На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Статья Оригинальный метод доказательства теоремы Ферма. Использование бинома Ньютона для решения диофантового уравнения. Решение теоремы Ферма при нечетных показателях степени n, при целых положительных и натуральных числах. Преобразование уравнения Ферма.

Информация:

Тип работы: Статья. Предмет: Математика. Добавлен: 17.10.2009. Сдан: 2009. Уникальность по antiplagiat.ru: --.

Описание (план):


Файл: FERMA-forum
© Н. М. Козий, 2009
Авторские права защищены
свидетельством Украины
29316

ДОКАЗАТЕЛЬСТВО ВЕЛИКОЙ ТЕОРЕМЫ ФЕРМА

Оригинальный метод

Великая теорема Ферма формулируется следующим образом: диофантово уравнение (soluvel.okis.ru/evrika.html):
Аn + Вn = Сn /1/
где n- целое положительное число, большее двух, не имеет решения в целых положительных числах.
Суть Великой теоремы Ферма не изменится, если уравнение /1/ запишем следующим образом:
Аn = Сn - Вn /2/
Рассмотрим решения уравнений /1/ и /2/ при нечетных значениях показателя степени n и при любых четных значениях показателя степени n.

Вариант 1: показатель степени n - нечетное число
Путем алгебраического преобразования уравнения /1/, методика которого здесь не приводится, получим следующее уравнение в общем виде:
Cn = An + Bn = (A+B)n - n• AB•(A+B)•N, /3/

где N - всегда целое число, равное:
N=[(A+B)n-(An+Bn)]/n•AB(A+B) /4/
Отсюда: Cn = An + Bn = (A+B)[ (A+B)n-1 - n• AB•N]; /5/
Cn = An + Bn = (A+B)n [ 1 - n• AB•N/(A+B)n-1 ] /6/
Обозначим: 1 - n• AB•N/(A+B)n-1 =R

Тогда уравнение /6/ запишется следующим образом:
Cn = An + Bn = (A+B)n· R /7/
Значения числа Cn, определенные по формулам /5/, /6/ и /7/, равные между собой целые числа, так как эти формулы эквивалентны. Однако очевидно, что число R - дробное число < 1. Из формулы /7/ следует:
C= = (A+B)• /8/
Поскольку число - дробное иррацион и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.