На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


реферат История развития вычислительной технологии

Информация:

Тип работы: реферат. Добавлен: 06.06.13. Сдан: 2011. Страниц: 38. Уникальность по antiplagiat.ru: < 30%

Описание (план):


Федеральное государственное образовательное учреждение
высшего профессионального образования
«Уральский государственный университет физической культуры»
Кафедра информацинных технологий 
 
 
 

Реферат
ИСТОРИЯ РАЗВИТИЯ
ВЫЧИСЛИТЕЛЬНОЙ ТЕХНИКИ 
 
 
 
 
 
 
 

Выполнил: Багапова Л.Д.
222 группа
Проверил: преподаватель
кафедры информационных
технологий
Фёдоров А.И 
 
 
 

Челябинск 2011
СОДЕРЖАНИЕ
ВВЕДЕНИЕ................................................................................................................3
1. ПОНЯТИЕ О КОМПЬЮТЕРЕ..............................................................................4
2. РАЗВИТИЕ ВЫЧИСЛИТЕЛЬНОЙ ТЕХНИКИ:
ИСТОРИЧЕСКИЙ ОЧЕРК…………………………………………………………...6
3. ПОКОЛЕНИЯ И КЛАССИФИКАЦИЯ КОМПЬЮТЕРОВ…...............................10
4. КРАТКАЯ ХАРАКТЕРИСТИКА ПЕРСОНАЛЬНОГО КОМПЬЮТЕРА………..15
ЗАКЛЮЧЕНИЕ………………………………………………………..........................18
СПИСОК ЛИТЕРАТУРЫ………………………………………………………...........20
ПРИЛОЖЕНИЕ 1………………………………………………………………………21
ПРИЛОЖЕНИЕ 2……………………………………………………………………….23
ПРИЛОЖЕНИЕ 3……………………………………………………………………….28 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ВВЕДЕНИЕ
    Компьютеры появились очень давно в нашем мире, но только в последнее время их начали так усиленно использовать во многих отраслях человеческой жизни. Еще десять лет назад было редкостью увидеть какой-нибудь персональный компьютер - они были, но были очень дорогие, и даже не каждая фирма могла иметь у себя в офисе компьютер. А теперь? Теперь почти  в каждом доме есть компьютер, который уже глубоко вошел в жизнь самих обитателей дома.
    Сама идея создания искусственного интеллекта появилась давным-давно, но только в XX веке ее начали осуществлять. Сначала появились огромные компьютеры, которые были чаще размером с огромный дом. Использовать такую огромную машину, как вы сами понимаете, было не очень удобно. Но что поделаешь? Но мир не стоял на одном месте эволюционного развития - менялись люди, менялась их среду обитания, и вместе с ней менялись и сами технологии, все больше совершенствуясь. И компьютеры становились более компактными.
    За время, прошедшее с 50-х годов, цифровая ЭВМ превратилась из «волшебного», но при этом дорогого, уникального и перегретого накопления электронных ламп, проводов и магнитных сердечников в небольшую по размерам машину - персональный компьютер - крошечных полупроводниковых приборов, состоящий из миллионов, упакованные в небольшие пластмассовые коробочки.
    В результате этого превращения компьютеры стали применяться повсюду. Но это только малая часть возможностей современных компьютеров. Более того, бурный прогресс полупроводниковой микроэлектроники, представляющей собой базу вычислительной техники, свидетельствует о том, что сегодняшний уровень как самих компьютеров, так и областей их применения является лишь слабым подобием того, что наступит в будущем.  
 
 
 
 

      ПОНЯТИЕ О КОМПЬЮТЕРЕ
    Персональный компьютер (стандартная аббревиатура — «ПК») — компьютер, предназначенный для эксплуатации одним пользователем, то есть для личного использования. К ПК условно можно отнести также и любой другой компьютер, используемый конкретным человеком в качестве своего личного компьютера. Подавляющее большинство людей используют в качестве ПК настольные и различные переносные компьютеры.
    Хотя изначально компьютер был создан как вычислительная машина, в качестве ПК он обычно используется в других целях — как средство доступа в информационные сети и как платформа для компьютерных игр.
    В употребление термин был введён в конце 1970-х годов компанией Apple Computer для своего компьютера Apple II и впоследствии перенесён на компьютеры IBM PC. Некоторое время персональным компьютером называли любую машину, использующую процессоры Intel и работающую под управлением операционных систем DOS, OS/2 и первых версий Microsoft Windows. С появлением других процессоров, поддерживающих работу перечисленных программ, таких, как AMD, Cyrix (ныне VIA), название стало иметь более широкую трактовку. Курьёзным фактом стало противопоставление «персональным компьютерам» вычислительных машин Amiga и Macintosh, долгое время использовавших альтернативную компьютерную архитектуру.
    Чаще всего под ПК понимают настольные ПК, ноутбуки, планшетные и карманные ПК. Однако на самом деле персональным может считаться любой полноценный компьютер — даже суперкомпьютер — используемый в качестве персонального, то есть личного, компьютера. А вот тонкий клиент персональным компьютером, да и компьютером вообще, считаться не может, так как его функции в сравнении с обычным компьютером довольно сильно заужены. Например, довольно часто тонкий клиент применяется в качестве базы для построения единичного терминала в современных многопользовательских рабочих станциях.
    В Советском Союзе вычислительные машины, предназначенные для личного использования, носили официальное название «персональные электронные вычислительные машины» (ПЭВМ). В терминологии, принятой в российских стандартах, это словосочетание и сегодня указывается вместо используемого де-факто названия «персональный компьютер» 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

      РАЗВИТИЕ ВЫЧИСЛИТЕЛЬНОЙ ТЕХНИКИ: ИСТОРИЧЕСКИЙ ОЧЕРК
    Ручной период докомпьютерной эпохи
    Ручной период начался на заре человеческой цивилизации. Фиксация результатов счета у разных народов на разных континентах производилась разными способами: пальцевой счет, нанесение засечек, счетные палочки, узелки и т.д. Наконец, появление приборов, использующих вычисление по разрядам, как бы предполагали наличие некоторой позиционной системы счисления, десятичной, пятеричной, троичной и т.д. К таким приборам относятся абак, русские, японские, китайские счеты.
    Историю цифровых устройств начать следует со счетов. Подобный инструмент был известен у всех народов. Древнегреческий абак (доска или «саламинская доска» по имени острова Саламин в Эгейском море) представлял собой посыпанную морским песком дощечку. На песке проходили бороздки, на которых камешками обозначались числа. Одна бороздка соответствовала единицам, другая - десяткам и т.д. Если в какой-то бороздке при счете набиралось более 10 камешков, их снимали и добавляли один камушек в следующем разряде. Римляне усовершенствовали абак, перейдя от деревянных досок, пеcка и камешков к мраморным доскам с выточенными желобками и мраморными шариками.
     Китайские счеты суан – пан состояли из деревянной рамки, разделенной на верхние и нижние секции. Палочки соотносятся с колонками, а бусинки – с числами. У китайцев в основе счета лежала не десятка, а пятерка.
    Суан - пан разделены на две части: в нижней части на каждом ряду располагаются по 5 косточек, в верхней части – по 2. Таким образом, для того, чтобы выставить на этих счетах число 6, ставили сначала косточку, соответствующую пятерке, а затем добавляли одну косточку в разряд единиц.
    У японцев это же устройство для счета носило название серобян.
    На Руси долгое время считали по косточкам, раскладываемым в кучки. Примерно с 15 века получил распространение «дощатый счет», завезенный, видимо, западными купцами с ворванью и текстилем. «Дощатый счет» почти не отличался от обычных счетов и представлял собой рамку с укрепленными горизонтальными веревочками, на которые были нанизаны просверленные сливовые или вишневые косточки.
    В 9 веке индийские ученые сделали одно из величайших открытий в математике. Они изобрели позиционную систему счисления, которой теперь пользуется весь мир.
    При записи числа, в котором отсутствует какой- либо разряд (например, 110 или 16004), индийцы вместо названия цифры говорили слово «пусто». При записи на месте «пустого» разряда ставили точку, а позднее рисовали кружок. Такой кружок называется «сунья».
    Арабские математики перевели это слово по смыслу на свой язык – они говорили «сифр». Современное слово «нуль» происходит от латинского.
    В конце 15 – начале 16 века Леонардо да Винчи создал 13- разрядное суммирующее устройство с десяти зубными кольцами. Основу машины по описанию составляли стержни, на которые крепились два зубчатых колеса, большее с одной стороны стержня, а меньшее – с другой. Эти стержни должны были располагаться таким образом, чтобы меньшее колесо на одном стержне входило в зацепление с большим колесом на другом стержне. При этом меньшее колесо второго стержня сцеплялось с большим колесом третьего и т.д. Десять оборотов первого колеса, по замыслу автора, должны были приводить к одному полному обороту второго, а десять оборотов второго - к полному обороту третьего и т.д. Вся система, состоящая из 13 стержней с зубчатыми колесами должна была, приводиться в движение набором грузов.
    Механический этап
    Развитие механики в 17 веке стало предпосылкой вычислительных устройств и приборов, использующих механический принцип вычислений, обеспечивающий перенос старшего разряда. Использование таких машин способствовало «автоматизации умственного труда».
    Увеличение во второй половине 19 века вычислительных работ в целом ряде областей человеческой деятельности выдвинуло настоятельную потребность в ВТ и повышение требований к ней.
    В этот период английский математик Чарльз Бэббидж выдвинул идею создания программно-управляемой счетной машины, имеющей арифметическое устройство, устройство управления, ввода и печати.
    Первая спроектированная Беббиджем машина, Разностная машина, работала на паровом двигателе. Работающая модель была шести цифровым калькулятором, способным производить вычисления и печатать цифровые таблицы.
    Главным достижением этой эпохи можно считать изобретение арифмометра ученым, по имени Однер. Главная особенность детища Однера заключается в применении зубчатых колес с переменным числом зубцов вместо ступенчатых валиков.  Оно проще валика конструктивно и имеет меньшие размеры.
    Первоначально появление в этот период ЭВМ не очень повлияло на выпуск арифмометров, прежде всего из-за различия в назначении, а также в стоимости и распространенности. Однако, с 60 годов в массовое использование все активнее проникают электронные клавишные вычислительные машины, выпускаемые вначале на лампах, а с 1964 г. на транзисторах. Лидерство в этом направлении сразу же захватила Япония, которая отличалась миниатюризацией электронной техники, включая ВТ.
    Электромеханический этап
    Электромеханический этап развития ВТ явился наименее продолжительным и охватывает около 60 лет – от первого табулятора Г. Холлерита до первой ЭВМ ENIAK (1945). Предпосылками создания проектов этого типа явились как необходимость проведения массовых расчетов, так и развитие прикладной электротехники.
    Классическим типом средств электромеханического этапа был счетно-аналитический комплекс, предназначенный для обработки информации на перфокарточных носителях.
    Значение работ Холлерита для развития ВТ определяется двумя факторами. Во-первых, он стал основоположником нового направления в ВТ – счетно-перфорационного с соответствующим им оборудованием для широкого круга экономических и научно-технических расчетов. Это направление привело к созданию машиносчетных станций, послуживших прообразом современных вычислительных центров. Во-вторых, даже в наше время использование большого числа разнообразных устройств ввода/вывода информации не отменило полностью использование перфокарточной технологии.
    Заключительный период электромеханического этапа развития вычислительной техники характеризуется созданием целого ряда сложных релейных и релейно-механических систем с программным управлением, характеризующихся алгоритмической универсальностью и способных выполнять сложные научно-технические вычисления в автоматическом режиме со скоростями, на порядок превышающими скорость работы арифмометров с электропроводом. Эти аппараты можно рассматривать в качестве прямых предшественников универсальных ЭВМ. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

      ПОКОЛЕНИЯ И КЛАССИФИКАЦИЯ КОМПЬЮТЕРОВ
    Историю развития современных ЭВМ разделяют на 4 поколения. Но деление компьютерной техники на поколения — весьма условная, нестрогая классификация по степени развития аппаратных и программных средств, а также способов общения с компьютером.
    Идея делить машины на поколения вызвана к жизни тем, что за время короткой истории своего развития компьютерная техника проделала большую эволюцию, как в смысле элементной базы (лампы, транзисторы, микросхемы и др.), так и в смысле изменения её структуры, появления новых возможностей, расширения областей применения и характера использования. Этот прогресс показан в таблице (см. Приложение).
    I поколение (до 1955 г.)
    Все ЭВМ I-го поколения были сделаны на основе электронных ламп, что делало их ненадежными - лампы приходилось часто менять. Эти компьютеры были огромными, неудобными и слишком дорогими машинами, которые могли приобрести только крупные корпорации и правительства. Лампы потребляли огромное количество электроэнергии и выделяли много тепла.
    Притом для каждой машины использовался свой язык программирования. Набор команд был небольшой, схема арифметико-логического устройства и устройства управления достаточно проста, программное обеспечение практически отсутствовало. Показатели объема оперативной памяти и быстродействия были низкими. Для ввода-вывода использовались перфоленты, перфокарты, магнитные ленты и печатающие устройства, оперативные запоминающие устройства были реализованы на основе ртутных линий задержки электроннолучевых трубок.
    Эти неудобства начали преодолевать путем интенсивной разработки средств автоматизации программирования, создания систем обслуживающих программ, упрощающих работу на машине и увеличивающих эффективность её использования. Это, в свою очередь, потребовало значительных изменений в структуре компьютеров, направленных на то, чтобы приблизить её к требованиям, возникшим из опыта эксплуатации компьютеров.
    Основные компьютеры первого поколения
    · 1946г. ЭНИАК. В 1946 г. американские инженер-электронщик Дж. П. Эккерт и физик Дж. У. Моучли в Пенсильванском университете сконструировали, по заказу военного ведомства США, первую электронно-вычислительную машину - “Эниак” (Electronic Numerical Integrator and Computer), которая предназначалась для решения задач баллистики. Она работала в тысячу раз быстрее, чем "Марк-1", выполняя за одну секунду 300 умножений или 5000 сложений многоразрядных чисел. Размеры: 30 м. в длину, объём - 85 м3., вес - 30 тонн. Использовалось около 20000 электронных ламп и 1500 реле. Мощность ее была до 150 кВт.
    · 1949г. ЭДСАК. Первая машина с хранимой программой - ”Эдсак” - была создана в Кембриджском университете (Англия) в 1949 г. Она имела запоминающее устройство на 512 ртутных линиях задержки. Время выполнения сложения было 0,07 мс, умножения - 8,5 мс.
    · 1951г. МЭСМ. В 1948г. году академик Сергей Алексеевич Лебедев предложил проект первой на континенте Европы ЭВМ – Малой электронной счетно-решающей машины (МЭМС). В 1951г. МЭСМ официально вводится в эксплуатацию, на ней регулярно решаются вычислительные задачи. Машина оперировала с 20­разрядными двоичными кодами с быстродействием 50 операций в секунду, имела оперативную память в 100 ячеек на электронных лампах.
    · 1951г. UNIVAC-1. (Англия). В 1951 г. была создана машина “Юнивак”(UNIVAC) - первый серийный компьютер с хранимой программой. В этой машине впервые была использована магнитная лента для записи и хранения информации.
    · 1952-1953г. БЭСМ-2. Вводится в эксплуатацию БЭСМ-2 (большая электронная счетная машина) с быстродействием около 10 тыс. операций в секунду над 39-разрядными двоичными числами. Оперативная память на электронно-акустических линиях задержки - 1024 слова, затем на электронно-лучевых трубках и позже на ферритовых сердечниках. ВЗУ состояло из двух магнитных барабанов и магнитной ленты емкостью свыше 100 тыс. слов.
    II поколение (1958-1964). В 1958 г. в ЭВМ были применены полупроводниковые транзисторы, изобретённые в 1948 г. Уильямом Шокли, они были более надёжны, долговечны, малы, могли выполнить значительно более сложные вычисления, обладали большой оперативной памятью. 1 транзистор способен был заменить ~ 40 электронных ламп и работал с большей скоростью.
    Во II-ом поколении компьютеров дискретные транзисторные логические элементы вытеснили электронные лампы. В качестве носителей информации использовались магнитные ленты ("БЭСМ-6", "Минск-2","Урал-14") и магнитные сердечники, появились высокопроизводительные устройства для работы с магнитными лентами, магнитные барабаны и первые магнитные диски.
    В качестве программного обеспечения стали использовать языки программирования высокого уровня, были написаны специальные трансляторы с этих языков на язык машинных команд. Для ускорения вычислений в этих машинах было реализовано некоторое перекрытие команд: последующая команда начинала выполняться до окончания предыдущей.
    Появился широкий набор библиотечных программ для решения разнообразных математических задач. Появились мониторные системы, управляющие режимом трансляции и исполнения программ. Из мониторных систем в дальнейшем выросли современные операционные системы.
    Машинам второго поколения была свойственна программная несовместимость, которая затрудняла организацию крупных информационных систем. Поэтому в середине 60-х годов наметился переход к созданию компьютеров, программно совместимых и построенных на микроэлектронной технологической базе.
    III поколение (1964-1972). В 1960 г. появились первые интегральные системы (ИС), которые получили широкое распространение в связи с малыми размерами, но громадными возможностями. ИС - это кремниевый кристалл, площадь которого примерно 10 мм. 1 ИС способна заменить десятки тысяч транзисторов. 1 кристалл выполняет такую же работу, как и 30-ти тонный “Эниак”. А компьютер с использованием ИС достигает производительности в 10 млн. операций в секунду.
    В 1964 году, фирма IBM объявила о создании шести моделей семейства IBM 360 (System 360), ставших первыми компьютерами третьего поколения.
    Машины третьего поколения — это семейства машин с единой архитектурой, т.е. программно совместимых. В качестве элементной базы в них используются интегральные схемы, которые также называются микросхемами.
    Машины третьего поколения имеют развитые операционные системы. Они обладают возможностями мультипрограммирования, т.е. одновременного выполнения нескольких программ. Многие задачи управления памятью, устройствами и ресурсами стала брать на себя операционная система или же непосредственно сама машина.
    Примеры машин третьего поколения — семейства IBM-360, IBM-370, ЕС ЭВМ (Единая система ЭВМ), СМ ЭВМ (Семейство малых ЭВМ) и др. Быстродействие машин внутри семейства изменяется от нескольких десятков тысяч до миллионов операций в секунду. Ёмкость оперативной памяти достигает нескольких сотен тысяч слов.
    IV поколение (с 1972 г. по настоящее время). Четвёртое поколение — это теперешнее поколение компьютерной техники, разработанное после 1970 года.
    Впервые стали применяться большие интегральные схемы (БИС), которые по мощности примерно соответствовали 1000 ИС. Это привело к снижению стоимости производства компьютеров.
    В 1980 г. центральный процессор небольшой ЭВМ оказалось возможным разместить на кристалле площадью 1/4 дюйма (0,635 см2.). БИСы применялись уже в таких компьютерах, как “Иллиак”, ”Эльбрус”, ”Макинтош ”. Быстродействие таких машин составляет тысячи миллионов операций в секунду. Емкость ОЗУ возросла до 500 млн. двоичных разрядов. В таких машинах одновременно выполняются несколько команд над несколькими наборами операндов.
    C точки зрения структуры машины этого поколения представляют собой многопроцессорные и многомашинные комплексы, работающие на общую память и общее поле внешних устройств. Ёмкость оперативной памяти порядка 1 - 64 Мбайт.
    Распространение персональных компьютеров к концу 70-х годов привело к некоторому снижению спроса на большие ЭВМ и мини-ЭВМ. Это стало предметом серьезного беспокойства фирмы IBM (International Business Machines Corporation) — ведущей компании по производству больших ЭВМ, и в 1979 г. фирма IBM решила попробовать свои силы на рынке персональных компьютеров, создав первые персональные компьютеры- IBM PC.
    В зависимости от возможностей компьютеры разделяют на:
           1) суперкомпьютеры;
           2) большие компьютеры;
           3) маленькие компьютеры;
           4) микрокомпьютеры;
           5) специализированные компьютеры. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

    4. КРАТКАЯ ХАРАКТЕРИСТИКА ПЕРСОНАЛЬНОГО КОМПЬЮТЕРА
    Рассмотрим состав и основные характеристики типичного настольного персонального компьютера. Конструктивно он содержит три основных устройства — системный блок, клавиатуру и дисплей. К этим основным компонентам добавляется еще печатающее устройство — принтер, а в состав системного блока входят средства поддержки коммуникаций для связи с дополнительными устройствами, не относящимися непосредственно к основному комплекту ПЭВМ. В таком составе персональный компьютер уже становится пригодным для решения многих задач, свойственных большим и малым ЭВМ.
    Системный блок содержит всю электронную начинку ПЭВМ и специальные устройства для постоянного хранения информации на внешних магнитных носителях — накопители на гибких магнитных дисках (НГМД) и на жестких несъемных дисках (НМД).
    В состав системного блока входит также блок питания, который преобразует стандартное напряжение электрической сети — 220 или 127 вольт — в напряжение постоянного тока, необходимое для питания электронных компонентов.
    Системный блок обычно размещается в небольшом металлическом или пластмассовом корпусе примерно такого же размера, как обычный проигрыватель или магнитофон. Электронные модули размещаются внутри системного блока на отдельных печатных платах. Одна из них - базовая (ее иногда называют ген платой) - содержит основные электронные компоненты и специальные разъемы, в которые устанавливаются дополнительные платы — адаптеры внешних устройств, расширение оперативной памяти и др.
    Основой машины является микропроцессор — небольшая по размерам кремниевая пластинка, заключенная в корпус с несколькими десятками выводов. В ней сосредоточена сложнейшая логическая схема, которая является "сердцем" машины. Это так называемое арифметико-логическое устройство и устройство управления, в функции которых входит пересылка отдельных команд и данных между внутренними регистрами, управление ходом вычислений, выполнение самих вычислений, управление взаимодействием внешних устройств микропроцессора. Регистры являются главными носителями информации внутри микропроцессора. Число разрядов в каждом регистре (обычно кратное 8) определяет производительность микропроцессора и машины в целом. Микропроцессоры и построенные на их основе машины называют 8-, 16- или 32-разрядными в соответствии с разрядностью внутренних регистров.
    Главным средством ввода информации в ПЭВМ является клавиатура. Хорошая клавиатура имеет несколько групп клавиш: алфавитно-цифровые — для ввода чисел и текстов; функциональные — для переключения с одного вида работы на другой; клавиши со стрелками — для перемещения курсора по экрану дисплея; специальные управляющие клавиши — для смены регистров и режимов ввода (рис. 3) Клавиатура изготавливается так, чтобы удовлетворять эргономическим требованиям: она должна быть удобной для длительной работы; расположение клавиш должно соответствовать стандартам, учитывающим нормальные навыки работы на пишущих машинках. Типичные размеры блока клавиатуры 40 X 450 X 180 мм. К системному блоку она подключается с помощью кабеля.
    Следует обратить внимание на одну особенность клавиатур современных ПЭВМ. Разработчики прикладных систем всегда стремятся предельно сократить число требующихся нажатий клавиш при выполнении любой работы на ПЭВМ. Проще всего этого - южно достигнуть, изменяя программным путем смысл отдельных клавиш. В отличие от обычных терминалов клавиатура ПЭВМ посылает микропроцессору не код символа, а порядковый номер нажатой клавиши и длительность нажатия. Вся остальная работа по интерпретации смысла нажатой клавиши выполняется программным путем. При таком подходе кодировка клавиш становится независимой от кодировки символов, что резко упрощает работу с клавиатурой и в то же время придает ей большую гибкость.
    Дисплей или монитор служит основным устройством для отображения информации, выводимой во время работы программ. Дисплеи могут различаться весьма существенно, и от их характеристик зависят возможности машин и используемого на них программного обеспечения. Прежде всего, следует различать мониторы, пригодные для вывода только алфавитно-цифровой информации, и графические дисплеи. Другой важный признак — возможность поддержки цветного или только монохромного (черно-белого) изображения. Существенными техническими параметрами являются текстовый формат и разрешающая способность изображения. Текстовый формат характеризуется максимальным числом символов в строке и числом текстовых строк на экране. В графическом режиме разрешающая способность задается числом точек по горизонтали и числом точек (точечных строк) по вертикали. Другой характерный параметр — это количество поддерживаемых уровней яркости в монохромном режиме или количество цветов при цветном изображении. Наконец, немаловажным параметром является размер экрана, от которого зависит различимость изображения в целом и четкость отдельных элементов, в том числе букв и цифр.
    Указанные параметры зависят как от конструкции экрана, так и от схемы управления, сосредоточенной в системном блоке. В настоящее время в большинстве случаев применяется схема формирования изображения на основе экранной, или растровой памяти (bit-mapping). Каждый элемент изображения — одна точка на экране дисплея — формируется из фрагмента растровой памяти, состоящего из 1, 2 или 4 бит. Информация в указанных битах управляет яркостью или цветом точки на экране, а также ее миганием и другими возможными атрибутами. При этом объем растровой памяти прямо связан с разрешающей способностью дисплея. Так при 640X200 точках и двух уровнях яркости в монохромном режиме нужна растровая память объемом 16 Кбайт; если же при этом нужно будет управлять 16 цветами каждой точки, то потребуется 64 Кбайта; а при 1024 X 1024 точках и двух цветах потребуется уже 132 Кбайта растровой памяти. Цифры и буквы при таком методе управления выводятся на экран с помощью специальных знакогенераторов — электронных схем, управляемых точечными матрицами (8 X 8, 6 X 8, 8 X 12 или другого формата), на которых формируются изображения букв и цифр. 
 
 

    ЗАКЛЮЧЕНИЕ
    К сожалению, невозможно в рамках реферата охватить всю историю компьютеров. Можно было бы еще долго рассказывать о том, как в маленьком городке Пало-Альто (штат Калифорния) в научно-исследовательском центре Xerox PARK собрался цвет программистов того времени, чтобы разработать революционные концепции, в корне изменившие образ машин, и проложить дорогу для компьютеров конца XX века. Как талантливый школьник Билл Гейтс и его друг Пол Аллен познакомились с Эдом Робертсом и создали удивительный язык БЕЙСИК для компьютера Altair, что позволило разрабатывать для него прикладные программы. Как постепенно менялся облик персонального компьютера, появились монитор и клавиатура, накопитель на гибких магнитных дисках, так называемых дискетах, а затем и жесткий диск. Неотъемлемыми принадлежностями стали принтер и «мышь». Можно было бы рассказать и о невидимой войне на компьютерных рынках за право устанавливать стандарты между огромной корпорацией IBM, и молодой  Apple, дерзнувшей с ней соревноваться, заставившей весь мир решать, что же лучше Macintosh или PC? И о многих других интересных вещах, происходивших совсем недавно, но ставших уже историей.
    Для многих мир без компьютера – далекая история, примерно такая же далекая, как открытие Америки или Октябрьская революция. Но каждый раз, включая компьютер, невозможно перестать удивляться человеческому гению, создавшему это чудо.
    Современные персональные IВМ РС-совместимые компьютеры являются наиболее широко используемым видом компьютеров, их мощность постоянно увеличивается, а область применения расширяется. Эти компьютеры могут объединяться в сети, что позволяет десяткам и сотням пользователей легко обмениваться информацией и одновременно получать доступ к общим базам данных. Средства электронной почты позволяют пользователям компьютеров с помощью обычной телефонной сети посылать текстовые и факсимильные сообщения в другие города и страны и получать информацию из крупных банков данных. Глобальная система электронной связи Intеrnеt обеспечивает за крайне низкую цену возможность оперативного получения информации из всех уголков земного шара, предоставляет возможности голосовой и факсимильной связи, облегчает создание внутрикорпоративных сетей передачи информации для фирм, имеющих отделения в разных городах и странах.
    Однако возможности IВМ РС-совместимых персональных компьютеров по обработке информации все же ограничены, и не во всех ситуациях их применение оправдано.
    Для понимания истории компьютерной техники рассмотренный реферат имеет, по крайней мере, два аспекта: первый – вся деятельность, связанная с автоматическими вычислениями, до создания компьютера ENIAC рассматривалась как предыстория; второй – развитие компьютерной техники определяется только в терминах технологии аппаратуры и схем микропроцессора. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

    СПИСОК ЛИТЕРАТУРЫ
      Озерцовский, С.: Микропроцессоры Intel: от 4004 до Pentium Pro / С. Озерцовский : Computer Week – 2006 - №41 – С. 41- 45
      Фролов, А.В.: Аппаратное обеспечение IBM PC / А.В. Фролов, Г.В. Фролов  – М.: ДИАЛОГ-МИФИ, 1992г. – 45с.
      Фигурнов, В.Э.:IBM PC для пользователя /В.Э.Фигурнов – М.: Инфра-М, 1995г. – 93с.
      Фигурнов, В.Э.: IBM PC для пользователя. Краткий курс / В.Э.Фигурнов – М.: 1999г. – 58с.
      Гук, М.: Аппаратные средства IBM PC / М.Гук – СПб: Питер, 1997г. - 135с.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ПРИЛОЖЕНИЕ 1
Компьютер - это программируемое электронное устройство, способное обрабатывать данные и производить вычисления, а также выполнять другие задачи манипулирования символами. (т.е. компьютер - это комплекс программно-управляемых  электронный устройств).
Персональный компьютер (ПК) – универсальная ЭВМ, предназначенная для индивидуального пользования. Обычно ПК проектируется на основе принципа открытой архитектуры: 1) описание принципа действия ПК и его конфигурации, что позволяет собирать ПК из отдельных узлов и деталей; 2) наличие в ПК внутренних расширительных гнезд, в которые пользователь может вставлять различные устройства, удовлетворяющие заданному стандарт.
Клавиатура – клавишное устройство для ввода числовой и текстовой информации.
Программа – последовательность команд, которую выполняет компьютер в процессе обработки данных.
Данные – это информация, представленная в форме, пригодной для её передачи и обработки с помощью компьютера (Данные – это информация, обрабатываемая в компьютере программным путем). Данные хранятся и обрабатываются на машинном языке - в виде последовательностей 0 и 1.
Файл - наименьшая единица хранения информации, содержащая последовательность байтов и имеющая имя. т.е. Файл - это определенное количество информации, имеющее имя и хранящееся во внешней памяти.
Драйверы – программы, которые управляют работой устройств. Каждому устройству соответствует свой драйвер. Технология «Plug and Play» (подключи и играй) позволяет автоматизировать подключение новых устройств. В процессе установки Windows определяет тип и конкретную модель установленного устройства и подключает необходимый для его функционирования драйвер. При включении компьютера производится загрузка драйверов в оперативную память. Пользователь имеет возможность вручную установить или переустановить драйверы.
Утилиты -  сервисные программы для обслуживания дисков (проверять, сжимать, дефрагментировать и т.д), выполнения операций с файлами (архивировать, копировать и т.д), и работы в компьютерных сетях.
Монитор (дисплей) - универсальное устройство визуального отображения всех видов информации.
 Информационные процессы - это процессы, связанные с получением, хранением, обработкой и передачей информации (т.е. действия, выполняемые с информацией). Т.е. это процессы, в ходе которых изменяется содержание информации или форма её представления. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ПРИЛОЖЕНИЕ 2
     Оперативная память, или оперативка – это один из главных элементов компьютера. «Оперативная» память потому, что очень быстро работает и позволяет процессору практически без какого-либо заметного ожидания читать информацию из памяти. Содержащиеся в оперативной памяти данные сохранены и доступны только тогда, когда компьютер включен. При выключении компьютера содержимое стирается из оперативной памяти, поэтому перед выключением компа все данные нужно сохранить. От объема оперативной памяти (кстати, еще ее называют ОЗУ – оперативное запоминающее устройство) зависит количество задач, которые одновременно может выполнять компьютер.
      Оперативная память - это рабочая область для процессора компьютера. В ней во время работы хранятся программы и данные. Оперативная память часто рассматривается как временное хранилище, потому что данные и программы в ней сохраняются только при включенном компьютере или до нажатия кнопки сброса (reset). Перед выключением или нажатием кнопки сброса все данные, подвергнутые изменениям во время работы, необходимо сохранить на запоминающем устройстве, которое может хранить информацию постоянно (обычно это жесткий диск). При новом включении питания сохраненная информация вновь может быть загружена в память.
        Устройства оперативной памяти иногда называют запоминающими устройствами с произвольным доступом. Это означает, что обращение к данным, хранящимся в оперативной памяти, не зависит от порядка их расположения в ней. Когда говорят о памяти компьютера, обычно подразумевают оперативную память, прежде всего микросхемы памяти или модули, в которых хранятся активные программы и данные, используемые процессором.
        За несколько лет определение RAM (Random Access Memory) превратилось из обычной аббревиатуры в термин, обозначающий основное рабочее пространство памяти, создаваемое микросхемами динамической оперативной памяти (Dynamic RAM - DRAM) и используемое процессором для выполнения программ. Одним из свойств микросхем DRAM (и, следовательно, оперативной памяти в целом) является динамическое хранение данных, что означает, во-первых, возможность многократной записи информации в оперативную память, а во-вторых, необходимость постоянного обновления данных (т.е., в сущности, их перезапись) примерно каждые 15 мс (миллисекунд). Также существует так называемая статическая оперативная память (Static RAM - SRAM), не требующая постоянного обновления данных. Следует заметить, что данные сохраняются в оперативной памяти только при включенном питании.
      Под компьютерной памятью обычно подразумевается ОЗУ (RAM), т.е. физическая память системы, которая состоит из микросхем или модулей памяти, используемых процессором для хранения основных, запущенных в текущий момент времени программ и данных. При этом термин "хранилище данных" относится не к оперативной памяти, а к таким устройствам, как жесткие диски и накопители на магнитной ленте (которые, тем не менее, можно использовать как разновидность RAM, получившую название виртуальная память).
     Термин "оперативная память" часто обозначает не только микросхемы, которые составляют устройства памяти в системе, но включает и такие понятия, как логическое отображение и размещение. Логическое отображение - это способ представления адресов памяти на фактически установленных микросхемах. Размещение - это расположение информации (данных и команд) определенного типа по конкретным адресам памяти системы.
     Во время выполнения программы в оперативной памяти хранятся ее данные. Микросхемы оперативной памяти (RAM) иногда называют энергозависимой памятью: после выключения компьютера данные, хранимые в них, будут потеряны, если они предварительно не были сохранены на диске или другом устройстве внешней памяти. Чтобы избежать этого, некоторые приложения автоматически делают резервные копии данных.
     Файлы компьютерной программы при ее запуске загружаются в оперативную память, в которой хранятся во время работы с указанной программой. Процессор выполняет программно реализованные команды, содержащиеся в памяти, и сохраняет их результаты. Оперативная память хранит коды нажатых клавиш при работе с текстовым редактором, а также величины математических операций. При выполнении команды Сохранить (Save) содержимое оперативной памяти сохраняется в виде файла на жестком диске.
       Физически оперативная память в системе представляет собой набор микросхем или модулей, содержащих микросхемы, которые обычно подключаются к системной плате. Эти микросхемы или модули могут иметь различные характеристики и, чтобы функционировать правильно, должны быть совместимы с системой, в которую устанавливаются.
       В современных компьютерах используются запоминающие устройства трех основных типов:
ROM (Read Only Memory). Постоянное запоминающее устройство - ПЗУ, не способное выполнять операцию записи данных.
DRAM (Dynamic Random Access Memory). Динамическое запоминающее устройство с произвольным порядком выборки.
SRAM (Static RAM). Статическая оперативная память.
Память типа ROM
     В памяти типа ROM (Read Only Memory), или ПЗУ (постоянное запоминающее устройство), данные можно только хранить, изменять их нельзя. Именно поэтому такая память используется только для чтения данных. ROM также часто называется энергонезависимой памятью, потому что любые данные, записанные в нее, сохраняются при выключении питания. Поэтому в ROM помещаются команды запуска ПК, т.е. программное обеспечение, которое загружает систему.
      ROM и оперативная память - не противоположные понятия. На самом деле ROM представляет собой часть оперативной памяти системы. Другими словами, часть адресного пространства оперативной памяти отводится для ROM. Это необходимо для хранения программного обеспечения, которое позволяет загрузить операционную систему.
и т.д.................


Перейти к полному тексту работы


Скачать работу с онлайн повышением уникальности до 90% по antiplagiat.ru, etxt.ru или advego.ru


Смотреть полный текст работы бесплатно


Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.