Здесь можно найти учебные материалы, которые помогут вам в написании курсовых работ, дипломов, контрольных работ и рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


контрольная работа Ремонт клиновой задвижки

Информация:

Тип работы: контрольная работа. Добавлен: 31.05.13. Сдан: 2012. Страниц: 8. Уникальность по antiplagiat.ru: < 30%

Описание (план):


Содержание
1. Конструкционные углеродистые стали, область применения 3
2. Контактные материалы 7
3. Медь. Медные сплавы, маркировка область применения 10
4. Расшифровать марки сталей 14
Список используемой литературы 15
 
 


1. Конструкционные углеродистые  стали, область применения
Конструкционная сталь - сталь, которая применяется для изготовления различных деталей, механизмов и конструкций в машиностроении и строительстве и обладает определёнными механическими, физическими и химическими свойствами. Конструкционные стали подразделяются на несколько подгрупп.
Качество конструкционных углеродистых сталей
Качество  конструкционных углеродистых сталей определяется наличием в стали вредных примесей фосфора (P) и серы (S). Фосфор — придаёт стали хладноломкость (хрупкость). Сера — самая вредная примесь — придаёт стали красноломкость. Содержание вредных примесей в стали:
    Обыкновенного качества — P и S — до 0.05 % (маркировка Ст).
    Качественная — P и S — до 0.035 % (маркировка Сталь).
    Высококачественная — P и S — до 0.025 % (маркировка А в конце марки).
    Особовысококачественная — Р и S — до 0.015 % (маркировка Ш в конце марки).
Стали конструкционные углеродистые обыкновенного качества
Широко применяются  в строительстве и машиностроении, как наиболее дешёвые, технологичные, обладающие необходимыми свойствами при изготовлении конструкций массового назначения. В основном эти стали используют в горячекатанном состоянии без дополнительной термической обработки с ферритно-перлитной структурой. В зависимости от последующего назначения конструкционные углеродистые стали обыкновенного качества подразделяют на три группы: А, Б, В.
Стали группы А
Поставляются  с определёнными регламентированными  механическими свойствами. Их химический состав не регламентируется. Эти стали  применяются в конструкциях, узлы которых не подвергаются горячей  обработке — ковке, горячей штамповке, термической обработке и т. д. В связи с этим механические свойства горячекатаной стали сохраняются.
Стали группы Б
Поставляются  с определённым регламентированным химическим составом, без гарантии механических свойств. Эти стали применяются в изделиях, подвергаемых горячей обработке, технология которой зависит от их химического состава, а конечные механические свойства определяются самой обработкой.
Стали группы В
Поставляются  с регламентируемыми механическими  свойствами и химическим составом. Эти стали применяются для  изготовления сварных конструкций. Их свариваемость определяется химическим составом, а механические свойства вне зоны сварки определены в состоянии поставки. Такие стали применяют для более ответственных деталей.
По степени  раскисления углеродистые стали  обыкновенного качества подразделяются на спокойные (СП), полуспокойные (ПС), кипящие (КП). Степень раскисления определяется содержанием кремния (Si) в этой стали. Спокойные — 0.012-0.03 % (Si), полуспокойные — 0.05-0.07 % (Si), кипящие — менее 0.07 % (Si).
Маркировка
Основные  марки конструкционных углеродистых сталей обыкновенного качества:
Ст1КП2; БСт2ПС; ВСт3ГПС; Ст4-2; … ВСт6СП3.
    Буква перед маркой показывает группу стали. Сталь группы А -буквой не обозначается.
    Ст - показывает, что сталь обыкновенного качества.
    Первая цифра - номер по ГОСТу (от 0 до 6).
    Буква Г после первой цифры - повышенное содержание марганца (Mn)-(служит для повышения прокаливаемости стали).
    СП; ПС; КП - степень раскисления стали.
    Вторая цифра — номер категории стали (от 1 до 6 — основные механические свойства). Сталь 1-ой категории цифрой не обозначается.
    Тире между цифрами указывает, что заказчик не предъявлял требований к степени раскисления стали.
Применение
    Ст1; Ст2 — проволока, гвозди, заклёпки.
    Ст3; Ст4 — крепёжные детали, фасонный прокат.
    Ст5; Ст6 — слабонагруженные валы, оси.
Стали углеродистые качественные
Качественными углеродистыми сталями являются стали марок: Сталь08; Сталь10; Сталь15 …; Сталь78; Сталь80; Сталь85. Также к  этому классу относятся с повышенным содержанием марганца (Mn — 0.7-1.0 %): Сталь 15Г; 20Г … 65Г, имеющие повышенную прокаливаемость.
Маркировка
    Сталь - слово «Сталь» указывает, что данная углеродистая сталь качественная. (В настоящее время слово «Сталь» не пишется, указывается только индекс и последующие буквы)
    Цифра - указывает на содержание в стали углерода (С) в сотых долях процента.
Применение
Низкоуглеродистые стали марок Сталь08, Сталь08КП, Сталь08ПС относятся к мягким сталям, применяемым  чаще всего в отожжённом состоянии  для изготовления деталей методом холодной штамповки - глубокой вытяжки. стали марок Сталь10, Сталь15, Сталь20, Сталь25 обычно используют как цементируемые, а высокоуглеродистые Сталь60 … Сталь85 — для изготовления пружин, рессор, высокопрочной проволоки и других изделий с высокой упругостью и износостойкостью.
Сталь30 …  Сталь50 и аналогичные стали с  повышенным содержанием марганца Сталь30Г, Сталь40Г, Сталь50Г применяют для  изготовления самых разнообразных  деталей машин.
Стали повышенной обрабатываемости (автоматные)
К сталям с  повышенной обрабатываемостью или  автоматным сталям относят стали  с высоким содержанием серы и  фосфора, а также стали, специально легированные селеном (Se), теллуром (Те) или свинцом (Pb). Указанные элементы способствуют повышению скорости резания, уменьшают усилие резания и изнашиваемость инструмента улучшают чистоту и размерную точность обработанной поверхности, облегчают отвод стружки из зоны резания и т. д. Эти стали используют в массовом производстве для изготовления деталей на станках-автоматах.
Стали с повышенным содержанием серы и фосфора обладают пониженными механическими свойствами и их используют для изготовления малонагруженных деталей (например, метизов).
 


2. Контактные материалы

Контактные  материалы - материалы для скользящих контактов (коллекторные пластины электрических машин), которые должны обладать низкими значениями удельного сопротивления и падения напряжения на контактах, высокими значениями минимального тока и стойкости к истиранию (износостойкостью), электрической эрозии и коррозии. Скользящие контакты, в свою очередь, можно разделить на металлические и электротехнические угольные.
Для изготовления пружинных металлических скользящих контактов (применяемые в основном в переключателях, потенциометрах, реостатах) используют специальные сорта бронз: кадмиевые, бериллиевые и хромистые (БрКд1, БрБ2 и др.), обладающие высокой упругостью, стойкостью к истиранию и низким значением удельного сопротивления. Например  сплав Сu—Cd (Cd~l%), образует твердый раствор, который в три раза более стоек к истиранию, чем медь. Для изготовления скользящих контактов применяют также латуни (например, ЛС59-1, ЛМц58-2). Металлические скользящие контакты имеют наиболее высокую стойкость к истиранию в паре с электротехническими угольными материалами.
Электротехнические  угольные материалы обладают относительно высокой электро- и теплопроводностью (уступая металлам), очень низким коэффициентом трения, высокой химической стойкостью, многие из них — высокой нагревостойкостью (большей, чем у металлов). Эти материалы широко используют для изготовления угольных электродов различного применения, щеток для электрических машин и автотрансформаторов, угольных порошков для микрофонов и т.д. Щетки выпускают следующих марок: УГ (угольно-графитные), Г (графитные), ЭГ (электрографитированные), М и МГ (медно-графитные). Основным сырьем для производства электроугольных изделий являются природный графит и сажи. Для получения монолитного изделия графит и сажу смешивают со связующим веществом — каменноугольной смолой (побочный продукт коксования каменного угля) или жидким стеклом, прессуют и подвергают обжигу при температуре 2200—2500°С. Этот процесс называют графитированием. В результате графитирования увеличивается размер кристаллитов, повышается электропроводность и снижается твердость.
Природный графит — мягкое кристаллическое вещество темно-серого цвета, представляющее собой  одну из двух аллотропных форм углерода; имеет слоистое строение. В направлении слоев электропроводность носит металлический характер. Для поликристаллических образцов удельное сопротивление ?v ? 8 мкОм•м, ТК? = -1•10-3К-1 . Отдельные чешуйки графита легко отделяются и скользят по его поверхности, образуя сухую смазку. Известен искусственный графит, получаемый путем термической перекристаллизации углей при температуре 2200—2500°С.
Сажи представляют собой угольный порошок высокой степени дисперсности (частицы сферической формы достигают 10—300 нм); они имеют более мелкокристаллическую структуру, чем графит (их иногда называют коллоидным углеродом). Графитовая структура в сажах еще не вполне сформирована. Сажи получают при неполном сгорании многих органических веществ.
Для изготовления слаботочных разрывных контактов используют благородные и тугоплавкие металлы.
Из благородных  металлов используют серебро, золото, платину и различные сплавы на их основе, например сплавы систем: золото-серебро (Аu—Ag), платина-рутений (Pt—Ru), платина-родий (Pt—Rh), серебро-кадмий (Ag—Cd), серебро-палладий (Ag—Pd), серебро-магний-никель (Ag—Mg—Ni) и др. Золото и платину в чистом виде используют для изготовления прецизионных контактов. Золото в основном используют в виде сплавов с серебром Ag, платиной Pt, никелем Ni, цирконием Zr; платину - в виде сплавов с иридием Ir, никелем Ni, серебром Ag и золотом Аu.
Из тугоплавких  металлов применяют вольфрам W и молибден Мо. Достоинством вольфрама является его высокая стойкость к дугообразованию и практическое отсутствие свариваемости. Однако у вольфрама сравнительно толстая оксидная пленка и поэтому требуется высокое контактное давление. Недостатком молибдена является образование оксидных пленок, которые имеют рыхлую структуру и могут внезапно полностью нарушать контактную проводимость. У вольфрама, легированного молибденом, повышены твердость и удельное сопротивление и понижены Тпл и коррозионная стойкость.
Для изготовления разрывных контактов также широко используют медь, сплавы и биметаллы  на ее основе.
В производстве сильноточных разрывных контактов широко применяют композиционные материалы, представляющие собой смесь двух фаз, одна из которых обеспечивает высокую электро- и теплопроводность контактов, другая — в виде тугоплавких включений придает контактам стойкость к механическому износу, электрической эрозии и свариванию. Сильноточные разрывные контакты из композиционных материалов получают методом порошковой металлургии. В качестве контактных материалов хорошо себя зарекомендовали композиции на основе меди и серебра: серебро—оксид кадмия, серебро—оксид меди, медь—графит, серебро—никель, серебро—графит. Применяют также тройные композиции: серебро-никель—графит, серебро—вольфрам—никель. В этих композициях медная и серебряная фазы обеспечивают электро- и теплопроводность контактам, а включения из оксида кадмия и оксида меди, а также вольфрама, никеля и графита повышают износо- и термостойкость и препятствуют свариванию контактов. В качестве электроконтактных композиций в мощных высоковольтных масляных и воздушных выключателях нашли применение Сu—W, в высоковольтных масляных выключателях Сu—Мо, в вакуумных камерах Сu—Bi—В, Сr—Сu—W, Fe—Сu—Bi. Для изготовления сильноточных разрывных контактов, эксплуатируемых при повышенных напряжениях и контактных давлениях, используют также твердую медь, что существенно удешевляет электротехнические устройства.

3. Медь. Медные сплавы, маркировка  область применения

Медь - элемент побочной подгруппы первой группы, четвёртого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 29. Обозначается символом Cu (лат. Cuprum). Простое вещество медь (CAS-номер: 7440-50-8) - это пластичный переходный металл золотисто-розового цвета (розового цвета при отсутствии оксидной плёнки). C давних пор широко применяется человеком.
Из-за низкого удельного сопротивления (уступает лишь серебру, удельное сопротивление при 20 °C 0,01724-0,0180 мкОм·м), медь широко применяется в электротехнике для изготовления силовых кабелей, проводов или других проводников, например, при печатном монтаже. Медные провода, в свою очередь, также используются в обмотках энергосберегающих электроприводов (быт: электродвигателях) и силовых трансформаторов. Для этих целей металл должен быть очень чистый: примеси резко снижают электрическую проводимость. Например, присутствие в меди 0,02 % алюминия снижает её электрическую проводимость почти на 10 %.
Другое полезное качество меди - высокая теплопроводность. Это позволяет применять её в различных теплоотводных устройствах, теплообменниках, к числу которых относятся и широко известные радиаторы охлаждения, кондиционирования и отопления, компьютерных кулерах, тепловых трубках.
В связи с высокой механической прочностью, но одновременно пригодностью для механической обработки, медные бесшовные трубы круглого сечения получили широкое применение для транспортировки жидкостей и газов: во внутренних системах водоснабжения, отопления, газоснабжения, системах кондиционирования и холодильных агрегатах. В ряде стран трубы из меди являются основным материалом, применяемым для этих целей: во Франции, Великобритании и Австралии для газоснабжения зданий, в Великобритании, США, Швеции и Гонконге для водоснабжения, в Великобритании и Швеции для отопления.
В России производство водогазопроводных  труб из меди нормируется национальным стандартом ГОСТ Р 52318-2005, а применение в этом качестве федеральным Сводом Правил СП 40-108-2004. Кроме того, трубопроводы из меди и сплавов меди широко используются в судостроении и энергетике для транспортировки жидкостей и пара.

Сплавы на основе меди

В разнообразных областях техники  широко используются сплавы с использованием меди, самыми широко распространёнными  из которых являются упоминавшиеся  выше бронза и латунь. Оба сплава являются общими названиями для целого семейства материалов, в которые помимо олова и цинка могут входить никель, висмут и другие металлы. Например, в состав так называемого пушечного металла, который в XVI—XVIII вв. действительно использовался для изготовления артиллерийских орудий, входят все три основных металла - медь, олово, цинк; рецептура менялась от времени и места изготовления орудия. В наше время находит применение в военном деле в кумулятивных боеприпасах благодаря высокой пластичности, большое количество латуни идёт на изготовление оружейных гильз.
Для деталей машин используют сплавы меди с цинком, оловом, алюминием, кремнием и др. (а не чистую медь) из-за их большей  прочности: 30-40 кгс/мм? у сплавов и 25-29 кгс/мм? у технически чистой меди. Медные сплавы (кроме бериллиевой бронзы и некоторых алюминиевых бронз) не принимают термической обработки, и их механические свойства и износостойкость определяются химическим составом и его влиянием на структуру. Модуль упругости медных сплавов (900-12000 кгс/мм? ниже, чем у стали). Основное преимущество медных сплавов - низкий коэффициент трения (что делает особенно рациональным применением их в парах скольжения), сочетающийся для многих сплавов с высокой пластичностью и хорошей стойкостью против коррозии в ряде агрессивных сред и хорошей электропроводностью. Величина к
и т.д.................


Перейти к полному тексту работы


Скачать работу с онлайн повышением уникальности до 90% по antiplagiat.ru, etxt.ru или advego.ru


Смотреть полный текст работы бесплатно


Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.