На бирже курсовых и дипломных проектов можно найти готовые бесплатные и платные работы или заказать написание уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов по самым низким ценам. Добавив заявку на написание требуемой для вас работы, вы узнаете реальную стоимость ее выполнения.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Быстрая помощь студентам

 

Результат поиска


Наименование:


курс лекций Генетика популяций

Информация:

Тип работы: курс лекций. Добавлен: 11.06.13. Сдан: 2012. Страниц: 19. Уникальность по antiplagiat.ru: < 30%

Описание (план):


Лекция  № 1.
История понятия «популяция». Современное  определение популяции. Генетическая структура популяции. Экологический подход. 
 
Термин  «популяция» происходит от латинского populus – население. Долгое время (начиная с конца XVIII в.) популяцией называли (а часто называют и сейчас) любую группировку организмов, обитающих на определенной территории.
В 1903 г. датский генетик Вильгельм Людвиг Иоганнсен впервые употребил термин «популяция» для обозначения группы особей, неоднородной в генетическом отношении.
Иоганнсен впервые применил комплекс генетических и статистических методов для  изучения структуры популяции самооплодотворяющихся (самоопыляющихся) организмов. Он избрал объектом исследования популяции самоопылителей, которые можно было легко разложить на группы потомков отдельных самоопыляющихся растений, т. е. произвести выделение чистых линий. Анализу была подвергнута масса (размеры) семян фасоли Phaseolus vulgaris. В настоящее время известно, что масса семян определяется полигенно и в сильной степени подвержена влиянию факторов внешней среды.
Иоганнссн провел взвешивание семян одного сорта фасоли и построил вариационный ряд по этому показателю. Масса  варьировала в пределах от 150 до 750 мг. В дальнейшем семена массой 250…350 и 550…650 мг были высеяны отдельно. С каждого выросшего растения семена были вновь взвешены. Тяжелые (550…650 мг) и легкие (250…350 мг) семена, выбранные из сорта, представляющего популяцию, дали растения, семена которых отличались по массе: средняя масса семян растений, выросших из тяжелых семян, составила 518,7 мг, а из легких – 443,4 мг. Этим было показано, что сорт – популяция фасоли состоит из генетически различных растений, каждое из которых может стать родоначальником чистой линии. На протяжении 6…7 поколений Иоганнсен отбирал тяжелые и легкие семена с каждого растения в отдельности. Ни в одной линии не произошло сдвига массы семян. Изменчивость размеров семян внутри чистой линии была ненаследственной, модификационной.
Таким образом, В. Иоганнсен генетически неоднородные (гетерогенные) популяции противопоставлял однородным чистым линиям (или клонам), в которых невозможен отбор (нет выбора!).
Вскоре  подобные исследования были выполнены  и для перекрестно-оплодотворяющихся  организмов (работы Д. Джонса и Е. Иста с табаком).
Английский  математик Годфри Харди (1908) сформулировал  понятия панмиксии (свободного скрещивания) и создал математическую модель для описания генетической структуры панмиктической популяции, т.е. популяции свободно скрещивающихся раздельнополых организмов. Немецкий врач-антропогенетик Вильгельм Вайнберг (в этом же 1908 г.) независимо от Харди создал сходную модель панмиктической популяции.
Учение  о неоднородности популяций развил российский генетик Сергей Сергеевич  Четвериков. Его работой «О некоторых  аспектах эволюционного процесса с  точки зрения современной генетики» (1926) было положено начало современной  эволюционной и популяционной генетики. В 1928 г. Александр Сергеевич Серебровский создает учение о генофонде.
В течение 1920–1950-ых гг. в англоязычных странах  формируется понятие идеальной популяции, и на основании этого понятия интенсивно развивается математическая генетика (Сьюелл Райт, Рональд Фишер, Джон Холдейн (J.B.S. Haldane, не путать с физиологом Холдейном) и др.).
В нашей  стране, несмотря на господство лысенковщины, учение о популяциях развивалось  в работах И.И. Шмальгаузена (популяция  рассматривалась как элементарная единица эволюционного процесса), А.Н. Колмогорова (анализировались случайные  процессы в популяциях) и других ученых. Однако в большинстве случаев  популяция рассматривалась с  экологической точки зрения (например, как форма существования вида; С.С. Шварц). Лишь в 1906–1970-гг., благодаря работам Н.В. Тимофеева-Ресовского и его сотрудников формируется синтетический подход к определению популяции как эколого-генетической системы.
Рассмотрим  три основных подхода к определению  понятия «популяция»: экологический, генетический и синтетический. 
 
ЭКОЛОГИЧЕСКИЙ ПОДХОД
 
С точки  зрения экологии, популяцией является совокупность особей одного вида в пределах одного биоценоза (фитоценоза), то есть целостная внутривидовая группировка, которой соответствует минимальная реализованная экологическая ниша. Такую группу особей иначе называют экологической, или локальной популяцией, а также (для растений) ценотической популяцией, или просто ценопопуляцией.
Для описания экологических ниш используют пространственные, временные и собственно экологические характеристики. Реализованную экологическую нишу можно представить как фактическую совокупность пространственно-временных и собственно экологических условий, в которых протекает существование и воспроизведение вида. Совокупность пространственно-временных и собственно экологических условий, необходимых для воспроизведения вида, иначе называется его регенерационной нишей. У растений именно специфические особенности регенерационных ниш определяют основные типы хорологической (пространственной) структуры популяций.
Таким образом, с точки зрения экологии, популяция  представляет собой множество особей, объединенных в пространственно-временном и экологическом отношении.
Популяции – это надорганизменные биологические  системы, которые обладают рядом  свойств, которые не присущи отдельно взятой особи или просто группе особей. Различают статические характеристики популяции (численность, плотность, популяционный  ареал) и динамические (рождаемость, смертность, относительный и абсолютный прирост численности). 
 
Статика популяций
 
Численность. Численностью называют общее число особей в популяции. Существует нижний предел численности, ниже которого популяция не может существовать длительное время.
При этом нужно учитывать не всех особей, а только тех, которые принимают  участие в размножении – это эффективная численность популяций. Например, если из 100 особей – 50 самцов и 50 самок, то Nэ. = 100. Если из 100 особей – 90 особей одного пола, а 10 другого, то Nэ. = 36. Если же из 100 особей на 99 особей одного пола приходится 1 особь другого пола, то Nэ. = 4. При наличии популяционных волн средняя численность популяции определяется как средняя гармоническая.
Обычно  численность популяций измеряется сотнями и тысячами особей (такие  популяции называют мезопопуляции). У крупных наземных млекопитающих численность популяций может снижаться до нескольких десятков особей (микропопуляции). У растений и беспозвоночных существуют также мегапопуляции, численность которых достигает миллионов особей. У человека минимальная численность популяций составляет около 100 особей.
Плотность. В большинстве случаев абсолютную численность популяции определить невозможно. Тогда используют производную характеристику – плотность популяции. Плотность определяется как среднее число особей на единицу площади или объема занимаемого популяцией пространства. В экологии плотность определяется также как масса (биомасса) членов популяции в единице площади или объема. Низкая плотность популяции уменьшает ее шансы на воспроизведение, но увеличивает шансы на выживание. Высокая плотность, наоборот, увеличивает шансы на воспроизведение, но уменьшает шансы на выживание. Следовательно, каждая конкретная популяция должна обладать некоторой оптимальной плотностью.
Популяционный ареал Плотность популяции тесно связана с ее пространственной структурой. В популяциях островного типа (с хорошо выраженной границей распространения) плотность распределения особей может быть равномерной. Однако в равнинных популяциях граница распространения всегда размыта. В идеальной популяции можно выделить ее ядро (территория с максимальной плотностью, например, круг), субпериферию (территорию с пониженной плотностью, например, кольцо) и периферию (территорию с низкой плотностью, не обеспечивающей воспроизведение популяции). В реальных популяциях существует множество типов пространственной структуры и, соответственно, типов распределения плотности. Обычно различают следующие типы популяционных ареалов: сплошные, разорванные, сетчатые, кольцевые, ленточные и комбинированные. 
 
Динамика  популяций
 
Рождаемость. Размножение приводит к появлению в популяции новых особей. Число новых особей, появляющихся в популяции за единицу времени, называется абсолютной рождаемостью. Понятие «новая особь» определяется достаточно произвольно и зависит от видовых особенностей, от целей и задач исследования и других факторов. Например, новой особью (или особью нулевого возраста) может считаться зигота, яйцо, личинка или особь, вышедшая из-под родительской опеки. Отношение числа новых особей к числу имевшихся особей называется относительной (удельной) рождаемостью. Относительная рождаемость может рассчитываться или на одну особь, или на 1000 особей. В ходе размножения численность популяции постоянно изменяется, поэтому вводится понятие мгновенной удельной рождаемости – то есть рождаемости в пересчете на одну особь за бесконечно малый промежуток времени. Этот промежуток зависит от видовых особенностей; для человека достаточно малым промежутком времени считается 1 год.
Существуют  моноциклические (у растений монокарпические) виды, представители которых размножаются один раз в жизни, и полициклические (у растений поликарпические) виды, представители которых размножаются неоднократно.
У раздельнополых диплоидных организмов оценка рождаемости  осложняется тем, что для воспроизведения  одного потомка требуется пара родителей. В демографии часто учитываются  только женские особи. Однако, с точки  зрения генетики, самки и самцы  в равной степени передают свои гены (аллели) в последующие поколения. Поэтому следует различать плодовитость самок и коэффициент воспроизведения  в пересчете на одну особь, независимо от ее пола. Например, в популяции  из 500 самцов и 500 самок за единицу  времени появилось 1000 особей нулевого возраста. Удельная рождаемость составила одного новорожденного на одну особь, однако каждая самка оставила двух потомков, и каждый самец оставил двух потомков.
Численность популяции может увеличиваться  не только за счет рождаемости, но и  за счет иммиграции особей из других популяций. Существуют зависимые и полузависимые популяции, которые поддерживают и увеличивают свою численность именно за счет иммиграции.
Смертность. Смертность – это понятие, противоположное рождаемости. Различают абсолютную смертность (количество погибших особей за единицу времени) и относительную (удельную) смертность (количество погибших особей за единицу времени в расчете на одну особь или на 1000 особей).
Характер  смертности описывается таблицами и кривыми выживаемости, которые показывают, какая часть новорожденных особей дожила до определенного возраста. Кривые выживаемости обычно строятся в системе координат: «возраст – логарифм числа выживших особей». В этом случае кривые могут быть выпуклыми, вогнутыми и комбинированными.
В связи  с постоянной смертностью вводится понятие мгновенной удельной смертности, то есть отношению погибших особей к общему числу особей за бесконечно малый промежуток времени (аналогично мгновенной удельной рождаемости).
Численность популяции может уменьшаться  не только за счет смертности, но и за счет эмиграции особей.
Относительный прирост численности. Первоначально при расчете прироста популяции учитывается мгновенная удельная рождаемость и мгновенная удельная смертность (относительные показатели). Тогда прирост популяции называется биотический потенциал, или мальтузианский параметр (r).
Для изолированной  популяции 
r = рождаемость – смертность
В открытой популяции 
r = (рождаемость + иммиграция) – (смертность + эмиграция)
Прирост популяции может быть положительным, нулевым и отрицательным. Если r > 0, то популяция увеличивает свою численность, если r = 0, то популяция сохраняет стабильную численность, если r < 0, то численность популяции сокращается.
Абсолютный прирост численности. Если r величина постоянная (не зависит от численности популяции), то изменение абсолютной численности популяции в единицу времени (dN/dt) и абсолютная численность популяции в данный момент  времени (Nt) описываются уравнениями экспоненциального роста.
Однако  в реальных сообществах всегда существует ограниченность ресурсов. Емкость экологической ниши (К) – это максимально возможная численность популяции в данных условиях. В условиях экологического вакуума (то есть при неограниченности ресурсов среды и при отсутствии конкуренции) величина r остается максимально возможной и постоянной. Но при увеличении численности популяции эта величина снижается; в простейшем случае линейно уменьшается при увеличении численности популяции. В этом случае изменение абсолютной численности популяции описывается уравнением Ферхюльста–Пёрла. Графически эта закономерность отображается логистической (сигмовидной) кривой.
Однако  в реальных популяциях зависимость r от N и К носит нелинейный характер (эффект группы). Кроме того, при изменении численности происходит изменение экологических характеристик популяции (например, происходит переход с основной пищи на второстепенную), и тогда величина К может измениться. Нужно учитывать также инерционность процессов размножения и гибели, то есть для изменения этих показателей требуется время. За это время может измениться характер действия экологических факторов (например, сезонные или многолетние изменения среды). В природных популяциях могут возникать колебательные процессы (популяционные волны) из-за наличия обратной отрицательной связи между r и N.
Уравнение Ферхюльста–Пёрла достаточно точно  описывает динамику лишь простых  популяций, например, искусственных  популяций инфузорий и других мелких организмов с коротким временем генерации в лабораторных условиях. Однако это уравнение помогает выявить  основные закономерности роста природных  популяций и при введении поправочных  коэффициентов достаточно точно  прогнозировать их динамику. 
 
Дополнительные факторы, определяющие динамику популяций. На динамику популяции влияют факторы, зависящие и независящие от плотности (численности) популяции. Например, действие климатических факторов в большинстве случаев (но не всегда!) не зависит от плотности популяции. Однако такие факторы как доступность ресурсов, межвидовые взаимоотношения, как правило, зависят от плотности.
Популяции видов, у которых рождаемость  и смертность в значительной мере зависят от действия внешних факторов, подвержены быстрому изменению биотического потенциала и, соответственно, быстро изменяют свою численность, называются оппортунистическими. Амплитуда популяционных волн достигает 3-6 порядков (то есть за короткий период времени численность изменяется в тысячи и миллионы раз). Эти популяции редко достигают численности К и существуют за счет высокой плодовитости  (высокое значение rmax). Такой способ сохранения популяций называется r–стратегия. r–Стратеги («шакалы») характеризуются высокой плодовитостью, низкой конкурентоспособностью, быстрым развитием и короткой продолжительностью жизни.
Популяции видов, у которых рождаемость  и смертность в значительной мере зависят от их плотности (то есть от характеристики самой популяции), в  меньшей степени зависят от действия внешних факторов. Эти популяции  называются равновесными, или стационарными. Они поддерживают численность, близкую к величине К, поэтому способ сохранения таких популяций называется К–стратегия. К–Стратеги («львы») характеризуются низкой смертностью, высокой конкурентоспособностью, длительным развитием и длительной продолжительностью жизни.  
 
 
 
 
 
 
 
Лекция № 2
 
    ГЕНЕТИЧЕСКИЙ ПОДХОД ОПРЕДЕЛЕНИЯ ПОПУЛЯЦИИ
    СИНТЕТИЧЕСКИЙ ПОДХОД ОПРЕДЕЛЕНИЯ ПОПУЛЯЦИИ
 
 
ГЕНЕТИЧЕСКИЙ  ПОДХОД
 
С точки  зрения генетики, популяция – это генетическая система, обладающая исторически сложившейся генетической структурой. Основные положения популяционной генетики сложились на основании изучения природных и модельных популяций высших раздельнополых животных (моллюсков, насекомых, позвоночных), которые воспроизводят себя с помощью нормального полового размножения – амфимиксиса, или объединения женских и мужских гамет. В таких случаях группировка особей, способных скрещиваться между собой и производить полноценное (т.е. жизнеспособное и плодовитое) потомство, называется генетической, или менделевской популяцией. В свою очередь, потомки, достигшие половозрелости, также должны скрещиваться между собой и производить полноценное потомство, то есть популяция должна существовать длительное число поколений.
Таким образом, с точки зрения генетики, популяция  представляет собой множество особей, объединенных достаточно высокой степенью родства.
В рамках генетического подхода выделяется представление об идеальной популяции.
Идеальная популяция – это абстрактное понятие, которое широко используется в моделировании микроэволюционных процессов. При описании систем скрещивания в идеальной популяции широко используется понятие панмиксии – случайного свободного скрещивания, при котором вероятность встречи гамет не зависит ни от генотипа, ни от возраста скрещивающихся особей. Если исключить половой отбор, то к панмиктической популяции применима концепция гаметного резервуара, согласно которой в популяции в период размножения формируется гаметный резервуар (генный пул), включающий банк женских гамет и банк мужских гамет. Если члены популяции равноудалены друг от друга, то встреча гамет и формирование зигот происходят случайным образом. (Подробнее понятие идеальной популяции будет рассмотрено ниже.)
Реальные  популяции в большей или меньшей  степени отличаются от идеальной. Одним  из наиболее существенных отличий является множество способов воспроизведения. По способу воспроизведения различают  следующие типы популяций:
амфимиктические – основным способом размножения является нормальное половое воспроизведение;
амфимиктические панмиктические – при формировании брачных пар наблюдается панмиксия (свободное скрещивание);
амфимиктические инбредные – при формирование брачных пар наблюдается близкородственное скрещивание (инбридинг, инцухт, инцест); крайним случаем близкородственного скрещивания является самооплодотворение;
апомиктические – наблюдаются различные отклонения от нормального полового процесса, например, апомиксис, партеногенез, гиногенез, андрогенез; наблюдается у агамных (бесполых) форм;
клональные – при отсутствии полового процесса и размножении только вегетативным путем или с помощью спор бесполого размножения (например, конидий); частным случаем клонирования является полиэмбриония – развитие нескольких зародышей из одной зиготы:
комбинированные – например, клонально-амфимиктические при метагенезе у кишечнополостных (чередовании бесполого и полового размножения) и гетерогонии (чередовании партеногенетического и амфимиктического поколений у червей, некоторых членистоногих и низших хордовых).
 
Определения
Панмиксия (свободное скрещивание) означает, что на формирование брачных пар не влияет генотип или возраст особей, участвующих в размножении. Фактически это означает, что рассматриваемый признак не оказывает заметного влияния на формирование брачных пар.
Инбридинг – близкородственное скрещивание у животных; инцухт – близкородственное скрещивание у растений; инцест (кровосмешение) – близкородственное скрещивание у человека.
Апомиксис – это множество форм образования зародышей, при которых не происходит объединения двух клеток. Обычно этот термин используют по отношению к растениям. При апомиксисе новый организм может развиваться из неоплодотворенной яйцеклетки (см. партеногенез), а также из какой-либо другой специализированной клетки зародышевого мешка (например, из клеток–антипод или синергид), реже – непосредственно из клеток нуцеллуса или покровов семязачатка. Примеры растений–апомиктов: ястребинки, одуванчики, манжетки.
Партеногенез – это девиантная форма полового процесса, при которой новый организм развивается из неоплодотворенной яйцеклетки без участия мужских гамет. Различают нередуцированный партеногенез с развитием зародыша из диплоидной клетки и редуцированный партеногенез с развитием зародыша из гаплоидной яйцеклетки. Как правило, партеногенез чередуется с нормальным половым размножением (при цикломорфозе у коловраток, дафний, тлей).
Гиногенез – это девиантная форма полового процесса, при которой мужские гаметы служат для стимуляции развития нового организма из яйцеклетки, но оплодотворения не происходит, и мужское ядро (пронуклеус) погибает. В этом случае у дочернего организма сохраняются только материнские хромосомы. Гиногенез встречается у гибридов рыб, земноводных, а также в бессамцовых популяциях.
Андрогенез – это девиантная форма полового процесса, при которой происходит оплодотворение, но затем женское ядро (пронуклеус) погибает, а мужское ядро замещает его в качестве ядра зиготы. В этом случае у дочернего организма сохраняются только отцовские хромосомы. Андрогенез обычно наблюдается в лабораторных условиях.
Агамные формы – организмы, у которых отсутствует нормальный половой процесс. 
 
Генетическая структура популяций 
 
Каждая  популяция обладает собственной  генетической структурой. Генетическая структура популяций определяется исходным соотношением аллелей, естественным отбором  и элементарными эволюционными факторами (мутационный процесс и давление мутаций, изоляция, популяционные волны, генетико-автоматические процессы, эффект основателя, миграции и др.). Для описания генетической структуры популяций используются понятия «аллелофонд» и «генофонд».
Аллелофонд. Аллелофонд популяции – это совокупность аллелей в популяции. Если рассматриваются два аллеля одного гена: А и а, то структура аллелофонда описывается уравнением: p +  qa = 1. В этом уравнении символом pA обозначается относительная частота аллеля А, символом qa – относительная частота аллеля а.
Популяции, в которых структура аллелофонда  остается относительно постоянной в  течение длительного времени, называются стационарными.
Если  рассматриваются три аллеля одного гена: а1, а2,, а3, то структура аллелофонда описывается уравнением: p а1 + q а2 + r а3 = 1. В этом уравнении символами p, q, r обозначаются соответствующие частоты аллелей.
Если  рассматриваются несколько аллелей  нескольких генов (a, b, c), то структура аллелофонда описывается системой уравнений:
p1 a1 + p2 a2 + p3 a3 + ... + pi ai = 1
q1 b1 + q2 b2  + q3 b3 + ... + qi bi = 1
r1 c1  + r2 c2  +  r3 c3 + ... + ri ci  = 1
.......................................................
В этих уравнениях символами pi, qi, ri обозначены относительные частоты аллелей разных генов. Однако в простейших случаях рассматриваются только моногенные диаллельные системы, например: А–а. В популяции с общей численностью особей Nобщ и известной численностью особей с генотипами АА, Аа, аа относительные частоты аллелей рассчитываются по формулам:  
 
p (A) =
  q (a) =
 
2 I N (AA) + N (Aa)
2 I N (aa) + N (Aa)
или q (a) = 1 – р (А)
2 I N общ.
2 I N общ.

 
 
 
Генофонд. Термин генофонд употребляется в разных значениях. Основоположник учения о генофонде и геногеографии Александр Сергеевич Серебровский называл генофондом «совокупность всех генов данного вида..., чтобы подчеркнуть мысль о том, что в лице генофонда мы имеем такие же национальные богатства, как и в лице наших запасов угля, скрытых в наших недрах» (1928). Однако это выражение в настоящее время используется для определения генетического потенциала, а генофондом называют совокупность всех генотипов в популяции.
При изучении природных популяций часто приходится сталкиваться с полным доминированием: фенотипы гомозигот АА и гетерозигот Аа неразличимы. Кроме того, в природе широко распространено полигенное определение признаков, причем типы взаимодействия неаллельных генов (комплементарность, эпистаз, полимерия) не всегда известны. Поэтому на практике часто изучают не генофонд, а фенофонд популяций, то есть соотношение фенотипов. В настоящее время развивается раздел генетики популяций, который называется фенетика популяций.  
 
 
      СИНТЕТИЧЕСКИЙ ПОДХОД
 
Популяция как эколого-генетическое единство 
 
Наиболее  полным и всеобъемлющим определением популяции является следующее:
Популяция – минимальная  самовоспроизводящаяся группировка  особей одного вида, более или менее  изолированная от других подобных группировок, населяющая определенный ареал в  течение длительного ряда поколений, образующая собственную генетическую систему и формирующая собственную  экологическую нишу.
К этому  определению обычно добавляют ряд  уточнений:
Популяция есть форма существования  вида. Популяция есть элементарная единица эволюции. Популяция есть единица биомониторинга. Популяция  есть единица управления, то есть единица  эксплуатации, охраны и подавления.
В некоторых  случаях удобно использовать понятие  «формы популяционного ранга». Формой популяционного ранга (ФПР), или группой  популяционного ранга (ГПР) называют группу особей, несколько меньшую или  несколько большую, чем собственно популяция. К ФПР (ГПР), меньшим, чем  «настоящие» популяции, относятся  внутрипопуляционные и внепопуляционные группировки особей одного вида, которые  хотя бы частично способны к самовоспроизведению. В то же время, эти группировки  недостаточно изолированы от других подобных группировок, не образуют устойчивые генетические системы и не формируют собственные экологические ниши. К ФПР, большим, чем «настоящие» популяции, относят популяционные системы, состоящие из нескольких популяций, связанных между собой в пространственно-генетическом и/или историческом (микроэволюционном) отношении.
Для обозначения внутрипопуляционных группировок используют различные термины: панмиктические единицы, соседства, демы и другие. Отдельно выделяют псевдопопуляции – внутривидовые группировки, неустойчивые во времени и, как правило, не оставляющие после себя потомства. Группировки популяционного ранга, внутрипопуляционные группировки и псевдопопуляции могут быть частью истинных популяций, или на их основе формируются в дальнейшем истинные популяции. Примеры таких группировок: поле пшеницы, березовая роща, колония грызунов, муравейник, население административного района (например, вороны Брянской области). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Лекция 3.  Закон Харди–Вайнберга  – основной закон популяционной  генетики
 
Структура генофонда в панмиктической стационарной популяции описывается основным законом популяционной генетики – законом Харди-Вайнберга, который гласит, что в идеальной популяции существует постоянное соотношение относительных частот аллелей и генотипов, которое описывается уравнением:
(p A + q a)2 = р2 АА  +  2•р•q Aa  +  q2 aa  =  1
Если  известны относительные частоты  аллелей p и q и общая численность популяции Nобщ, то можно рассчитать ожидаемую, или расчетную абсолютную частоту (то есть численность особей) каждого генотипа. Для этого каждый член уравнения нужно умножить на Nобщ:
p2 AA · Nобщ + 2·p·q Aa · Nобщ + q2 aa · Nобщ = Nобщ
В данном уравнении:
p2 AA · Nобщ – ожидаемая абсолютная частота (численность) доминантных гомозигот АА
2·p·q Aa · Nобщ – ожидаемая абсолютная частота (численность) гетерозигот Аа
q2 aa · Nобщ – ожидаемая абсолютная частота (численность) рецессивных гомозигот аа  
 
Действие  закона Харди-Вайнберга при неполном доминировании
Рассмотрим  действие закона Харди-Вайнберга при  неполном доминировании на примере  наследования окраски шерсти у лис. Известно, что основное влияние на окраску шерсти у лисиц оказывает  ген А, который существует в виде двух основных аллелей: А и а. Каждому возможному генотипу соответствует определенный фенотип:
АА – рыжие, Аа – сиводушки, аа – черно-бурые (или серебристые)
На заготовительных  пунктах пушнины в течение  многих лет (в России с XVIII века) ведется учет сданных шкурок. Откроем книгу учета сданных шкурок лис на одном из заготовительных пунктов Северо-Востока России и выберем произвольно 100 идущих подряд записей. Подсчитаем число шкурок с различной окраской. Предположим, что получены следующие результаты: рыжие (АА) – 81 шкурка, сиводушки (Аа) – 18 шкурок, черно-бурые (аа) – 1 шкурка.
Подсчитаем  число (абсолютную частоту) доминантных  аллелей А, учитывая, что каждая лиса – диплоидный организм. Рыжие лисы несут по 2 аллеля А, их 81 особь, всего 2А?81=162А. Сиводушки несут по 1 аллелю А, их 18 особей, всего 1А?18=18А. Общая сумма доминантных аллелей NА = 162 + 18 = 180. Аналогичным образом подсчитаем число рецессивных аллелей а: у черно-бурых лис 2а?1=2а, у сиводушек 1а?18=18а, общая сумма рецессивных аллелей Nа = 2 + 18 = 20.
Общее число  всех аллелей гена А  = NA + Na =180 + 20 = 200. Мы проанализировали 100 особей, у каждой по 2 аллеля, общая сумма аллелей равна 2 ? 100 = 200. Число аллелей, подсчитанных по каждому гено/фенотипу, и число аллелей, подсчитанных по общему количеству особей, в любом случае равно 200, значит, расчеты проведены правильно.
Найдем  относительную частоту (или долю) аллеля А по отношению к общему количеству аллелей:
рА
и т.д.................


Перейти к полному тексту работы


Скачать работу с онлайн повышением уникальности до 90% по antiplagiat.ru, etxt.ru или advego.ru


Смотреть полный текст работы бесплатно


Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.