцев рабочие, трудившиеся по новому графику, сказали, что он их больше устраивает, а заводская статистика зарегистрировала меньшую текучесть кадров и возросший уровень производительности труда.

Как и в случае с полетной десинхронизацией, отдельные рабочие сильно отличались друг от друга по степени выносливости и по скорости адаптации к сменному графику. Некоторые жаловались на постоянную усталость, нарушения сна, раздражительность, снижение работоспособности и расстройства пищеварения всего лишь после нескольких месяцев, а иногда - после многих лет сменной работы. Другие же, по всей видимости, легко приспосабливались. В этом различии, возможно, играл роль один физиологический фактор: было обнаружено, что у людей с хорошей переносимостью сменного графика циркадианные колебания температуры тела более значительны, чем у людей с плохой переносимостью (Reinberg er al., 1983).

Физиологические проблемы, связанные с дальними перелетами и сменной работой, выявили тот факт, что наша жизнь в норме приспособлена к существующему на нашей планете циклу света и темноты. И хотя мы научились превращать ночь в день с помощью электричества (как это с успехом делают, например, в Лас-Вегасе) или удлинять наши сутки (как это происходит при перелетах), за нарушение циркадианных ритмов нам приходится платить дорогую цену. Десинхронизация биологических ритмов заметно сказывается на нашем самочувствии.

2.4 Ультрадианные ритмы у человека.

Некоторые гормоны, такие как лютеинизирующий и фолликулостимулирующий, выделяются в кровяное русло с ультрадианной периодичностью. С помощью тщательных методов измерения можно зафиксировать эпизодические выбросы этих гормонов. Распознать некоторые другие ультрадианные ритмы, свойственные нашему организму, гораздо труднее и еще труднее объяснить их. Один едва уловимый ультрадианный цикл повторяется каждые полтора часа независимо от того, спим мы или бодрствуем. Изо дня в день, как показывают электроэнцефалограммы, у взрослых людей наблюдается цикличность мозговой активности с периодом около 90 минут. Сдвиги при этом настолько незначительны, что мы их не замечаем. Однако ряд специальных психологических тестов также подтверждает, что внимание и познавательная деятельность человека, подвержены циклическим колебаниям с периодом 90-100 минут. Изучение таких колебаний в дневное время начато совсем недавно, хотя та часть этого ультрадианного ритма, которая приходится на ночной период, известна по меньшей мере с тех пор, когда впервые занялись изучением сна.

Циклы сна

Сон - не перерыв в деятельности мозга, это просто иное состояний сознания. Действительно, во время сна мозг проходит через несколько различных фаз, или стадий, активности, повторяющихся с примерно полуторачасовой цикличностью. С помощью небольших электродов, прикрепленных к коже головы, исследователи регистрируют электрическую активность мозга. На электроэнцефалограмме видно, что во время сна сменяется пять различных видов мозговой активности, каждый из которых отличается характерным типом волн.

Пятая фаза сна, для которой характерны быстрые движения глаз (БДГ), - самая последняя в сонном цикле. Во многих отношениях «быстрый» сон - наиболее интересная фаза, так как именно в это время возникает большая часть запоминающихся сновидений.

Сон с БДГ
В некоторых отношениях, в том числе по характеру электроэнцефалограммы, эта фаза больше напоминает состояние бодрствования, чем состояние сна. Ряд других показателей физиологической активности во время сна с БДГ тоже сходен с аналогичными показателями, характерными для бодрствования: учащение и нерегулярность ритма сердца и дыхания, подъем кровяного давления, эрекция пениса. Глаза совершают быстрые движения туда и обратно, как будто спящий за чем-то следит. В то же время БДГ-сон - это очень глубокий сон, при котором большая часть крупных мышц тела практически парализована. И все-таки именно во время этой фазы человек видит во сне яркие картины. Когда исследователи будили людей в середине этой фазы, почти все испытуемые говорили, что видели сны, и могли подробно передать их содержание. При пробуждении во время других фаз сна люди сообщали о сновидениях лишь в 20% случаев.
Первый период сна с БДГ длится около 10 минут, но в течение ночи продолжительность БДГ-фаз увеличивается, и они прерываются только наступлением 2-й фазы. Иными словами, спустя несколько часов сон становится менее глубоким. Взрослый человек, спящий ночью по 7,5 часа, обычно тратит на БДГ-сон от 1,5 до 2 часов.
Исследования на кошках показали, что чередование «быстрого» сна с другими фазами определяется взаимодействиями между голубым пятном и специфической частью ретикулярной формации. Во время сна с БДГ нервная активность в ретикулярной формации усиливается, а в голубом пятне падает. Во время других фаз сна наблюдается обратное соотношение. Возможно, что между этими двумя областями мозга действует механизм обратной связи. Если нервные связи, действующие внутри ретикулярной формации, и связи, направленные от нее к голубому пятну, - возбуждающие, то повышение импульсной активности в конце концов должно активировать нейроны голубого пятна. Так могла бы начинаться фаза БДГ. И если при этом связи, действующие внутри голубого пятна, и связи, идущие от него к ретикулярной формации, -тормозные, то в конечном итоге будет заторможена и активность ретикулярной формации, и тогда фаза БДГ закончится (McCarley, Hobson, 1975).
Сон с БДГ, существует у всех млекопитающих. Вы, наверное, видели, как во время сна у кошки или собаки движутся глаза и одновременно подергиваются усы и лапы. У рептилий мы не находим «быстрой» фазы, но у птиц изредка наблюдаются очень непродолжительные эпизоды, напоминающие сон с БДГ. Эти отличия, возможно, означают, что «быстрый» сон характерен для более высокоразвитого мозга - чем сложнее мозг, тем большее место занимает БДГ-фаза. Однако среди млекопитающих как будто не существует никаких закономерностей, определяющих продолжительность сна с БДГ. У опоссума, например, он длиннее, чем у человека. У новорожденных детей на «быстрый» сон обычно приходится 50% всего времени сна, а у детей, родившихся раньше срока, - около 75%.
Выяснить назначение этой парадоксальной фазы сна, когда мозг находится в возбужденном, активном состоянии, а тело парализовано, очень трудно. По мнению Фрэнсиса Крика и Грэма Митчисона (Crick, Mitchison, 1983), сон с БДГ - это, может быть, время, когда мозг «разучивается», забывает то, что он знал. Многие ученые полагают, что научение и память появляются тогда, когда определенные группы мозговых нейронов укрепляют свои взаимные связи и начинают функционировать как «клеточные ансамбли». Научение всегда связано с реорганизацией прошлого опыта, и деятельность мозга во время «быстрой» фазы могла бы заключаться в том, что в этот период в чересчур перегруженных клеточных ансамблях ослабевают или вообще уничтожаются некоторые связи. Восприятие полностью выключено, никакие внешние раздражители не тревожат кору мозга. Стимуляция отдельных областей коры со стороны ствола мозга носит, видимо, случайный характер, резко отличный от воздействия зрительных или слуховых сигналов, и, возможно, способствует ослаблению ненужных связей. Этой же активностью мозга обусловлены и наши сновидения. Такого рода теория позволила бы объяснить и большую продолжительность БДГ-сна у младенцев. Мозг ребенка должен столь многому научиться, что, как следствие, ему нужно многое забыть.
Таким образом, сон имеет собственный ультрадианный ритм. Во время циклов, длящихся около 90 минут, мозг человека обычно проходит через различные стадии сна. Нарушения этого ритма могут быть причиной (или симптомом) душевного или физического заболевания.

Глава 3. Инфрадианные ритмы у человека.

3.1 Продолжительные ритмы.

Более продолжительные циклы обычно труднее охарактеризовать и изучить, нежели те, период которых равен суткам или меньше их. У многих животных сезонные изменения в выработке гормонов сопровождаются целым рядом сдвигов в поведении и физических изменений. У самцов оленей, например, весной и летом начинают расти рога, которые позже становятся могучими и ветвистыми. С помощью этих рогов олени сражаются с соперниками, борясь за гарем в сезон спаривания. По окончании этого сезона самец теряет свои рога. Подобные четкие признаки показывают исследователю, когда у животных-самцов нужно изучать циклические изменения в уровне тестостерона.

У людей рога не растут, поэтому незначительные месячные, квартальные или годичные изменения в секреции гормонов, а также в локальной активности нервных клеток могут остаться незамеченными. Вот почему мы располагаем меньшей информацией об этих ритмах.

3.2 Репродуктивный цикл у женщины.

Продолжительность женского репродуктивного цикла составляет около 28 дней. Каждый цикл начинается с того, что некоторые нейроны в преоптической области гипоталамуса (составляющего часть «континента» среднего мозга) приступают к выделению гонадолибертов - факторов, стимулирующих секрецию гонадотропных гормонов.

Через кровеносные сосуды, соединяющие гипоталамус с гипофизом, гонадолиберины (фоллиберин и люлиберин) поступают прямо в переднюю долю гипофиза, где в надлежащее время вызывают усиленный синтез и секрецию двух гормонов - фолликулостимулирующего (ФСГ) и лютеинизирующего (ЛГ).

ФСГ воздействует на яичник и стимулирует рост фолликула - полого пузырька, содержащего яйцеклетку, или яйцо. (Все яйца, которые будут произведены женщиной в течение жизни, присутствуют в яичниках уже в самом начале ее репродуктивного периода; там они созревают и выходят из яичника по одному в месяц.) По мере роста фолликул секретирует все больше эстрогена; этот гормон в свою очередь опять воздействует на гипофиз, тормозя дальнейшую секрецию. Кроме того, эстроген стимулирует выработку лютеинизирующего гормона, под воздействием которого стенки фолликула лопаются и высвобождают зрелое яйцо. Выход яйца называется овуляцией. Все эти события занимают от 10 до 14 дней.

После выхода яйца остатки фолликула претерпевают ряд изменений и превращаются в желтое тело. Под действием лютеинизирующего гормона желтое тело выделяет большие количества гормона прогестерона, который усиливает кровоснабжение стенки матки, подготавливая ее для имплантации яйца в том случае, если произойдет оплодотворение. Прогестерон оказывает также обратное воздействие на гипофиз - дает сигнал, тормозящий секрецию лютеинизирующего гормона. Если оплодотворения не произошло, уровень прогестерона падает, желтое тело уменьшается в размерах, а слизистая матки, подготовленная для принятия яйца, отторгается во время менструации.

Механизм, контролирующий инфрадианный репродуктивный цикл у женщин, не вполне ясен. У некоторых животных эстральный цикл приурочен к циркадианным ритмам. (Репродуктивный цикл называют эстральным, если выстилающая матку слизистая рассасывается; если же она отторгается, цикл называют менструальным.) У самок хомячков, например, овуляция в норме происходит каждые 96 часов. Но если содержать их в постоянном полумраке, их циркадианные циклы сна и бодрствования удлиняются с 24 до 25 часов, а эстральные циклы - до 100 часов. Таким образом, замедление циркадианного ритма обусловливает и большую продолжительность астрального цикла.

У женщин существует некоторая связь между циркадианным ритмом температуры тела и инфрадианным репродуктивным циклом. Об этом знает любая женщина, пытавшаяся путем учета температурных ритмов способствовать зачатию или предупредить беременность. Повышение температуры тела, измеренной сразу после пробуждения, на 0,2°С или больше по сравнению со средней температурой за 5 предыдущих дней означает, что происходит овуляция.

Некоторые факты свидетельствуют о том, что репродуктивные процессы у человека подвержены какому-то влиянию циркадианных ритмов

Из одного отчета о попытках имплантировать в матку женщины яйцеклетку, оплодотворенную в пробирке, можно узнать, что успешный результат имел место в четырех из 79 попыток. При этом все четыре случая успешного оплодотворения произошли между 10 часами вечера и полуночью, что составило 100% успеха для этого 2-часового периода (Elliott, 1979), Причина этого столь же мало понятна, как и факторы, определяющие время наступления большинства более крупных событий, связанных с репродуктивным циклом.

3.3 Сезонные ритмы

Сезонные ритмы, наблюдаемые у перелетных птиц и впадающих в спячку грызунов, в настоящее время хорошо изучены. Как мы убедились, эти ритмы генетически запрограммированы, но в некоторых случаях на них могут влиять и факторы внешней среды, такие как свет и температура.

Хотя у людей не бывает сезонных миграций и зимней спячки, некоторые из них все же испытывают своеобразную сезонную депрессию. В летние месяцы они находятся в хорошем настроении, деятельны, оптимистично смотрят на жизнь; однако с приходом зимы настроение у них ухудшается, они впадают в депрессию, апатию и пессимизм и чувствуют, что неспособны справиться с жизненными обстоятельствами.

Томас Уэр и его коллеги из Национального института психического здоровья изучали этот вид депрессии и пришли к выводу, что в его основе лежат нарушения сезонной ритмичности (Wehr et al., 1979). Они высказали предположение, что люди с сезонными психическими отклонениями по какой-то причине не могут должным образом приспособиться к сезонным изменениям, когда дни становятся короче.

Исследователи предположили далее, что за зимнюю депрессию могут быть ответственны эпифиз и связанные с ним структуры мозга. У людей участками мозга, реагирующими на общую освещенность, являются, как полагают, супрахиазменные ядра, находящиеся в гипоталамусе. Нейроны этих ядер посылают сигналы (через несколько синапсов спинного мозга и симпатической нервной системы) эпифизу, в котором происходит превращение серотонина в мелатонин. (Напомним, что у некоторых животных концентрация мелатонина в ходе циркадианного цикла повышается только после наступления темноты.) В порядке эксперимента сезонную депрессию пробуют лечить, подвергая больного за несколько часов до наступления дня воздействию мощного источника света, содержащего волны всего спектра. И хотя неясно, имеет ли мелатоиин какое-либо отношение к депрессии и результатам такого лечения, искусственное удлинение дня как будто помогает пациентам преодолеть депрессию.

Научные разработки в этой области носят весьма гипотетический и экспериментальный характер, так как механизмы, управляющие биологическими ритмами у человека, выявить очень трудно. И тем не менее каждый день приносит новые знания, и исследователи уже могут сформулировать достаточно обоснованные теории о пейсмейкерах (водителях ритма) человеческого мозга.

3.4 Пейсмейкеры мозга млекопитающих - супрахиазменные ядра

В конце 60-х годов физиолог Курт Рихтер провел ряд экспериментов на крысах, пытаясь найти участки мозга, ответственные за ритмичность. Он разрушал отдельные области мозга - всего более чем в 200 различных местах - у сотен крыс, а затем следил за нарушениями циркадианных ритмов в потреблении пищи, питье, характере активности у каждого животного. В результате длительной серии опытов Рихтер установил, что нарушения суточных ритмов у крыс возникают при повреждении определенной части гипоталамуса.

В те же годы было проведено другое исследование, поставившее ученых втупик. У крыс с циркадианными ритмами, приуроченными к световому циклу, в лабораторных условиях не наблюдалось нарушения ритма даже при повреждении зрительных проводящих путей между сетчаткой и мозгом. Очевидно, механизм биологических часов, находящийся у крысы, по мнению Рихтера, в гипоталамусе, получал информацию о свете и темноте, минуя обычные зрительные каналы.

Эта загадка была вскоре разрешена в результате анатомических исследований, которые показали, что существует особый нервный путь, соединяющий сетчатку каждого глаза с гипоталамусом. Этот путь ведет от глаз прямо к двум небольшим скоплениям нейронов в гипоталамусе - так называемым супрахиазменным ядрам. Эти ядра лежат непосредственно над зрительной хиазмой, где перекрещиваются нервные волокна, идущие от каждого глаза. Вооруженные этой информацией, две исследовательские группы вскоре доказали, что супрахиазменные ядра - это важнейшие гипоталамические структуры, необходимые для осуществления нормальной циркадианной ритмичности у крыс.

Образования, аналогичные супрахиазменным ядрам, были позднее обнаружены у всех млекопитающих от утконоса до шимпанзе. И в гипоталамусе человека тоже имеются супрахиазменные ядра.

Каждое супрахиазменное ядро (их всего два - по одному с каждой стороны гипоталамуса) состоит приблизительно из 10000 небольших, плотно уложенных тел нервных клеток со слабо ветвящимися дендритами. Многие соседние нейроны образуют синапсы друг с другом в переплетении локальных сетей. Синапсы между близко расположенными нейронами - явление, не характерное для мозга, но, как полагают многие ученые, наши нейронные часы должны состоять именно из таких плотно упакованных взаимодействующих клеток. нейроны этих ядер выделяют несколько различных медиаторов, но пока в больших количествах здесь обнаружен только серотонин, который приходит от ядер шва по путям типа дивергентных сетей с одним входом.

Входные и выходные пути супрахиазменных ядер проследить довольно трудно из-за плотного расположения нейронов. Известен тракт, идущий от сетчатки, а также входные связи от одного из отделов гипоталамуса и от ядер шва в стволе мозга. Ядра шва содержат серотонинэргические нейроны, которые и служат источником больших количеств серотонина в супрахиазменных ядрах.

Нейроны, тела которых находятся в супрахиазменных ядрах, посылают свои аксоны к другим ядрам гипоталамуса (которые, возможно, тоже являются пейсмейкерами), а также к гипофизу и (через полисинаптическую сеть) к эпифизу и тем частям мозгового ствола, которые, как известно, участвуют в регулировании сна.

Данные о том, что супрахиазменные ядра действительно сами генерируют ритмы, были получены в экспериментах на крысах (S. Inouye, H. Kawamura). При регистрации электрической активности нервных клеток этих ядер и других областей мозга у нормальных животных во всех исследованных участках был обнаружен ритм спонтанных разрядов, соответствовавший циркадианному циклу сна и бодрствования. После того как все нервные связи между супрахиазменными ядрами и остальными частями мозга были перерезаны, циркадианный ритм активности сохранился только в этих ядрах. Результаты опытов ясно указывают на роль супрахиазменных ядер как пейсмейкеров, по крайней мере у крыс.

В отношении человека единственными данными являются клинические описания расстройств поведения у больных с опухолями мозга, которые, как выяснилось при вскрытии, были локализованы в области супрахиазменных ядер. При опухолевых поражениях переднего края третьего желудочка и зрительного перекреста (место расположения этих ядер) отмечались серьезные нарушения ритма сна и бодрствования (Fulton, Baily, 1929).

3.5 Другие пейсмейкеры

Хотя супрахиазменные ядра определенно играют важнейшую роль в регулировании циркадианных временных систем, имеются данные о существовании также и других ритмоводителей у млекопитающих. Так, например, у обезьян саймири с поврежденными супрахиазменными ядрами исчезают ритмы питания, питья и активности, но остается неизменным суточный цикл температуры тела. Это показывает, что колебания температуры находятся под контролем какого-то другого пейсмейкера.

Дополнительные данные в пользу того, что у млекопитающих функционирует не один пейсмейкер, были получены при обследовании таких людей, как Мишель Сиффр, живущих в изоляции. Тот факт, что у испытуемых наблюдается спонтанная десинхронизация, т.е. несовпадение циркадианного ритма температуры тела и цикла сон-бодрствование, указывает на существование по меньшей мере двух пейсмейкеров. Имеются определенные наборы ритмов, которые в таких экспериментах никогда не десинхронизируются и, следовательно, должны быть подчинены общему ритмоводителю. В один такой набор входят ритмы сна и бодрствования, температуры кожи, концентрации гормона роста в крови и содержания кальция в моче. Предполагается (хотя это отнюдь не доказано), что эту группу ритмов контролируют супрахиазменные ядра. Во вторую группу показателей, варьирующих согласованно даже тогда, когда происходит десинхронизация других функций организма, входят циклы сна с БДГ, внутренней температуры тела, уровня кортизола в крови и калия в моче. Пейсмейкер, контролирующий эти ритмы, более устойчив, чем тот, от которого зависит ритм сна и бодрствования. В тех случаях, когда ритмы становились свободнотекущими, т. е. при отсутствии внешних времязадателей, эта группа редко отклонялась от 24,8-часового цикла (Moore-Ede et al., 1982).

На многие вопросы о биологических часах у человека и других млекопитающих мы пока не можем ответить: сколько их, как они взаимодействуют между собой и есть ли в организме «главный ритмоводитель», по которому устанавливаются и «проверяют время» все остальные. Больше знаний нужно и для того, чтобы помочь в диагностике и лечении расстройств, которые могут быть связаны с десинхронизацией ритмов.

3.6 Ритмы и психические нарушения.

Новые данные о биологических ритмах наводят на мысль, что десинхронизация может играть некоторую роль в возникновении психических расстройств. Наиболее полно изучены два из них - депрессия и бессонница.

Депрессия

Депрессия у больных почти всегда циклична, хотя сами циклы подвержены значительным индивидуальным вариациям. Когда исследователи изучили цикличность сна у людей, страдающих депрессией, они обнаружили существенные отклонения в характере электроэнцефалограммы. У многих больных БДГ-фаза наступала гораздо раньше, чем у здоровых людей. Создавалось впечатление, что у больных нарушены нормальные соотношения между «быстрым» сном и остальными фазами, а также ритмом сон бодрствование (напомним, что эти ритмы, контролируются двумя различными ритмоводителями).

Располагая этой информацией, Фредерик Гудвин, Томас Уэр и их коллеги решили посмотреть, смогут ли они восстановить нормальную синхронность этих ритмов и приведет ли это к снятию депрессивного состояния. Экспериментаторы стали укладывать пациентов спать на 6 часов раньше обычного, чтобы добиться согласования их циклов БДГ/неБДГ и сон/ бодрствование. Для ряда больных этот способ оказался эффективным. Примерно через две недели после того, как установилось более раннее время отхода ко сну, признаки депрессии исчезли, но всего лишь временно. Фазы ритмов вскоре вновь разошлись, и депрессия вернулась.

Хотя лишение сна - далеко не идеальный способ лечения депрессии, тот факт, что он все-таки помогает, указывает на возможную роль нарушений функций мозговых часов, контролирующих ритм сна и бодрствования, в развитии депрессивного состояния. Конечно, столь же вероятно и то, что нарушение сна есть результат каких-то болезненных процессов, вызывающих наряду с этим и депрессию. Например, одна из современных теорий связывает депрессию с аномалиями в работе тех синапсов мозга, в которых медиатором служит норадреналин. Предполагается, что норадреналин - один из главных медиаторов, контролирующих цикл БДГ-сна. Если эта. гипотеза подтвердится, можно будет понять аномалии в циклах БДГ-сна, часто наблюдаемые у лиц, страдающих депрессией.

Лечение, основанное на знании биологических ритмов, оказалось, однако, более успешным не при депрессии, а при бессоннице определенного типа.

Бессонница, связанная с задержкой фазы сна

В первоначальном сообщении о бессоннице, связанной с задержкой фазы сна, лечащим врачом был описан следующий случай:

Больной 24 лет, студент, плохо засыпал с детства. Ему редко удавалось уснуть раньше 1.30, а утром он просыпался с большим трудом, несмотря на звонки будильника и старания матери. Когда он поступил в колледж, он стал засыпать не раньше 5.30-6 часов утра, хотя регулярно гасил свет в 1-2 часа ночи. По выходным и праздничным дням он нередко спал до 3 часов дня. В 23 года из-за крайней сонливости и усталости в течение дня ему пришлось прекратить свое образование и обратиться за медицинской помощью.

В отличие от людей с другими видами бессонницы лица, страдающие подобным расстройством сна, обычно крепко спят в течение полных 8 часов и просыпаются вполне отдохнувшими, если только период их сна не нарушается жестким распорядком дня. Они просто не могут ложиться спать в более раннее время и, пытаясь приспособиться к общепринятому режиму, постоянно страдают от недосыпания и усталости.

Чарлз Цейслер, который обследовал также рабочих различных смен на заводе в штате Юта, предложил новую схему лечения. Если больной не в состоянии передвинуть время отхода ко сну на более ранний час, то, может быть, ему следует ложиться спать все позже и позже, постепенно перенося это время на утренние, потом на дневные часы и в конце концов лечь спать в нормальное время. Цейслер предписывал своим пациентам в течение недели каждый раз ложиться спать на 3 часа позже, чем накануне, пока время отхода ко сну не совпадет с желаемым. После этого больные должны были строго следовать новому распорядку дня, чтобы закрепить новую установку биологических часов.

Молодого человека, о котором шла речь выше, на четыре недели положили в больницу. Специфическое лечение в данном случае состояло в том, что ему ежедневно сдвигали начало периода сна на все более позднее время, пока оно не совпало с 10 часами вечера. Просыпался он теперь в 6 часов утра. Новый распорядок поддерживали в течение недели, а затем больного выписали. Дома он на протяжении двух месяцев строго придерживался нового режима сна и бодрствования и в итоге прекрасно приспособился к нему. Вернувшись в колледж, он уже не испытывал прежних периодов дневной сонливости. Он мог теперь посещать утренние занятия, и его жизнь вошла в нормальную колею.

3.7 Функции биологических часов.

Биологические часы, о которых мы говорили, выполняют ту же функцию, что и любые другие часы, - они измеряют время. Хотя точное число и размещение этих хронометров в нашем организме пока еще остается загадкой, известно, что наиболее подходящий кандидат на эту роль - супрахиазменное ядро - находится в гипоталамусе. Мы надеемся, что в недалеком будущем ученые смогут объяснить во всех деталях, как работают компоненты этого пейсмейкера - нервные сети, связи с другими структурами, медиаторы, которые он секретирует или получает, - для поддержания верного хода часов нашего организма.

Биологические часы измеряют время таким образом, чтобы нервная система могла приводить нужды организма в соответствие с условиями среды. Для обитателей нашей планеты наиболее заметной особенностью окружающей среды является суточный цикл света и темноты. Почти все ритмы, которые мы рассматривали, прямо или косвенно связаны со сменой дня и ночи. Даже сезонные ритмы, такие как миграции и зимняя спячка, зависят от каждодневных ритмов.

Все ритмы - это генетически запрограммированные продукты эволюции, позволяющие организму адаптироваться к окружающей среде. Однако программа не есть нечто жесткое: она позволяет организмам реагировать на некоторые изменения внешних условий, в частности на колебания количества света, связанные с изменениями длины дня на протяжении года. Даже для людей цикл света и темноты - это эффективный фактор поддержания биологических ритмов по установленному образцу. У людей, изолированных от световых и социальных сигналов, биологические часы переходят на свободнотекущий ритм и синхронность ритмов нарушается.

Социальные сигналы могут быть не менее важны для людей, чем любые другие времязадатели, ведь люди - это в конце концов «общественные животные», как назвал их Эллиот Аронсон. В одном исследовании, проведенном НАСА, две группы добровольцев, в каждой из которых было по четыре человека, находились в условиях постоянного освещения, что обеспечивало возможность свободного течения их ритмов. Члены каждой группы синхронизировались друг с другом, причем в одной группе поддерживался цикл, равный 24,4 часа, а в другой - 24,1 часа. Когда одного из испытуемых переводили из группы в группу, у него можно было наблюдать постепенное смещение фаз и синхронизацию ритмов с ритмами его новых товарищей. Одно только присутствие других людей уже обусловило такую синхронизацию (Vernikos-Danellis, Winget, 1979).

Добровольцы, в течение нескольких месяцев жившие в пещерах в полной изоляции, не только испытывали физический дискомфорт из-за десинхронизации биологических ритмов, но и сильно страдали эмоционально от столь длительного одиночества. Мишель Сиффр вел дневник на потяжении всех 6 месяцев полной изоляции. На 77-й день (который, по его мнению, был 63-м) он вспоминает, что после предыдущего 2-месячного пребывания в одиночестве он «испытывал острый физический и эмоциональный стресс». Он пишет, что теперь приблизительно в тот же срок не чувствует себя таким несчастным, но отмечает «слабость памяти; я не помню, что было вчера. Даже события сегодняшнего утра куда-то исчезли. Если я сразу же не записываю все, что со мной происходит, то тут же об этом забываю...» На 94-й день одиночества он пишет: «Я переживаю самый отчаянный период в моей жизни. Вынести столь долгое одиночество свыше человеческих сил».

Таким образом, одиночество наложило свой отпечаток как на эмоциональное состояние человека, так и на его мышление и память.

Часть IV. Связь Эпифиза и Психики человека.

Глава 1. Серотонин как генератор психических способностей.

1.1 Интригующие факты.

В журнале "Наука и жизнь" (11.02.2001) была опубликована статья под названием "Исцеляющий театр". Начиналась она с сообщения весьма интригующих фактов.

В американской тюрьме Синг-Синг в штате Нью-Йорк во время казни не сработал электрический стул. Приговоренный преступник, однако, умер в назначенный момент - отказало сердце.

Человек оказался запертым в рефрижераторе, замерз и умер. Между тем, холодильный аппарат не был включен.

"Вам нечего беспокоиться из-за Вашего сердца, - сказал профессор боязливой пациентке. - Раньше меня Вы не умрете. Так что давайте, умрем одновременно." На следующий день врач внезапно скончался. Узнав об этом, больная пришла в смятение и объявила, что теперь должна умереть и она. Пульс у неё участился до 120 ударов в минуту, началась аритмия. Она умерла на следующий день после кончины врача.

Тяжелобольной пациент, уловивший в разговоре медиков слово "moribundus" ("умирающий"), не знал латыни и решил, что это слово означает нечто обнадеживающее. К удивлению врачей, он выздоровел.

Все выше описанные феномены получили в медицине и психиатрии название внушения или психосоматических реакций; и разумеется, эти термины совсем не объясняют природу чудесных явлений, как, впрочем, не может сделать этого и наука. Ясно лишь то, что человек, попадая в некие критические ситуации, даёт волю воображению, и оно буквально порабощает сознание, начинает доминировать над ним.

Ещё в начале XIХ века португальский аббат Фария пришел к выводу, что значительную роль в выздоровлении больного играет его собственное воображение. Впоследствие на почве внушения в медицине стали применять эффект плацебо, который просто ошеломил научный мир своими результатами. С латыни "плацебо" переводится как "я понравлюсь" , но в современном обиходе его можно понимать и как "пустышка", что гораздо ближе стоит по сути с одноименным эффектом. Суть же плацебоэффекта заключена в том, что человек может принять какой-либо абсолютно нейтральный препарат, будучи полностью уверенным в его чудодейственных свойствах, и затем в действительности выздоравливает. В 1843 году ученые провели эксперимент: пациентам давали препарат, содержащий физиологически нейтральные вещества, и который, соответственно, никак не должен был повлиять на здоровье больных. В итоге 30% испытуемых имели реакцию, свойственную приёму настоящего лекарства, у других 30% не наблюдалось никакой реакции, а у 40% она была непостоянной.

Уже в наше время проводились многочисленные эксперименты по проверке плацебоэффекта и все они неизменно давали положительный результат. Особенно впечатляет случай, когда пациенту с дефектом мозга во время операции просто вскрыли черепную коробку, но никаких медицинских пасов не производили. Затем, как и положено, черепную коробку сшили, а вышедшему из-под наркоза пациенту сказали, что операция прошла успешно. К дальнейшему удивлению врачей, больной стал действительно поправляться, а дефект мозга вскоре на самом деле исчез.

Все эти чудеса, конечно же, впечатляют, но факт остается фактом - что-то в людях есть такое, что позволяет им исцелять свои недуги собственноручно. И роль воображения здесь просто очевидна.

Получается, что воображение представляет собой очень мощное средство по влиянию на реальность. С его помощью человек может остановить свое сердце, излечить себя, намертво заморозить или, наоборот, стать неуязвимым перед любыми внешними воздействиями (известны случаи, когда люди совершенно безболезненно проходили сквозь гигантское пламя или подвергались страшной экзекуции кипятком, но при этом, считая, что боги на их стороне, не получали ни ожога).

Во второй половине ХХ века на весь мир стал известен уникум Тед Сириоз. Известность пришла к нему благодаря его необычной способности делать внушение фотокамере. С Сириозом было проведено большое множество экспериментов, в ходе которых камера, направленная непосредственно на него, каждый раз фиксировала на пленку внушаемый ей графический образ. Так были сделаны снимки сообщества людей каменного века, дворцы и прочие объекты, не находившиеся в зоне визуального восприятия фотокамеры.

На примере Сириоза становится очевидной несостоятельность применения термина "психосоматическая реакция" к феномену воображения, ибо в последнем случае действие воображения испытывала на себе объективно регистрирующая все изменения в окружающей среде светочувствительная аппаратура. Получается, что воображение какого-либо конкретного человека способно влиять не только на состояние его собственного тела, но и на прочую окружающую среду.

1.2 Эпифиз - контролер воображения.

Глядя на выше обозначенную проблему феномена воображения, нельзя не задаться вопросом чисто физиологической направленности: какой орган ответственен за функционирование воображения и есть ли такой орган вообще? Чтобы ответить на поставленный вопрос, придется окунуться в популяризированные физиологию, химию и даже фармацевтику.

У человека действительно есть орган, претендующий на роль контроллера воображения и даже его источника. Предположительно этим органом является эпифиз (он же шишиковидная или пинеальная железа). Примечателен этот таинственный орган совсем не метафизическими измышлениями Декарта о его природе, а своей способностью вырабатывать преинтереснейшее вещество под названием "мелатонин". В переводе с греческого "мелатонин" переводится как "ночной работник", что подразумевает под собой подверженность этого вещества влиянию циркадных ритмов, то есть вырабатываться только в темное время суток или же в темноте вообще. Мелатонин вырабатывается эпифизом при участии доноров серотонина и триптофана и в последнее время стал одним из основных и популярных веществ в фармакологии с весьма широким спектром применения.

Во внушительном списке своих свойств имеет мелатонин и способность улучшения умственной работоспособности, что для человека должно представляться весьма значимым. Именно по этой причине многие творческие личности предпочитают созидать свои великие произведения по ночам. А между тем, творческий процесс без воображения совсем не возможен, и потому не вернее ли было бы утверждать, что мелатонин усиливает не мозговую активность как таковую, но само воображение?

Мелатонин ответственен также и за осветление организма. К примеру, был проведен эксперимент, в ходе которого экзекуторские манипуляции производились над неповинным головастиком. Известно, что в темноте кожный покров головастиков имеет непонятную склонность становиться более светлым, поэтому одному из головастиков попросту удалили эпифиз и таким оставили в темноте. По истечении определенного времени изменений в меланизме кожи подопытного не обнаружилось. Тогда головастика поместили в воду, в состав которой был добавлен мелатонин, и в результате кожный покров опять стал светлее, как если бы эпифиз у существа не был удален.

Гипотетически можно предположить, что шишковидная железа у человека как вида действительно атрофировалась и гораздо раньше была чем-то, чьё влияние и значение для человека были несравненно существеннее, нежели мы можем наблюдать сейчас, а если верить выше упомянутому Декарту или же ведической литературе, то и по сей день значение эпифиза для нас чрезвычайно велико, чтобы им пренебрегать.

Современной науке о шишковидной железе известно и то, что у человека она развивается до тех пор, пока особь не достигнет семи лет, а потом по причине отсутствия эксплуатации она приходит в упадок, атрофируется. Между прочим, это означает, что эпифиз всё-таки можно как-то использовать, причем использовать целеустремленно с применением воли, так как он не похож, например, на ухо, которое принимает звуки чисто автоматически без непосредственного участия воли, а потому никогда не сможет атрофироваться; не похож и на обыкновенный глаз, который опять же воспринимает свет без участия нашей воли. Эпифиз, скорее, похож на те мышцы, которые в большинстве своём эксплуатируются только при участии воли, и только такое вмешательство извне спасает их от атрофии. Получается, что шишковидная железа работает автоматически лишь при выработке мелатонина, но есть у неё и некие неизвестные функции, осуществление которых возможно только при непосредственном вмешательстве воли её существа-обладателя. О том, какие это могут быть функции, поговорим несколько позже, а сейчас лучше приступить к рассмотрению донора мелатонина - серотонина. Это вещество тоже весьма необычно и в контексте развития человеческого сознания представляет собой немалый интерес для дальнейших рассуждений на этих страницах.

Серотонин является продуктом распада аминокислоты триптофана (триптамин), впервые его удалось получить из сыворотки крови в 50-ые годы. Содержиться серотонин в некоторых растительных продуктах: бананах, ананасах, сливах, финиках, диком рисе, камыше и др., а также вырабатывается животными, но в очень малых количествах. В организме взрослого человека содержиться от 5 до 10 мг серотонина, основная часть которого размещена в кишечнике, а остальное - в мозге и тромбоцитах, причем очень много серотонина находится в эпифизе. Серотонин выполняет нейромедиаторные функции, (то есть передает нервные сигналы от нейрона к нейрону) и способствует сужению кровеносных сосудов, но этим перечень его функций не ограничивается, а есть и ещё некоторые области применения этого весьма необычного вещества, о которых опять же поговорим чуть позже.

Лайэлл Уотсон в труде "Ошибка Ромео" указывает на поразительное сходство молекулы серотонина и молекулы ЛСД (ЛСД-25, диэтиламид лизергиновой кислоты), последняя из которых была получена из ржаного зерна, зараженного грибком спорыньи. Психоактивные свойства ЛСД были открыты ещё в 1943 году швейцарским химиком Альбертом Гоффманом, и с тех пор ученые всего мира изучают необычные психические явления, которые вызывает ЛСД и суть которых сводится к качественно новому восприятию реальности. И пусть с этим веществом было проведено уже огромное число опытов и его на вооружение взяли себе даже современные наркоманы, ученые всё ещё не во всей полноте понимают суть действия ЛСД на человеческий мозг.

1.3 Связь серотонина и восприятия.

Имеется не до конца объясненная связь между серотонином и мигренью, которую тоже следует рассмотреть немного подробнее, ибо и она таит в себе много интересного.

Вообще, мигрень сама по себе представляет для людей загадку, так как науке до сих пор неизвестны причины мигрени и даже механизм её действия, а ведь врачам эта болезнь известна уже более трех тысяч лет. При мигрени боль чаще всего возникает в одной половине головы, но потом может распространиться и на вторую половину. Симптомы мигрени бывают самыми разнообразными и начаться могут за несколько часов до самого приступа, а то и за несколько дней. Среди прочих симптомов можно выделить резкую смену настроения (как правило, это ухудшения, но бывают и улучшения), появляются бледность, сонливость, тошнота. Во время приступа человек становится нетерпимым к яркому свету и громким звукам. Особенно интересным представляется проявление мигрени, которое часто называют аурой. В таких случаях у больного случается изменение зрительного восприятия, и перед ним предстают весьма необычные образы, недоступные чувствительности обыкновенного глаза. Как правило, больные видят необычайную игру цвета, а некоторые наблюдают всё возрастающую темноту перед глазами или же хитросплетения зигзагообразных линий, составляющие поразительные по своей сложности узоры. Известны и такие случаи, когда аура и свойственные ей изменения зрительного восприятия наступали, а сами головные боли - нет. Такая форма мигрени, как аура, случается довольно редко - лишь у 15% больных, но именно она наиболее интересна в плане изучения воздействия аномального уровня серотонина на человеческое сознание.

Первые данные о связи серотонина и мигрени были получены ещё в середине XX века. Тогда ученым удалось зафиксировать предотвращение или снижение силы приступов мигрени за счет блокировки рецепторов серотонина путем применения метисергида. В итоге после длительных изучений обнаруженного явления удалось выяснить, что непосредственно перед приступом мигрени уровень серотонина в крови значительно увеличивается, но во время приступа опять весьма быстро снижается. Данная взаимосвязь так и остается без каких-либо объяснений, но всё же наводит на определенные мысли.

Необычные визуальные образы при мигрени зачастую аналогичны тем, что наблюдаются при употреблении ЛСД. Глаза начинают воспринимать то, что в реальности якобы не существует и обычно исследователями трактуется как психохимическая игра мозга. Но почему же мало кому приходит в голову провоцирующее допущение о том, что серотонин, ЛСД и прочие психоделические вещества вовсе не являются непосредственной причиной всех причудливых визуальных образов, а на самом деле представляют из себя средства по повышению чувствительности человеческих органов восприятия, своеобразными очками для глаз и слуховым аппаратом для ушей?

Кто-то при одной такой мысли может расплыться в гнусной ухмылке, вызванной нездоровым скепсисом, но объективно зафиксированные факты последних лет как раз свидетельствуют в пользу высказанного выше предположения. Речь идет об экспериментах Денниса Милнера из Бирмингемского университета, соорудившем прибор для фотографирования в темноте, который заряжается пленкой, чувствительной к электрическим разрядам. Суть экспериментов заключалась в том, что в темной камере через какой-либо объект пропускается единичный импульс постоянного тока, а фотокамера, улавливая электрические разряды, фотографирует этот объект. Позже изобретатель обнаружил, что фотоснимки получаются даже в тех случаях, когда в темноте камеры никакого объекта и в помине нет. В таких случаях на снимках отображались пульсирующие энергетические шары с исходящими от них нитями электрической природы. В момент съемок перед объективом фотокамеры был только чистый сухой воздух, но даже к этому факту смогли придраться скептически настроенные исследователи, предположив, что в данном случае имела место быть обычная ионизация воздуха. В ответ на эти упреки Деннис Милнер адаптировал свой прибор для работы в вакууме, и даже тогда результат съемок оставался неизменным - на снимках каждый раз проявлялись сферы энергетической природы.

Так почему же не допустить, что посредством некоторых психоделических средств наши органы чувств становятся более восприимчивыми к тем физическим явлениям, которые в обыденном состоянии сознания не находят себе должного отображения? Опыты Милнера говорят в пользу этого предположения. Существуют предположения и несколько иного рода, граничащие на стыках субъективного и объективного опытов чувственного переживания.

Всем давно известна особая и до сих пор не объясненная чувствительность многих животных к явлениям, которые люди в большинстве своём не могут воспринять. Как прравило, это относится к удивительной способности млекопитающих, насекомых и рыб предчувствовать события, ещё не наступившие во времени (потопы, землетрясения, пожары), но существуют и другие примеры их удивительной чувствительности, которые касаются способности фауны воспринимать незаметный мир, существующий параллельно с нами - толстокожими людьми.

В работе "Эти загадочные животные" Ирина Царева посвятила целую главу труднообъяснимым контактам братьев наших меньших с некими невидимыми сущностями, свидетелями которых были люди, причем иногда находящиеся в состоянии измененного сознания. Автор одного из приведенных в той книге писем сообщает:

"...Это неправда, что я алкоголик. Я не пью каждый день. Но от случая к случаю бывает - выпиваю. "Чертиков" не ловлю и постоянной потребности не имею. Но когда есть повод и хорошая компания - люблю это дело.

Есть у меня кот Жора... Вот какая у нас с ним история приключилась. 23 февраля - это, как известно, праздник. Вот и пришел я домой "хорошим". Жена у меня добрая, всё понимает - пилить не стала, но с семейной постели в кухню на раскладушку выселила. Там я и заснул. Жорка обычно у меня в ногах спит, но, когда я под хмельком, не подходит. И в этот раз не пришел, побрезговал.

Просыпаюсь среди ночи оттого, что чувствую, кто-то рядом. И действительно, у кровати вижу жуткую тварь: вроде чем-то на крысу похожа, но не крыса, потому что размером с овчарку и глаза красные светятся. Я заорал, но как-то беззвучно получилось - голос от страха пропал. А она на меня смотрит, скалится, глазищами сверкает...

Я сам себе говорю: "Нет никого! Перепил ты, брат, мерещиться тебе... Но тут вдруг влетает в кухню Жорка и одним прыжком вскакивает на спину крысе, и покатились они клубком по комнате. Крыса рычит, а кот диким ором орет. Тут и я заорал - голос прорезался.

Прибежали жена и дочь. Дочь кричит: "Жорик! Жорик!" Жена кричит: "Кот взбесился!" Я кричу: "Бей её, Жора! Держись!" Вскочил с кровати, швабру схватил, размахиваю, но помочь не могу - кота боюсь зашибить. В общем, та ещё история! Прогнал Жорка тварь мерзкую. Она, вроде как, на антресоль запрыгнула, а потом куда-то исчезла. "Вроде как" - это потому, что не поместиться ей там было, но так мне показалось.

Жора успокоился, пить пошел. А мы все спать не смогли. Я своим говорю: "Не взбесился он - видите, воду пьёт, - на крысу он напал." А они мне: "Никакой крысы не было, мы же не слепые!" Они-то думают, что об обычной крысе говорю, а я про чудище не заикнулся - тот же час в алкоголики записали бы."

И в финале анонимный автор письма задается вполне правомерным вопросом: "Что ж выходит, только мы с Жоркой эту тварь и видели? Не было б кота, я бы точно это всё на глюк списал, но у меня - живой свидетель, он-то трезвый был!"

В книге Ирины Царевой есть ещё несколько примеров той же направленности, в одном из которых свидетелем опять был пьяный мужчина, а в другом - больная девочка с высокой температурой и бредом, и оба они тоже видели перед собой загадочных созданий, а присутствовавшие при этом домашние животные (собака и кошка) отгоняли их от своих любимых хозяев, а этот элемент, между прочим, уже говорит об объективности происходящих событий.

Свидетелей всех этих примеров объединяет одно - состояние их сознания было изменено. В двух случаях это алкогольное опьянение, а в третьем - повышенная температура, наверняка, сопровождающаяся аномальным содержанием какого-либо химического вещества в организме, может быть, даже и серотонина. Но и при алкогольном опьянении наблюдение визуальных образов не является заслугой самого алкоголя, так как было установлено, что алкоголь временно повышает уровень серотонина в организме, и именно это, в свою очередь, позволяет воспринимать явления, не находящие отображения в обыденном сознании. К сожалению (а может быть, и к счастью), долгосрочное употребление алкоголя ведет к снижению уровня серотонина. Интересно, что дефицит серотонина вызывает алкоголизм (даже мартышки-верветки с низким уровнем серотонина испытывают нужду в алкоголе).

Теперь в первую очередь понятно, откуда в народе появилось выражение "напиться до чертиков", ведь алкоголь как минимум в некоторых таких случаях выступает в качестве очистителя сознания, способствуя восприятию более высоких (тонких) уровней бытия.

1.4 Опыты по изучению галлюцинаций.

В начале 70-х годов пермский психиатр Геннадий Крохалев поставил серию экспериментов, целью которых была попытка заснять галлюцинации. Этой идеей он заинтересовался после того, как ему стало известно об опытах дореволюционных психиатров, которым удалось выяснить, что человек с каким-либо психическим расстройством в момент галлюцинирования способен не только наблюдать за внезапно появившимся образом субъективного переживания, но и способен видеть его отражение в зеркале. А в тех случаях, когда в момент галлюцинирования пациенту нажимали на глаз, видимый им субъективный образ двоился. Эти данные уже говорили о том, что галлюцинации (по крайней мере, не всегда) имеют свою причину не в мозге человека, а где-то вовне...

Тогда-то Крохалев и решился на смелый эксперимент. В маску для подводного плавания вместо стекла был вмонтирован чувствительный фотоаппарат, настроенный на "бесконечность". Прибор надевался на голову подопытного (использовались люди с психическими расстройствами, как, например, алкогольный психоз), который сидел в темноте, и объектив направлялся ему прямо в зрачок. У 47 из 104 подопытных галлюцинации удалось зафиксировать на пленку. Образы были самыми разными, включая парящие сферы, человекообразные существа, покрытые волосами, и многое другое...

Конечно, у многих может возникнуть вопрос: а почему же невидимые сущности являются зачастую пьяницам или больным людям? К примеру, почему кот, сидящий рядом со мной, никак не хочет увидеть и изловить отвратительную невидимую тварь, которая, вполне возможно, злобно обнюхивает мои беззащитные ноги? Почему кот увидит эту тварь только в том случае, если её увижу и я, находясь под действием какого-либо психоделика?

Ответить на поставленный вопрос можно довольно просто. Наверное, многим доводилось видеть, как их домашние любимцы внезапно начинали себя странно вести, всё время глядя в строго определенную точку, иногда на неё шипя, а то и бросаясь. Такие случаи действительно не редки. В свою очередь, это с большой долей вероятности говорит о том, что рядом с вами есть ещё кто-то или что-то, но невидимый, неощутимый. Видят его только братья наши меньшие. Для тех же, кто сам хочет воочию узреть загадочное призрачное существо, рекомендуется просто принять какое-либо психоделическое вещество, ЛСД, например, а можно и по-старинке - опрокинуть пару-тройку рюмок водки и всё... Субъективное восприятие вполне объективной реальности вам обеспечено.

Существует ещё одна интересная взаимосвязь, которую следует отметить. Как выше уже сообщалось, ночной работник мелатонин вырабатывается эпифизом преимущественно ночью. Если быть точнее, то пик уровня мелатонина в организме (можно читать как пик интенсивности переработки серотонина в мелатонин) приходится на период от трех до четырех часов ночи. В этот момент в человеческом организме содержится до 70% мелатонина от всей суточной нормы. Далее, экстраполируя на эти данные сведения уфологов о регулярности контактов людей с НЛО и их экипажами, мы встречаем удивительное совпадение, так как суточный пик контактов также приходится на период от трех до четырех часов ночи. То есть здесь опять очевидна связь серотонина с очередным загадочным явлением.

Кто-то может заметить, что некоторые химические вещества (в том числе и серотонин) вызывают игру воображения и не более, но это предположение можно сразу отмести, прибегнув к примеру домашних животных, которые тоже ощущали загадочные сущности, без психоделических стимуляций. Скорее, надо заметить, что невидимые создания и операторы НЛО чувствуют и знают о том, что в тот или иной момент времени у такого-то человека изменилось сознание, стало более восприимчивым к контакту, и они этим, как мы можем судить, стараются воспользоваться.

Вообще-то, на страницах этого труда автор поначалу хотел избежать даже малейшего упоминания различных паранормальных явлений таких, как пришельцы, привидения и т.д., но потом стало ясно, что это невозможно. Просто нельзя построить полной картины мира, выкидывая из неё некоторые (порой весьма значимые) фрагменты. То, что мы не можем объяснить сейчас, объяснит Наука Будущего, но к этому надо сделать хоть маленький шаг. Так не будем же закрывать глаза на все те вещи и явления, которые итак много лет оставались без должных внимания и веры. Ведь, как известно, закрытые глаза при продвижении рано или поздно приведут к тому, что мы во что-нибудь упремся. Именно так всё и обстоит с современной наукой. Она попросту уперлась в непреодолимую стену бредовых предубеждений и догм, утонула в капицах, гинзбургах и кругляковых. Выход из паразитического кризиса возможен только при помощи грядущих поколений, которые, если бог даст, будут поразумнее, чем современные капицы, гинзбурги и кругляковы.


1.5 Шизофрения.

После этого облегчающего душу отступления хотелось бы рассмотреть ещё один интересный аспект воздействия некоторых химических веществ на сознание человека. Если до сего момента речь преимущественно шла о визуальных образах, сопровождающих изменение сознания, то теперь не помешает поговорить и об акустических эффектах данного феномена. Разговор пойдет о шизофрении (болезнь Блэйлера)...
Болезнь раздвоенного сознания (а именно это и означает греческий термин) явно недооценена мировой психиатрией. Принято считать, что шизофреник теряет способность проводить различие между своими внутренними переживаниями и реальностью, что периодически приводит к неправильной с его стороны трактовке некоторых эпизодов своего воображения, которые и воспринимаются им как непреложный факт объективной реальности. Страдающие шизофренией зачастую слышат голоса. Эти голоса призывают к действию...
Людям иногда свойственно путать причину и следствие. Повидимому, и в случае с шизофренией всё случилось именно так. Теперь официальная популярная гипотеза гласит, что человек слышит голоса потому, что в его психике произошли серьёзные изменения. Но как уже появлялась возможность убедиться, когда речь шла о человеческом мышлении, всё бывает с точностью до наоборот. Почему бы не предположить, что человек сходит с ума потому, что слышит голоса?
Таким образом, стоит всерьез задуматься над вопросом: а на самом ли деле шизофреники ничего не слышат? И чтобы ответить на этот вопрос правильно, необходимо в первую очередь избавиться от желания или нежелания верить, а уж затем попытаться обнаружить в исследуемом явлении противоречие логике. Если же такового не имеется, то уже можно со всей ответственностью поверить в явление, с большой долей вероятности допуская его реальность.
А между тем, в выдвинутом предположении о реальности слышимых шизофрениками голосов и звуков не наблюдается никакого противоречия формальной логике. Это уже говорит о том, что данную гипотезу можно принять на рассмотрение, ибо разум здесь не бунтует.
Пусть сейчас читатели попытаются вспомнить случай из своей жизни, где им доводилось слышать загадочные голоса или звуки. Наверняка, таковых окажется не так уж и мало. Зачастую человек, которому что-либо послышалось и который не может объяснить себе источник этого звука, предпочитает сослаться на слуховую галлюцинацию, но на сколько это верно? Если человек не обнаруживает источник звука, то значит ли это, что звука и быть не могло? Конечно, нет...
Шизофреники вполне могут улавливать чьи-то телепатические сигналы, которые и преобразуются в их мозгу в загадочные голоса, иногда советующие что-либо сделать. Хозяева этих голосов - тема отдельного разговора, не входящего в цели данной работы. Важно понять саму природу инициированного телепатического контакта. И главное здесь - уловить ход рассуждения: некоторые люди принимают телепатические сигналы от неведомых собеседников. Возможно, у таких людей случается необыкновенной силы онтологический шок, который и приводит к утрате способности правильно оценивать реальность и согласовывать с этой оценкой все свои действия. Затем эти люди поступают в специализированные клиники.
Но есть и такие крепкие духом дети человечества, которые не только не сошли с ума, слыша в своей голове советы загадочных голосов, но и сумели приспособить их себе во благо. Это и Моцарт, записывающий музыку, диктуемую неведомым голосом, и, конечно же, великолепная Жанна Д'арк, которая в сражениях всегда выполняла волю неведомых голосов, слышимых ей одной, и в результате побеждала в, казалось бы, безнадежных ситуациях (известен случай, когда Орлеанская Дева во время очередной битвы посоветовала солдату уйти с данного места, иначе в него попадет пушечное ядро; солдат отошел, его место занял другой и тут же был убит выстрелом из пушки). Кто из здравомыслящих людей станет оспаривать все эти удивительные факты? Где этот смельчак?
Таким образом, иногда люди сначала начинают слышать телепатически передаваемые чужие мысли и только потом сходят с ума, но, безусловно, есть и такие, которые сначала сходят с ума, а потом начинают слышать таинственные голоса. Но в нашем размышлении о развитии человеческого сознания важен именно первый тип людей - назовем их шизофрениками, инициированными извне, так как именно на его примере можно утверждать о реальности телепатии, ясновидения и проскопии. Но как это всё связано с серотонином? А с ним это связано тем, что у шизофреников отмечается аномальный уровень содержания серотонина в организме. Вот так вот. Опять серотонин. Ну а так как за всеми чудесами, будь то видение невидимого или слышание неслышимого, скрывается серотонин, то именно на него и должен пасть выбор будущих поколений для начала опытов по развитию человеческого сознания. Между прочим, такой уникум с мировой славой, как Нинель Сергеевна Кулагина перед каждым экспериментом под надзором научной комиссии выпивала рюмку коньяка. Она объясняла, что это помогает ей расслабиться и достичь нужного состояния сознания. Но, как уже говорилось ранее, алкоголь способен на некоторое время повышать уровень серотонина в организме. Только через 2-3 минуты после распития коньяка удавалось Кулагиной производить удачные экстрасенсорные пасы. То есть это ещё один наглядный пример взаимосвязи серотонина и психических способностей человека.
Сейчас многим известно, что в стенах психиатрических лечебниц некоторые пациенты не только утверждают о слышании загадочных голосов, но и на практике доказывают свои экстраординарные способности. К примеру, в тесте на ясновидение такие больные правильно называют количество карт, выходящее за пределы теории вероятностей. Весьма интересна в таких случаях реакция лечащих врачей-психиатров... Она, как всегда, полна энтузиазма... Больному, который опытным путем зарекомендовал себя как ясновидящий, попросту вкатывают самые разнообразные транквиллизаторы, и так до тех пор, пока способность к ясновидению не сойдет на "нет".
Научный подход, ничего не скажешь. Таких врачей самих бы в пору лечить, а им позволяют лечить других.

1.6 Эпифиз и сокрытые функции организма.

Возвращаясь к теме мигрени и серотонина, о которой уже упоминалось, следует отметить, что болезнь эта распределена среди людей отнюдь не равномерно. Женщин, старадающих мигренью, в 2-3 раза больше мужчин. Чрезвычайно интересным образом эти цифры перекликаются с другими данными неофициального характера, согласно которым, женщин с экстрасенсорными способностями в 3 раза больше мужчин. А уфологическая статистика опять же дает интересные цифры: женщин-контактеров больше мужчин в 3 раза (по данным отца Российской уфологии Владимира Ажажи, женщин-контактеров больше мужчин всего лишь на 8-10%). Над всеми этими совмещенными данными необходимо поразмыслить и, может быть, полученные выводы хоть в чем-то помогут при изучении влияния серотонина и мелатонина на человеческое сознание.

В начале этой главы говорилось о том, что при достижении ребенком семи лет его эпифиз атрофируется, и из этого делалось заключение, что по истинному назначению эпифиз просто не используется. Но о каких функциях или способностях можно говорить, если эпифиз будет работать, как то положено природой? На примере шизофреников были рассмотрены две для многих сокрытые функции эпифиза: телепатия и ясновидение. Но это, ясное дело, не предел. Возможно, именно благодаря аномальному содержанию серотонина в организме женщины чаще мужчин страдают мигренями, становятся экстрасенсами и более предрасположены к контакту с операторами НЛО. Если все действительно кроется в серотонине, то в дальнейшем, несомненно, необходимо начать эксперименты в этой области. И пусть Человечество вознесет хвалу тем первым подопытным добровольцам, которые отважаться принести себя в жертву на алтаре науки ради светлого будущего. Понятно, что крысами, кроликами или даже шимпанзе в подобных экспериментах не отделаться.

Но чисто гипотетически, существует шанс добиться развития человеческого сознания и способностей без каких-либо экспериментов над подопытными вообще. Ведь, как выше уже сообщалось, когда особь достигает семилетнего возраста, её эпифиз приходит в упадок в связи с отсутствием его эксплуатации. Это о многом говорит...

Необыкновенную восприимчивость детей особо наблюдательные люди отметили ещё в пору Великой Руси, а то и ещё раньше. Уже ближе к нашему времени фольклористы записывали в свои пухлые блокноты повествования седой старины о том, как детей умело использовали в гаданиях на зеркалах и чашах с водой. Это сейчас в среде доминирующих глупцов и серых ворон принято смеяться над старинными гаданиями, якобы демонстрируя окружению свободу своего мышления от всякой мистики и предрассудков.

Московский исследователь аномальных явлений А.К.Прийма в труде "От пророчества к пророчеству" привел описания случаев гадания с помощью детей из разных частей планеты. Как правило, помимо детей, в экспериментах используются предметы с гладкой и желательно отражающей поверхностью. Также Прийма описывает случай из своей личной практики, когда сотрудник МВД по фамилии Чепель привел к нему своего десятилетнего сына Сашу, который утверждал, что с некоторых пор по ночам общается с инопланетянами, которые открыли у него "третий глаз" (эпифиз) и постоянно твердили, что Саша будет лечить людей. Под гипнозом юный контактер принялся опять твердить про пришельцев и выпалил такую фразу: "Они сказали, что знают наше будущее. И что я тоже могу знать его... Они сказали, что у меня подходящий возраст." Затем Саша с помощью стеклянной вазы, наполненной водой, предсказал осенние события 1993-го года в Москве. Сам сеанс гипноза состоялся весной 1991-го года, и усилиями Приймы весной 1993 года в свет вышла брошюра с предсказанием на осень того же года. Таким образом удачное предсказание Саши Чепеля должным образом заранее задокументировано.

В книге французского исследователя аномальных явлений Робера Шару "Погибшие миры. Научные секреты древних" тоже делается заключение о том, что ребенок, в силу достаточной развитости эпифиза, гораздо более предрасположен к владению психической энергией (ясновидение, просокпия, телепатия, телекинез и т.д.), чем взрослые, ибо их эпифиз обызвествляется.

Фольклорист с мировым именем Джеймс Фрейзер в труде "Фольклор в Ветхом Завете" сообщает о древних методах предсказания будущего и ясновидения с помощью детей и сосудов с водой. Там же приводится фрагмент из египетского документа XIX века.

"Чистому, невинному мальчику (не старше двенадцати лет) велят смотреть в чашу, наполненную водой и расписанную священными текстами; под шапку же ему засовывают бумагу с надписями, так, чтобы она свисала ему на лоб; его окуривают благовониями, а в это время заклинатель бормочет изречения. Через некоторое время мальчик на вопрос, что он видит, отвечает, что в воде, как в зеркале, движутся фигуры людей."

Весьма интересно в этом тексте замечание "не старше двенадцати лет". Да и слова пришельцев, транслируемые посредством Саши Чепеля, подпадают под категорию "не старше двенадцати лет": возраст у него подходящий, говорят они про десятилетнего контактера.

А.Прийма, рассуждая на тему "до двенадцати", задается вопросом: "Почему именно до двенадцати?" И тут же сам дает на свой вопрос очень любопытный и перспективный ответ: "Не потому ли, что как раз в двенадцать лет у них, как известно, начинается процесс полового созревания? И быть может, сей процесс, едва начавшись, с ходу и навсегда отключает трансцендентальный механизм ясновидения в "третьем глазу" подростка?"

Здравого смысла в этом предположении очень много. Свести воедино эпифиз и половое созревание не так уж и сложно, если вспомнить о гормоне шишковидной железы - мелатонине. Известно, что наиболее высокий уровень мелатонина в человеческом организме имеет место в детском возрасте, но в период с 11 по 14 лет уровень мелатонина в организме резко падает, и в итоге запускается механизм полового созревания (мелатонин напрямую связан с половым созреванием особи). Между тем, ограничительный возраст в 12 лет с идеальной точностью вписывается в промежуток с 11 до 14 лет.

Таким образом, можно наблюдать удивительную и ясную взаимосвязь между половым созреванием человека и ослаблением его экстрасенсорной чувствительности за счет снижения уровня мелатонина в организме.

Кто-то сейчас может вспомнить об известных со времен седой старины методах гадания с помощью зеркал на суженого, который в основном практикуют представители женского пола, причем делают они это в уже весьма половозрелом возрасте и - что интересно - у них все хорошо получается. Как объяснить странный симбиоз в лице сосуществования половой зрелости и экстрасенсорной восприимчивости? Почему женщины продолжают видеть в зеркалах загадочные образы, а у мужчин это случается значительно реже? Чтобы ответить на этот вопрос, необходимо учесть всего два фактора.

Во-первых, женщины, в силу своего гипертрофированного эгоизма, гораздо чаще мужчин смотрят в зеркало, дабы узреть там свою будущую вторую половину (сознание женщины резко ограничено; создание семьи с целью оснащения своего существования хоть каким-то смыслом - вот предел женского мышления, ну или в лучшем случае карьеризм. Думать о человечестве и его развитии - явление запредельное для женского сознания. Они привыкли, что любым глобальным развитием да и развитием вообще занимаются мужчины);

и во-вторых, в женском организме уровень содержания серотонина значительно выше, нежели в мужском (содержание выработок серотонина в моче женщины в 4 раза превышает эти показатели у мужчины, а уровень серотонина в крови превышает мужские показатели в 3 раза).

Именно по двум выше описанным причинам (но главным образом, за счет повышенного уровня серотонина) женщины в зеркалах чаще видят неподатливые объяснениям науки образы. Кстати, здесь можно вспомнить и другие статистические данные, которые уже приводились выше:

- женщин, страдающих мигренями, больше м и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.