Здесь можно найти учебные материалы, которые помогут вам в написании курсовых работ, дипломов, контрольных работ и рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение оригинальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение оригинальности любого файла в формате MS Word. После такого повышения оригинальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, РУКОНТЕКСТ, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии так, что на внешний вид, файл с повышенной оригинальностью не отличается от исходного.

Результат поиска


Наименование:


реферат Способы связи аминокислот в белке

Информация:

Тип работы: реферат. Добавлен: 06.06.13. Год: 2012. Страниц: 14. Уникальность по antiplagiat.ru: < 30%

Описание (план):


МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА
РОССИЙСКОЙ ФЕДЕРАЦИИ
ФГБОУ ВПО «БЕЛГОРОДСКАЯ ГОСУДАРСТВЕННАЯ
СЕЛЬСКОХОЗЯЙСТВЕННАЯ АКАДЕМИЯ ИМЕНИ  В.Я. ГОРИНА»
 
 
 
Кафедра морфологии и физиологии
 
 
 
 
Р Е Ф Е Р А Т
 
 
 
Тема:
«Способы связи аминокислот  в белке.»
 
 
 
 
 
 
 
Цуверкалова Оксана Владимировна
 
Специальность 020803.62
Биоэкология
 
Курс II , группа 26 Био
 
Шифр (номер зачетки) 10278
 
Форма обучения : очная 
 
 
 
 
Майский
2012
 
 
 
 
ОГЛАВЛЕНИЕ
 
    Введение. Общее понятие «белок»                                                стр 3
 
    Глава 1. Аминокислоты, их классификация                                 стр 6
 
    Глава 2. Типы связей аминокислот в молекуле белка (пептидная, дисульфидная, водородная, ионная  связи и гидрофобное взаимодействие)                                                                              стр 7
 
    Приложение- список аминокислот и их свойства                        стр 10
 
    Литература                                                                                       стр 15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Введение. Общее понятие «белок»
 
БЕЛКИ - высокомолекулярные азотсодержащие органические вещества, молекулы которых построены из аминокислот; являются структурной и функциональной основой жизнедеятельности всех живых организмов. В природе существует примерно 1010-1012различных белков, обеспечивающих жизнедеятельность организмов всех степеней сложности, от вирусов до человека.
Белками являются ферменты, антитела, многие гормоны и другие биологически активные вещества.  
 
Молекула белка представляет собой полипептидную цепь, построенную из аминокислот, соединенных между собой пептидной связью - СО-NH-.
На одном конце такой пептидной  цепи (С-конец) находится свободная  карбоксильная группа (СООН-группа), на другом (N-конце) - аминогруппа (NН2-группа). Молекулы белков могут состоять из одной полипептидной цепи или из двух и более полипептидных цепей, соединенных между собой поперечными хим. связями. Строение полипептидной цепи определяет первичную, уникальную структуру белка, т. к. замена даже одного аминокислотного остатка в цепи приводит к изменению физ.хим. свойств этого белка и его биологических функций.  
 
Конфигурация полипептидной цепи (наличие в ней спирализованных участков, структур типа складчатого слоя, так наз. альфа-спиралей и бета-структур и др.) определяет вторичную структуру белка. Под третичной структурой молекулы белка подразумевают пространственную ориентацию и способ укладки полипептидной цепи в определенном объеме, а под четвертичной структурой - способ укладки в пространстве отдельных полипептидных цепей, так наз. субъединиц белка, и формирование из них комплекса, единого в структурном и функциональном отношениях.  
 
По физ.хим. свойствам белки делят на фибриллярные и глобулярные, гидрофильные (растворимые в воде) и гидрофобные (нерастворимые в воде). Различают также простые белки - протеины и сложные белки, в состав молекул которых помимо белка входят вещества небелковой природы.  
 
К протеинам относятся альбумины и глобулины, составляющие основную массу белков животного организма. Альбумины сыворотки крови человека во многом определяют свойства самой сыворотки и протекание ряда обменных процессов в организме в целом. Снижение концентрации альбуминов в сыворотке крови отмечают при различных тяжелых поражениях печени, т. к. эти белки синтезируются в этом органе. Глобулинами являются такие функционально важные белки, как иммуноглобулины и комплемент, эритропоэтины, принимающие участие в кроветворении, и др.  
 
К сложным белкам относятся белки, имеющие самое разнообразное назначение в организме: металл опротеины, липопротеины, гликопротеины, фосфопротеины и др. Небелковой частью молекул металлопротеинов являются ионы различных металлов, к-рые нельзя удалить из молекулы белка, не повредив ее белковую часть. Металлопротеинами являются многие ферменты, содержащие железо (цитохромы, каталаза), медь (тирозиназа), цинк (алкогольдегидрогеназа), а также дыхательные пигменты, в т. ч. гемоглобин, миоглобин и др. Липопротеины представляют собой хим. комплексы белков с липидами. Липопротеины выполняют важнейшую функцию депонирования и транспорта липидов, являются необходимой составной частью клеточных мембран. Концентрация разных липопротеинов в сыворотке крови служит диагностическим признаком ряда заболеваний (атеросклероза, ожирения и др.). Белки, в которых небелковая часть представлена углеводами (или углеводом), называют гликопротеинами. Гликопротеинами являются некоторые ферменты и гормоны, антитела и другие физиологически активные белки. Полагают, что специфическая активность этих соединений определяется именно углеводной частью их молекул. Сложные белки, молекулы которых содержат остатки фосфорной к-ты, присоединенные чаще всего к остатку аминокислоты серина (реже - треонина) в полипептидной цепи белка, называются фосфопротеинами, эти белки играют важную роль в клеточном метаболизме. К фосфопротеинам относятся белки биологических мембран и клеточных ядер (см. Клетка), казеины и др. Присоединение остатков фосфорной к-ты (фосфорилирование) к пяти аминокислотным остаткам (серина и треонина) на С-конце полипептидной цепи зрительного белка родопсина и превращение его в фосфопротеин играет существенную роль в регуляции адаптации зрения к свету и к темноте. Превращение важнейших белков мозга в фосфопротеины в результате фосфорилирования происходит при стимуляции нервов или при действии на нервы определенных нейромедиаторов.  
 
В крови общее содержание белка определяют рефрактометрическим и биуретовым методами, содержание альбуминов - методом с использованием красителя бромкрезолового зеленого. В норме в 100 мл сыворотки крови содержится 6,5-8,5 г белка.  
 
В моче присутствие белка обнаруживают пробой с сульфосалициловой к-той, по методу разведения (с азотной к-той), пробой с кипячением, биуретовым методом. В норме в моче белка нет, его появление обычно свидетельствует о нарушении функции почек.  
 
Белки являются жизненно необходимыми пищевыми веществами: они обеспечивают жизнедеятельность, рост, развитие и нормальное протекание обменных процессов в организме человека. Уменьшение количества белка, поступающего с пищей, влечет за собой нарушения функций организма, резкое снижение работоспособности. Суточная норма содержания белка в пищевых продуктах в нашей стране принята равной 100 г белка при энерготрате, составляющей 2500 ккал.  
 
Основными источниками белка в питании являются продукты животного происхождения, а также некоторые растительные продукты. Так, на 100 г говядины приходится до 20,2 г белка, рыбы - до 21 г, яиц- 12,7 г, молока - 2,8 г, творога - 14-18 г, сыра - до 30 г, хлеба - 4,7-8,3 г, крупы - 7-13,1 г, сои -34,9 г, ядер орехов кешью - 25,2 г, картофеля - 2 г, фруктов - ок. 1 г.  
 
При определении пищевой ценности белков учитывают не только их содержание в пищевых продуктах, но и их качество, или так наз. биол. ценность, к-рая в первую очередь зависит от абсолютного и относительного содержания в белке незаменимых аминокислот: в животных белках оно выше, чем в растительных. От биол. ценности белков зависит степень задержки в организме азота пищи, или эффективность усвоения (утилизации) азота, т. е. поддержание азотистого равновесия [1]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Аминокислоты, их классификация
 
Аминокислоты, класс органических соединений, объединяющих в себе свойства кислот и аминов, т. е. содержащих наряду с карбоксильной группой —COOH аминогруппу —NH2.
 В зависимости от положения  аминогруппы относительно карбоксильной  группы различают a-, b-, g- и др. аминокислоты.
 
Аминокислоты играют очень большую роль в жизни организмов, т. к. все белковые вещества построены из аминокислот. Все белки при полном гидролизе (расщеплении с присоединением воды) распадаются до свободных аминокислот, играющих роль мономеров в полимерной белковой молекуле.
 
 При биосинтезе белка порядок,  последовательность расположения аминокислот задаются генетическим кодом, записанным в химической структуре дезоксирибонуклеиновой кислоты.
20 важнейших аминокислот, входящих в состав белков, отвечают общей формуле RCH(NH2)COOH и относятся к a-аминокислотам.
 В природе встречаются и  b-аминокислоты, RCH(NH2)CH2COOH, например b-аланин CH2NH2CH2COOH, входящий в состав пантотеновой кислоты. А. могут содержать одну NH2-группу и одну СООН-группу (моноаминокарбоновые кислоты), одну NH2-группу и две СООН-группы (моноаминодикарбоновые кислоты), две NH2-группы и одну СООН-группу (диаминомонокарбоновые кислоты). [2]
 
 
Классификация аминокислот. 

 
1.       Моноаминомонокарбоновые: Глицин, аланин, валин, лейцин, изолейцин. 
 
2.       Моноаминодикарбоновые: глутаминовая и аспаргиновая кислоты. 
 
3.       Диаминомонокарбоновые: аргинин, лизин, оксилизин. 
 
4.       Гидроксилсодержащие: треонин, серин. 
 
5.       Серусодержащие: цистин, метионин. 
 
6.       Ароматические: фенилаланин, тирозин. 
 
7.       Гетероциклические: триптофан, пролин, оксипролин, гистидин. [3]
 
 
Типы связей аминокислот  в молекуле белка
 
Существует 2 группы связей:
1. КОВАЛЕНТНЫЕ СВЯЗИ - обычные прочные химические связи.
а) пептидная связь
б) дисульфидная связь
2. НЕКОВАЛЕНТНЫЕ (СЛАБЫЕ) ТИПЫ СВЯЗЕЙ - физико-химические взаимодействия родственных структур. В десятки раз слабее обычной химической связи. Очень чувствительны к физико-химическим условиям среды. Они неспецифичны, то есть соединяются друг с другом не строго определенные химические группировки, а самые разнообразные химические группы, но отвечающие определенным требованиям.
а) Водородная связь
б) Ионная связь
в) Гидрофобное взаимодействие [4]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Пептидная связь
Пептидная связь — вид амидной связи, возникающей при образовании белков и пептидов в результате взаимодействия ?-аминогруппы (—NH2) одной аминокислоты с ?-карбоксильной группой (—СООН) другой аминокислоты.
Из двух аминокислот и образуется дипептид (цепочка из двух аминокислот) и молекула воды. По этой же схеме рибосомагенерирует и более длинные цепочки из аминокислот: полипептиды и белки. Разные аминокислоты, которые являются «строительными блоками» для белка, отличаются радикалом R 
Свойства:
    4 атома связи (C, N, O и H) и 2 ?-углерода находятся в одной плоскости. R-группы аминокислот и водороды при ?-углеродах находятся вне этой плоскости.
    H и O в пептидной связи, а также ?-углероды двух аминокислот трансориентированы (транс-изомер более устойчив). В случае L-аминокислот, что имеет место во всех природных белках и пептидах, R-группы также трансориентированы.
    Вращение вокруг связи C-N затруднено, возможно вращение вокруг С-С связи.
Для обнаружения белков и пептидов, а так же их количественного определения в растворе используют биуретовую реакцию. [5]
 
Дисульфидная  связь
 
Дисульфидные  мостики, или дисульфидная связь — ковалентная связь между двумя атомами серы, входящими в состав серусодержащей аминокислоты цистеина. Образующие дисульфидную связь аминокислоты могут находиться как в одной, так и в разных полипептидных цепях белка. Дисульфидные связи образуются в процессе посттрансляционной модификации белков и служат для поддержания третичной и четвертичной структур белка. [5]
 
Водородная связь
Водородная связь форма ассоциации между электроотрицательным атомом и атомом водорода H, связанным ковалентно с другим электроотрицательным атомом. В качестве электроотрицательных атомов могут выступать N, O или F. Водородные связи могут быть межмолекулярными или внутримолекулярными [5]
ИОННАЯ СВЯЗЬ - возникает между положительно и отрицательно заряженными группировками (дополнительные карбоксильные и аминогруппы), которые встречаются в радикалах лизина, аргинина, гистидина, аспарагиновой и глутаминовой кислот [4]
ГИДРОФОБНОЕ ВЗАИМОДЕЙСТВИЕ - неспецифическое притяжение, возникающее в молекуле белка между радикалами гидрофобных аминокислот - вызывается силами Ван-дер-Ваальса и дополняется выталкивающей силой воды. Гидрофобное взаимодействие ослабевает или разрывается в присутствии различных органических растворителей и некоторых детергентов. Например, некоторые последствия действия этилового спирта при проникновении его внутрь организма обусловлены тем, что под его влиянием ослабляются гидрофобные взаимодействия в молекулах белков.[4]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Приложение- список аминокислот  и их свойства.
 
Незаменимые аминокислоты
Валин. Один из главных компонентов в росте и синтезе тканей тела. Основной источник - животные продукты. Опыты на лабораторных крысах показали, что валин повышает мышечную координацию и понижает чувствительность организма к боли, холоду и жаре.
Гистидин. Способствует росту и восстановлению тканей. В большом количестве содержится в гемоглобине; используется при лечении ревматоидных артритов, аллергий, язв и анемии. Недостаток гистидина может вызвать ослабление слуха.
Изолейцин. Поставляется всеми продуктами, содержащими полноценный белок - мясом, птицей, рыбой,яйцами, молочными продуктами.
Лейцин. Поставляется всеми продуктами, содержащими полноценый белок - мясом, птицей, рыбой, яйцами, молочными продуктами. Необходима не только для синтеза протеина организмом, но и для укрепления иммунной системы.
Лизин. Хорошие источники - сыр, рыба. Одна из важных составляющих в производстве карнитина. Обеспечивает должное усвоение кальция; участвует в образовании коллагена ( из которого затем формируются хрящи и соединительные ткани); активно участвует в выработке антител, гормонов и ферментов. Недавние исследования показали, что лизин, улучшая общий баланс питательных веществ, может быть полезен при борьбе с герпесом. Недостаток может выражаться в уставаемости, неспособности к концентрации, раздражительности, повреждению сосудов глаз, потере волос, анемии и проблем в репродуктивной сфере.
Метионин. Хорошие источники - зерновые, орехи и злаковые. Важен в метаболизме жиров и белков, организм использует ее также для производства цистеина. Является основным поставщиком сульфура, который предотвращает расстройства в формировании волос, кожи и ногтей; способствует понижению уровня холестерина, усиливая выработку лецитина печенью; понижает уровень жиров в печени, защищает почки; участвует в выводе тяжелых металлов из организма; регулирует образование аммиака и очищает от него мочу, что понижает нагрузку на мочевой пузырь; воздействует на луковицы волос и поддерживает рост волос.
Треонин. Важная составляющая в синтезе пуринов, которые, в свою очередь, разлагают мочевину, побочный продукт синтеза белка. Важная составляющая коллагена, эластина и протеина эмали; участвует в борьбе с отложением жира в печени; поддерживает более ровную работу пищеварительного и кишечного трактов; принимает общее участие в процессах метаболизма и усвоения.
Триптофан. Является первичным по отношению к ниацину (витамину В) и серотонину, который, участвуя в мозговых процессах управляет аппетитом, сном, настроением и болевым порогом. Естественный релаксант, помогает бороться с бессонницей, вызывая нормальный сон; помогает бороться с состоянием беспокойства и депрессии; помогает при лечении головных болей при мигренях; укрепляет иммунную систему; уменьшает риск спазмов артерий и сердечной мышцы; вместе с Лизином борется за понижение уровня холестерина.В Канаде и во многих странах Европы назначается в качестве антидепрессанта и снотворного. В Штатах к такому применению относятся с опаской.
Фенилаланин. Одна из ессенциальных аминокислот. Используется организмом для производства тирозина и трех важных гормонов - эпинэрфина, норэпинэрфина и тироксина. Используется головным мозгом для производства Норэпинэрфина, вещества, которое передает сигналы от нервных клеток к головному мозгу; поддерживает нас в в состоянии бодрствования и восприимчивости; уменьшает чувство голода; работает как антидепрессант и помогает улучшить работу памяти.
 
 
Условнонезаменимые  аминокислоты
Тирозин. Используется организмом вместо фенилаланина при синтезе белка. Источники - молоко, мясо, рыба. Мозг использует тирозин при выработке норэпинэрфина, повышающего ментальный тонус. Многообещающие результаты показали попытки использовать тирозин как средство борьбы с усталостью и стрессами.
Цистеин. Если в рационе достаточное количество цистина, организм может использовать его вместо метионина для производства белка. Хорошие источники цистина - мясо, рыба, соя, овес и пшеница. Цистин используют в пищевой промышленности как антиоксидант для сохранения витамина С в готовых продуктах.
 
 
Заменимые аминокислоты
Аланин. Является важным источником энергии для мышечных тканей, головного мозга и центральной нервной системы; укрепляет иммунную систему путем выработки антител; активно участвует в метаболизме сахаров и органических кислот.
Аргинин. Л-Аргинин вызывает замедление развития опухолей и раковых образований. Очищает печень. Помогает выделению гормона роста, укрепляет иммунную систему, способствует выработке спермы и полезна при лечении расстройств и травм почек. Необходим для синтеза протеина и оптимального роста. Наличие Л-Аргинина в организме способствует приросту мышечной массы и снижению жировых запасов организма. Также полезен при расстройствах печени, таких, как цирроз печени, например. Не рекомендуется к приему беременными и кормящими женщинами.
Аспарагин. Аспартовая кислота Активно участвует в выводе аммиака, вредного для центральной нервной системы. Недавние исследования показали, что аспартовая кислота может повышать сопротивляемость усталости.
Глютамин. Важен для нормализации уровня
и т.д.................


Перейти к полному тексту работы


Скачать работу с онлайн повышением уникальности до 90% по antiplagiat.ru, etxt.ru или advego.ru


Смотреть полный текст работы бесплатно


Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.