Здесь можно найти учебные материалы, которые помогут вам в написании курсовых работ, дипломов, контрольных работ и рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


контрольная работа Радиоактивный каротаж

Информация:

Тип работы: контрольная работа. Добавлен: 26.05.13. Сдан: 2013. Страниц: 14. Уникальность по antiplagiat.ru: < 30%

Описание (план):


Теоретические основы метода

Радиоактивный каротаж
Основные положения

Радиоактивный каротаж (РК) – исследования, основанные на измерении параметров полей ионизирующих частиц (нейтронов  и гамма-квантов) с целью определения  ядерно-физических свойств и элементного состава горных пород. Радиоактивный каротаж нефтяных и газовых скважин включает следующие основные группы измерений: гамма-каротаж – ГК, гамма-гамма каротаж – ГГК, нейтронный каротаж – НК, нейтронный активационный каротаж. Каждая группа подразделяется на несколько модификаций, различающихся типом и энергетическим спектром регистрируемого излучения, конструкцией измерительных зондов, методиками измерений и обработки первичных данных.

Приборами РК непосредственно измеряются сигналы детекторов ионизирующего излучения в виде скорости счета – числа импульсов, регистрируемых в единицу времени. В импульсных и спектрометрических модификациях РК регистрируют скорости счета во временных и энергетических окнах.

Переход от скорости счета к геофизическим  характеристикам пород (плотность пород) и их геологическим параметрам (пористость, насыщенность, вещественный состав пород) осуществляют с использованием зависимостей между показаниями скважинных приборов и указанными характеристиками и параметрами, установленными на моделях пород (с имитацией скважины) или методами математического моделирования.

Наиболее важными эксплуатационными  и метрологическими характеристиками приборов РК считаются:

    • диапазоны измерения геофизических характеристик;
    • предел допускаемой основной погрешности измерений;
    • допускаемые максимальные скорости счета;
    • нестабильность скорости счета при непрерывной работе прибора;
    • максимальные значения температуры и давления в скважине;
    • максимальное и минимальное значение внутреннего диаметра исследуемых скважин (обсадных колонн, НКТ);
    • вертикальное разрешение метода и глубинность исследований.

Значения этих характеристик и  допускаемые отклонения от них регламентируются требованиями эксплуатационной документации на конкретные приборы.

Минимальные требования к методическому обеспечению обработки данных заключаются в наличии основных интерпретационных зависимостей. Взаимосвязь устанавливают между измеряемыми скоростями счета и искомыми геофизическими характеристиками или геологическими параметрами пород. Дополнительно используют зависимости для учета геолого-технических условий измерений: давления и температуры в скважине, ее диаметра, свойства промывочных жидкостей и глинистой корки, диаметров и толщин обсадной колонны и цементного кольца, вещественного состава пород, минерализации пластовых вод, плотности флюидов и т.п. 

В зависимости от решаемой задачи выделяют общие и детальные исследования методами РК. Отличия между ними заключаются в требованиях получения  неискаженной информации для пластов  с минимальной мощностью, параметры которых подлежат количественной оценке. Выполнение этих требований достигается выбором максимально допустимой скорости каротажа.

Повышение детальности исследований достигается уменьшением шага дискретизации  по глубине при одновременном  снижении скорости каротажа. Шаг дискретизации по глубине выбирают из ряда 0,2; 0,1; 0,05 м.

Гамма-каротаж

Принцип гамма-каротажа (ГК) основан  на регистрации скважинными приборами  естественной радиоактивности горных пород слагающих разрез скважины.

Естественной радиоактивностью называется самопроизвольный распад ядер некоторых химических элементов слагающих горные породы. Естественная радиоактивность слагается из способности горных пород испускать альфа- , бета - и гамма-излучение. Глубина проникновения альфа-излучения в горных породах составляет первые десятки микрон, бета-излучения – первые миллиметры, а гамма-излучения – от 30 до 40 см. Следовательно, с точки зрения изучения разрезов скважин только гамма-излучение представляет практический интерес.

Величина естественной радиоактивности горных пород определяется в основном содержанием в них трех основных химических элементов: урана, тория и изотопа калия-40.

Основы применения ГК в скважинах, пробуренных на нефть и газ, связаны  с четкой зависимостью величины гамма-излучения от характера горной породы. Самую высокую радиоактивность среди осадочных горных пород имеют глубоководные илы, черные битуминозные глины, аргиллиты, глинистые сланцы, калийные соли. Средняя радиоактивность характерна для неглубоководных и континентальных глин, глинистых песчаников, мергелей глинистых известняков и доломитов. К породам с низкой радиоактивностью относятся ангидриты, гипсы, песчаники, пески, доломиты, угли. В общем случае кривая ГК характеризует разрез скважины от величины глинистости горных пород, что облегчает выделение коллекторов, которые могут содержать подвижные флюиды, такие как нефть и газ.

 

                                                        ГК

 

Для регистрации естественной радиоактивности горных пород разработаны и применяются два типа зондов:

  1. Зонд для регистрации суммарного гамма – излучения, который записывает общий объем гамма – лучевой активности горных пород вскрытых скважиной вне зависимости от типа источника.
  2. Зонд для определения спектра источника гамма – излучения или спектральный гамма – каротаж, – который наряду с регистрацией суммарного ГК дает представление о концентрации каждого радиоактивного элемента (урана, тория и калия) в изучаемой горной породе.

Наиболее часто в практике проведения ГИС применяются зонды для регистрации суммарного спектра гамма – излучения – гамма – каротаж (ГК).

По данным ГК решают следующие задачи:

- литологическое расчленение различных  типов горных пород. Интенсивность  гамма-излучения зависит от содержания в породах радиоактивных элементов. Т.к. оно в разных породах различно, по данным ГК можно судить о характере горных  пород.

- определение глинистости горных  пород по данным ГК основано  на прямой зависимости гамма-активности  песчано-глинистых горных пород;

- привязка к разрезу результатов  исследования другими методами  каротажа, интервалов перфорации  и др. Основана на возможности  проводить ГК в обсаженных  скважинах.

ОБЛАСТЬ ПРИМЕНЕНИЯ

    1. Литологическое расчленение разреза.
    2. Определение фильтрационно-емкостных свойств пластов.
    3. Корреляция разрезов скважин. (Привязка по глубине)
Плотностной гамма-гамма каротаж

Теоретические основы

 Регистрация плотностного гамма-гамма  каротажа (ГГК-П) основана на эффекте  рассеяния жесткого гамма-излучения  в изучаемой горной породе. Идея ГГК-П основана на известных принципах взаимодействия  g - излучения с различными веществами. Измеряя результат этого взаимодействия, можно, в частности определить и плотность горной породы. Основным фактором, влияющим на показания метода ГГК-П является эффект комптоновского рассеяния g - квантов источника высоких энергий электронами ядер минералов, слагающих горную породу. Взаимодействуя с электроном, g - квант  теряет часть своей энергии и меняет траекторию движения. Схема взаимодействия показана на  рис.1. 

После неоднократного повторения подобной реакции g - квант изменяет свою траекторию настолько, что может быть зарегистрирован детектором, находящимся в приборе. По сути, прибор ГГК-П измеряет электронную плотность горной породы, которая тесно связана с плотностью минералов слагающих ее.

Поскольку облучение горных пород  в скважине происходит жестким g - излучением, то регистрируемая детекторами мощность экспозиционной дозы рассеянного g - излучения находится в обратно пропорциональной зависимости от плотности среды. Следовательно, метод ГГК-П позволяет выполнять литологическое расчленение разреза, выделять пласты – коллектора и рассчитывать коэффициент пористости Кп.

Для производства работ применяется  двухзондовая аппаратура ГГК-П. (рис.2)


 

 

 

Дальний зонд

 

Ближний зонд

 

               экран

 

 

    Источник g - излучения

 

Рис.2. Схема зонда для регистрации  ГГК-П

 

Наличие двух зондов продиктовано тем, что при подобной регистрации  рассеянного g - излучения малый зонд позволяет более точно учесть влияние ближней зоны скважины (глинистой корки, бурового раствора), а дальний зонд регистрирует рассеянное g - излучение от горной породы. При производстве работ, с целью устранения влияния скважины на результаты  измерения зондовая часть прибора в обязательном порядке прижимается к стенке скважины прижимным устройством.

В качестве источников жесткого g - излучения в скважинных приборах применяются ампульные источники, содержащие изотопы 60Со или 137Сs.

Нейтронный метод

Нейтронный метод основан на облучении скважины и пород нейтронами от стационарного ампульного источника и измерении плотностей потоков надтепловых и тепловых нейтронов и гамма-квантов, образующихся в результате ядерных реакций рассеяния и захвата нейтронов. Измеряемая величина – скорость счета в импульсах в минуту (имп/мин); расчетная величина – водородосодержание пород в стандартных условиях в процентах.

В зависимости от регистрируемого  излучения различают: нейтронный каротаж  по надтепловым нейтронам – ННК-НТ; нейтронный каротаж по тепловым нейтронам - ННК-Т; нейтронный гамма-каротаж – НГК. Первые два вида исследований выполняют, как правило, с помощью компенсированных измерительных зондов, содержащих два детектора нейтронов (рис.3); НГК – однозондовыми или двухзондовыми приборами, содержащими источник нейтронов и один или два детектора гамма-излучения (рис.4).

 

Рис.3. Схема  прибора для нейтрон-нейтронного  каротажа.

Нейтрон-нейтронный каротаж по тепловым нейтронам (ННК-Т)

Нейтрон-нейтронный каротаж  по тепловым нейтронам основан на облучении горных пород быстрыми нейтронами от ампульного источника и регистрации нейтронов по разрезу скважины, которые в результате взаимодействия с породообразующими элементами замедлились до тепловой энергии.

Регистрируемая интенсивность тепловых нейтронов зависит от замедляющей и поглощающей способности горной породы. Наибольшая потеря энергии нейтрона наблюдается при соударении с ядром, имеющего массу равную единице, т.е. с ядром водорода. Для тепловых нейтронов, образующихся при замедлении быстрых нейтронов, наиболее характерен радиоактивный захват, сопровождающийся вторичным гамма-излучением. Таким образом, по данным ННК-Т можно определять водородосодержание, которое напрямую связано с пористостью для пластов-коллекторов.

При проведении измерений детектор тепловых нейтронов располагается  на определенном расстоянии от источника  нейтронов. Расстояние от источника  до детектора выбирается таким, что  при увеличении водородосодержания горных пород, зарегистрированная интенсивность тепловых нейтронов уменьшается, т.е. зонд является заинверсионным. Регистрация нейтронного излучения двумя зондами с разной длиной позволяет уменьшить влияние скважины на результат определения водородосодержания горных пород. Эффект основан на изменении радиальной глубины исследования от увеличения длины зонда. Малый зонд ННК-Т МЗ несет информацию в основном о нейтронных свойствах скважины и околоскважинного пространства, тогда как на интенсивность, зарегистрированную большим зондом ННКТ БЗ, большое влияние оказывают нейтронные свойства пласта. Поэтому для определения водородосодержания используют отношение скоростей счета в этих зондах.

 

Рис.4. Схема  прибора нейтронного гамма-каротажа.

 

Нейтронный каротаж применяют  в необсаженных и обсаженных скважинах с целью литологического расчленения разрезов, определения емкостных параметров пород (объемов минеральных компонент скелета и порового пространства), выделения газожидкостного и водонефтяного контактов, определения коэффициентов газонасыщенности в прискважинной части коллектора.

Областями эффективного применения НК при определении пористости и  литологическом расчленении разреза  являются:

    • для ННК-Т – породы с любым водородосодержанием, невысокими Спл и Спж (меньше 50-70 г/л NaCl) и слабой контрастностью Спл и Спж;
    • для НГК – породы с низким (меньше 8-12%) водородосодержанием и любыми Спл и Спж, а также породы со средним (8-20%) водородосодержанием, если Спл и Спж не превышают 100 г/л.

Областями эффективного применения НК при выделении газоносных пластов, газожидкостного контакта, определении коэффициента газонасыщенности являются:

    • для ННК-Т – породы с водородосодержанием более 10% при диаметре скважины, не превышающем 250 мм;
    • для НГК – породы с водородосодержанием менее 20%.

Измерительный зонд НК содержит ампульный источник нейтронов и один или два (и более) детектора нейтронов (тепловых) или гамма-излучения. Точка записи – середина расстояния между источником и детектором для однозондовых приборов и середина между двумя детекторами для компенсированных (двухзондовых) приборов.

Модуль НК комплексируется с  другими модулями без ограничений

 

Приложение

 

Гамма-каротаж (ГК).

 

Метод измерения естественной радиоактивности  горных пород в разрезах относится  к основным исследованиям, проводится во всех поисковых и разведочных скважинах, в открытом стволе, перед спуском каждой технической или эксплуатационной колонны, по всему разрезу, включая кондуктор.

Метод ГК обеспечивает высокое вертикальное расчленение разреза (выделяются контрастные по естественной радиоактивности прослои мощностью 0,3-0,4 м), но показания метода ГК зависят от радиоактивности вмещающих пород и от технологии замеров.

 

Физические основы метода.

 

Сущность гамма-каротажа заключается в изучении естественной радиоактивности горных пород по стволу скважины путем регистрации интенсивности гамма-излучения, возникающего при самопроизвольном распаде радиоактивных элементов (в основном U, Th и K40).

Гамма-каротаж в комплексе  методов общих исследований применяется  при решении задач указанных  в разделе «Стандартный электрический каротаж» и дополнительно к ним:

выделение высокорадиоактивных  пластов-реперов;

разделение глин-покрышек по минералогическому составу;

разделение пород фундамента по составу (от основных до кислых магм), выделение кор выветривания, других контрастных по данным ГК образований;

литологическое расчленение различных  типов горных пород. Интенсивность гамма-излучения зависит от содержания в породах радиоактивных элементов. Т.к. оно в разных породах различно, по данным ГК можно судить о характере горных пород.

определение глинистости горных пород. Определение коэффициента глинистости  по данным гамма-метода основано на близкой к прямой зависимости этого коэффициента от естественной гамма-активности песчано-глинистых горных пород;

привязка к разрезу результатов  исследования другими методами каротажа, интервалов перфорации и др. Основана на возможности проводить ГК в обсаженных скважинах.

 

Оценка качества.

 

Качество материала ГК оценивается  по следующим параметрам:

предельное расхождение от рабочего эталона (в сравнении с днем градуировки)      не должно превышать 10%; погрешность измерений по результатам основной и контрольной записи не должна превышать 20% при радиоактивности пород до 10 мкР/ч, 15% - при радиоактивности от 10 до 20 мкР/ч и 10% - при более высоких значениях радиоактивности;

Основные   методологические требования к диаграммам ГК:

диаграммы ГК должны быть высокого качества;

параметры регистрации диаграмм ГК (скорость записи, стабильность работы канала ГК, время интегрирования) должны обеспечивать статистическую достаточность  характеристик пластов по естественной радиоактивности по всему диапазону ее значений;

скорость регистрации диаграмм ГК должна быть в соответствии со свойствами разреза и не должна превышать  расчетную;

масштаб регистрации ГК 0,75 мкР/час/см при соотношении последующих  масштабов как 1:2:5:25, т.е. соответственно 1,5:3,75:18,75 мкР/час/см;

диаграмма ГК должна записываться всегда одновременно с записью диаграмм НКТ.

 

Метод ГК реализован в следующей  аппаратуре:

- СРК;

- РКС.

СРК-01.

Назначение.

Прибор СРК предназначен для  исследования нефтяных и газовых  скважин методами двухзондового нейтрон-нейтронного каротажа по тепловым и надтепловым нейтронам (2ННКТ и 2ННКНТ), нейтронного гамма-каротажа (НГК) и гамма-каротажа (ГК), по данным которых определяется водонасыщенная пористость (водородосодержание) и мощность экспозиционной дозы естественного гамма-излучения горных пород.

В ПГО ТПГ аппаратуру СРК используют для работы в режимах 2ННКТ и ГК.

 

Данные по аппаратуре.

Скважинный прибор обеспечивает проведение измерений в скважинах диаметром 110-350 мм, заполненных водной промывочной жидкостью с содержанием NaCl от десятых долей процента до минерализации, соответствующей насыщению, NaOH - до 20%, нефти - до 10% и pH до 10, при значениях температуры окружающей среды от -10 до 120 °С и гидростатического давления 120 МПа.

Скважинный прибор эксплуатируется с использованием:

- источника быстрых нейтронов  полоний-бериллиевым типа ВНИ-2 или  плутоний- бериллиевым типа ИБН8-5 с потоком нейтронов от 5x106 до 1x107 с-1;

- кабеля типа КГ3-60-180 длиной до 7000м.

Диапазон измерений мощности экспозиционной дозы гамма-излучения, обеспечиваемый скважинным прибором, от 1.4 до 251.4 мкР/час.

Диапазон измерений водонасыщенной пористости (водородосодержания), обеспечиваемый скважинным прибором, от 1 до 40%.

Регистрация гамма-излучения (шифр параметра GR) осуществляется блоком детектирования, содержащим два детектора NaI(Tl) размерами 40x80 мм типа СДН.16.40.80. и два фотоэлектронных умножителя ФЭУ-74А.

Регистрация нейтронного излучения  осуществляется блоком детектирования, который содержит два гелиевых счетчика тепловых нейтронов типа СНМ-56 (по 1 шт. в каналах ННКТ МЗ и ННКТ БЗ ).

Расстояние между центром источника  нейтронов и ближними к нему торцами  счетчиков СНМ-56:

- для зонда ННКТ МЗ (шифр параметра  RNTN)- 258 ± 5 мм;

- для зонда ННКТ БЗ (шифр параметра RFTN)- 508 ±5 мм.

Схема зондовых установок прибора  СРК-01 приведена на рис.14.

 

 

Рис.14. Схема зондовых установок  прибора СРК-01

 

 

Водородосодержание рассчитывается по формулам:

 

, (1)

, (2)

,  (3) 

 

где , , - водородосодержание по данным ННКМЗ, ННКБЗ и их отношению соответственно, %;

, - скорость счета по каналам ННКМЗ и ННКБЗ соответственно, у.е.;

Электрическое сопротивление между 1 и 2 жилами должно быть практически равным удвоенному электрическому сопротивлению жилы кабеля. 3 жила в аппаратуре СРК не используется.

Питание скважинного прибора осуществляется постоянным электрическим током 95 мА. При этом напряжение питания на входе скважинного прибора не более 26 В.

Амплитуда выходных импульсов каналов  скважинного прибора не менее 3 В, длительность выходных импульсов на уровне 0.5 их амплитуды не более 80 мкс.

Импульсы ННКМЗ и ННКБЗ передаются как разнополярные между 1 и 2 жилой, импульсы ГК - между ОК и 1 или 2 жилой кабеля.

Длина скважинного прибора - не более 2.91 м.

Диаметр скважинного прибора - не более 90 мм.

Масса скважинного прибора - не более 80 кг.

 

РКС-3М.

 Назначение.

 

Прибор РКС-3М предназначен для  исследования нефтяных и газовых скважин методами двухзондового нейтрон-нейтронного каротажа по тепловым нейтронам (2ННКт), и гамма-каротажа (ГК), по данным которых определяется водонасыщенная пористость (водородосодержание) и мощность экспозиционной дозы естественного гамма-излучения горных пород. Прибор также имеет датчик локатора муфт (ЛМ).

 

Данные по аппаратуре.

 

Скважинный прибор обеспечивает проведение измерений в скважинах диаметром 110-350 мм, заполненных водной промывочной  жидкостью с содержанием NaCl от десятых долей процента до минерализации, соответствующей насыщению, NaOH - до 20%, нефти - до 10% и pH до 10, при значениях температуры окружающей среды от -10 до 120 °С и гидростатического давления 120 МПа.

Скважинный прибор эксплуатируется  с использованием:

- источника быстрых нейтронов  полоний-бериллиевым типа ВНИ-2 или  плутоний- бериллиевым типа ИБН8-5 с потоком нейтронов от 5x106 до 1x107 с-1;

- кабеля типа КГ3-60-180 длиной до 7000м.

Диапазон измерений мощности экспозиционной дозы гамма-излучения, обеспечиваемый скважинным прибором, от 1.4 до 251.4 мкР/час.

Диапазон измерений водонасыщенной пористости (водородосодержания), обеспечиваемый скважинным прибором, от 1 до 40%.

Регистрация гамма-излучения (шифр параметра GR) осуществляется блоком детектирования, содержащим два детектора NaI(Tl) размерами 40x80 мм типа СДН.16.40.80. и два фотоэлектронных умножителя ФЭУ-74А.

Регистрация нейтронного излучения  осуществляется блоком детектирования, который содержит два гелиевых счетчика тепловых нейтронов типа СНМ-56 (по 1 шт. в каналах ННКТ МЗ и ННКТ БЗ ).

Расстояние между центром источника  нейтронов и ближними к нему торцами  счетчиков СНМ-56:

- для зонда ННКТ МЗ (шифр параметра  RNTN) - 258  мм;

- для зонда ННКТ БЗ (шифр параметра  RFTN) - 508  мм.

Схема зондовых установок прибора РКС-3М приведена на рис.15.

 

 

Рис.15 Схема зондовых установок  прибора РКС-3М

 

Водородосодержание рассчитывается по формуле: 

,  (4)

где Kп - водородосодержание, %;

Im, Ib, - скорость счета по каналам  ННКМЗ и ННКБЗ соответственно, у.е.;

A, E0 - коэффициенты, определяемые при  базовой калибровке. 

 

Сигнал локатора муфт (шифр параметра CCL) передается по 3-й жиле кабеля относительно ОК в аналоговой форме.

Питание скважинного прибора осуществляется постоянным электрическим током 50 В  в режиме стабилизации напряжения .

Амплитуда выходных импульсов каналов  скважинного прибора не менее 3В, длительность выходных импульсов на уровне 0.5 их амплитуды не более 80 мкс.

Импульсы ННКМЗ и ННКБЗ передаются как разнополярные между 1 и 2 жилой, импульсы ГК - между ОК и 1 или 2 жилой  кабеля.

Длина скважинного прибора - не более 2.91 м.

Диаметр скважинного прибора - не более 90 мм.

 

9. Нейтрон-нейтронный  каротаж по тепловым нейтронам  (ННКт).

 

Нейтрон-нейтронный каротаж по тепловым нейтронам дает сведения о эквивалентном  водосодержании пород, относится к  основным исследованиям, проводится во всех поисковых и разведочных  скважинах, в открытом стволе, перед спуском каждой технической или эксплуатационной колонны, по всему разрезу, включая кондуктор.

Нейтрон-нейтронный каротаж в комплексе  методов общих исследований применяется  при решении следующих задач:

литостратиграфическое расчленение разрезов с возможностью построения   детальной литостратиграфической колонки;

локальная и региональная корреляция по литологии физическим и фильтрационно-емкостным  свойствам пород по всему исследованному разрезу с установлением однородных и неоднородных по строению и свойствам пород интервалов разреза;

предварительное выделение проницаемых  пластов и покрышек (установление их толщин, строения по однородности);

предварительное выделение нефтегазонасыщенных  пластов и оценка характера насыщения  коллекторов;

предварительное выделение контактов  пластовых флюидов (ВНК, ГВК, ГНК) в  однородных коллекторах и прогноз  фазового состояния углеводородов  в пластовых условиях;

предварительное выделение эффективных  нефтегазонасыщенных толщин;

контроль технического состояния ствола скважины (в открытом стволе и в колонне);

выделение пластов-реперов и опорных  пластов с низкой пористостью  с разделением их (совместно с  ГК) по литотипам;

совместно с ГК выделение карбонатных  пород, углей, зон интенсивной углефикации;

предварительное определение пористости гранулярных коллекторов;

предварительное выделение газонасыщенных участков (совместно с АК) в пластах  с незначительным проникновением и  высокими фильтрационно-емкостными свойствами.

 

Физические  основы метода.

 

Нейтрон-нейтронный каротаж по тепловым нейтронам основан на облучении горных пород быстрыми нейтронами от ампульного источника и регистрации нейтронов по разрезу скважины, которые в результате взаимодействия с породообразующими элементами замедлились до тепловой энергии.

Регистрируемая интенсивность  тепловых нейтронов зависит от замедляющей  и поглощающей способности горной породы. Наибольшая потеря энергии  нейтрона наблюдается при соударении с ядром, имеющего массу равную единице, т.е. с ядром водорода. Таким образом  по данным ННКТ можно определять водородосодержание горных пород, которое для пластов-коллекторов напрямую связано с пористостью.

При проведении измерений детектор тепловых нейтронов располагается  на определенном расстоянии от источника  нейтронов. Расстояние от источника до детектора выбирается таким, что при увеличении водородосодержания горных пород, зарегистрированная интенсивность тепловых нейтронов уменьшается, т.е. зонд является заинверсионным. Регистрация нейтронного излучения двумя зондами с разной длиной позволяет уменьшить влияние скважины на результат определения водородрсодержания горных пород. Эффект основан на разной глубинности исследования при разной длине зонда. Малый зонд ННКТ МЗ несет информацию в основном о нейтронных свойствах скважины и околоскважинного пространства, тогда как на интенсивность, зарегистрированную большим зондом ННКТ БЗ, большое влияние оказывают нейтронные свойства пласта. Поэтому для определения водородосодержания используют отношение скоростей счета в этих зондах.

 


и т.д.................


Перейти к полному тексту работы


Скачать работу с онлайн повышением уникальности до 90% по antiplagiat.ru, etxt.ru или advego.ru


Смотреть полный текст работы бесплатно


Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.