На бирже курсовых и дипломных проектов можно найти готовые бесплатные и платные работы или заказать написание уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов по самым низким ценам. Добавив заявку на написание требуемой для вас работы, вы узнаете реальную стоимость ее выполнения.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Быстрая помощь студентам

 

Результат поиска


Наименование:


реферат Статистика и прогнозирование

Информация:

Тип работы: реферат. Добавлен: 12.06.13. Сдан: 2013. Страниц: 20. Уникальность по antiplagiat.ru: < 30%

Описание (план):


ИНСТИТУТ УПРАВЛЕНИЯ И ПРАВА
 
 
 
 
Реферат
по дисциплине «Статистика»
Тема: «Статистика и прогнозирование»
 
Студентки 3 курса
Факультет Управления
Специальность «Менеджмент организации»
Кирилловой Ольги Викторовны
 
 
 
 
 
 
 
 
 
 
г. Жуковский
2012г.
 
   Содержание………..…………………………………………..….……………2 стр.
1.   Введение………………………………………………………………………..3-4 стр.
2.   Сущность и основные понятия прогнозирования …….…………5-7 стр.
3.   Статистические методы прогнозирования…..………….…….….8-19 стр.
4.   Заключение………………………………………….…………………….……20 стр.
5.   Список использованной литературы……………..…..……….………21 стр.
 
 
 
 
 
 
 
 
1. Введение
 
Прогностика (от греческого prognosis - предвидение) как наука берет начало в глубокой древности: еще Гиппократ в своей книге «Прогностика» употреблял понятие прогностики как искусство формулирования диагнозов, способов определения различных болезней, их протекания, исходов, и лишь небольшая часть трактата была посвящена прогнозов, основанных на интуиции, явно недостаточно, поэтому они должны быть основаны на объективных закономерностях и математическом аппарате. В научной литературе прогностика определяется как наука о принципах, методах и средствах (инструментах) научного прогнозирования.
Прогностика - научная дисциплина, изучающая общие принципы и методы прогнозирования развития объектов любой природы, закономерности процесса разработки прогнозов.
Бурное развитие теории т практики прогнозирования приходиться на 50 гг. ХХ столетия. В это время стали появляться простые прогнозные модели, проводились различные прогностические исследования. Своего рода «бум прогнозирования» пришелся на 60- 70 гг. Именно в это время было разработано подавляющее большинство теоретических положений, методов, сложных прогнозных моделей; широкое применение в прогнозировании стали получать ЭВМ.
В целом значимость прогнозирования заключается в том, что оно, раскрывая будущие взаимосвязи явлений объективной реальности, увеличивает разнообразие, выбор вариантов развития исследуемой системы и ,как следствие , способствует принятию эффективных решений.
Существенные изменения в общественной и экономической жизни России, происходящие в связи с переходом на рыночные отношения, вовлечение страны в процессы интеграции на европейском и мировом рынках вызвали потребность коренного реформирования социально-экономической статистики, комплексного пересмотра всей системы учета и статистики в стране. Это связано также с необходимостью повышения возможностей получения объективной и достоверной информации о состоянии и развитии различных форм собственности, сфер экономики и социальных процессов для анализа, оценки, выявления тенденций и принятия управленческих решений на всех уровнях. 

Чтобы эффективно управлять народным хозяйством или любым его структурным звеном, необходимо четко знать, какими должны быть воздействие на экономику и его последствия. 

В странах с развитой рыночной моделью экономики прогнозирование и планирование являются важнейшим инструментом государственного регулирования экономики. Нацелено применяя такой инструмент, эти страны, как известно, добились большого успеха в техническом прогрессе, повышении уровня жизни населения и других социально-экономических областях. 
 
В настоящее время следует отметить непрерывно растущую потребность в прогнозах.  
 
Теория прогнозирования и планирования экономики базируется на экономической теории. Если последняя изучает глубинные процессы экономического развития, устанавливает их суть, движущие силы для любых общественно-экономических формаций, то прогнозирование и планирование являются рабочим инструментом определения величин экономических показателей, позволяют выявить наиболее эффективные методы регулирования социально-экономических процессов в обществе и одновременно выступают в качестве методологической основы при рассмотрении вопросов прогнозирования и планирования отраслевых экономик, таких, как экономика промышленности, экономика транспорта, экономика строительства и др. 
 
Таким образом, место теории прогнозирования и планирования в системе экономических дисциплин определяется тем, что она является как бы связующим звеном экономической теории, с одной стороны, и отраслевыми экономиками - с другой. Данная наука имеет тесную связь со статистикой, от которой она заимствует методы анализа и необходимые сведения для расчетов. Прогнозирование и планирование используют достижения естественных, биологических и других наук, особенно математики.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. Сущность и основные понятия прогнозирования
 
Сущность процесса прогнозирования состоит в том, что исследователь определенным методом с помощью специального инструментария обрабатывает имеющуюся в его распоряжении информацию о состоянии изучаемого объекта в данный момент, о наблюдавшихся ранее закономерностях изменения объекта, об условиях его функционирования в настоящий момент и стремиться с определенной степенью достоверности превратить ее в систему знаний о будущем состоянии или поведении объекта.
Прогнозирование позволяет раскрыть устойчивые тенденции или выявить существенные изменения в социально-экономических процессах, оценить их вероятность для будущего планового периода, выявить возможные альтернативные варианты, накопить научный и эмпирический материал для обоснованного выбора той или иной концепции развития или планового решения.
 Отличительной особенностью прогнозирования является то, что оно описывает возникновение процессов и объектов, которые в данный момент недоступны непосредственному восприятию и проверке на практике.
Прогнозирование не сводится к попыткам предугадать детали будущего, хотя в некоторых случаях это существенно. Исследователь исходит в данном случае из диалектической детерминации явлений будущего, из понимания того, что необходимость пробивает себе дорогу через преодоление случайности, что к явлениям будущего нужен вероятностный подход с учетом широкого набора возможных вариантов. Только при таком подходе прогнозирование может быть эффективно использовано для выбора наиболее вероятного или наиболее желательного, оптимального варианта при обосновании цели, плана, программы, проекта, вообще, решения.  
 
Прогнозы должны предшествовать планам, содержать оценку хода последствий выполнения (или невыполнения) планов, охватывать все, что не поддается планированию, решению. Они могут охватывать в принципе любой отрезок времени. Прогноз и план отличаются способами оперирования информацией о будущем. Вероятностное описание возможного или желательного - это прогноз.  
 
Обоснованное решение относительно мероприятий по достижению возможного, желательного - это план. Прогноз и план могут разрабатываться независимо друг от друга. Но чтобы план был эффективным, оптимальным, ему должен предшествовать прогноз, по возможности непрерывный,  
позволяющий обосновать данный и последующие планы.  
  Кроме понятия «прогностика», в литературе используют термин футурология. Как любая наука прогностика имеет набор своих терминов, употребляемых для обозначения определенных понятий. Определения понятий прогностики были зафиксированы в 1978 году.
 
Результатом прогнозирования является - прогноз как научно обоснованное суждение о возможных состояниях объекта в будущем, об альтернативных путях и сроках его существования. Таким образом, прогноз -это вероятностное утверждение о будущем с относительно высокой степенью достоверности.
Прогнозирование - процесс разработки прогноза.
Этап прогнозирования - часть процесса разработки прогнозов, характеризующаяся своими задачами, методами и результатами. Деление на этапы связано со спецификой построения систематизированного описания объекта прогнозирования, сбора данных, с построением модели, верификацией прогноза.
Прием прогнозирования - одна или несколько математических или логических операций, направленных на получение конкретного результата в процессе разработки прогноза. В качестве приема могут выступать сглаживание динамического ряда, определение компетентности эксперта, вычисление средневзвешенного значения оценок экспертов и т. д.
Модель прогнозирования - модель объекта прогнозирования, исследование которой позволяет получить информацию о возможных состояниях объекта прогнозирования в будущем и (или) путях и сроках их осуществления.
Метод прогнозирования - способ исследования объекта прогнозирования, направленный на разработку прогноза. Методы прогнозирования являются основанием для методик прогнозирования.
Методика прогнозирования - совокупность специальных правил и приемов (одного или нескольких методов) разработки прогнозов.
Прогнозирующая система - система методов и средств их реализации, функционирующая в соответствии с основными принципами прогнозирования. Средствами реализации являются экспертная группа, совокупность программ и т. д. Прогнозирующие системы могут быть автоматизированными и неавтоматизированными.
Прогнозный вариант - один из прогнозов, составляющих группу возможных прогнозов.
Объект прогнозирования - процесс, система, или явление, о состоянии которого даётся прогноз.
Характеристика объекта прогнозирования - качественное или количественное отражение какого-либо свойства объекта прогнозирования.
Переменная объекта прогнозирования - количественная характеристика объекта прогнозирования, которая является или принимается за изменяемую в течение периода основания и (или) периода упреждения прогноза.
Сложность объекта прогнозирования - характеристика объекта прогнозирования, определяющая разнообразие его элементов, свойств и отношений.
Период основания прогноза - промежуток времени, за который используют информацию для разработки прогноза. Этот промежуток времени называют также периодом предыстории.
Период упреждения прогноза - промежуток времени, на который разрабатывается прогноз.
Прогнозный горизонт - максимально возможный период упреждения прогноза заданной точности.
Точность прогноза - оценка доверительного интервала прогноза для заданной вероятности его осуществления.
Достоверность прогноза - оценка вероятности осуществления прогноза для заданного доверительного интервала.
Ошибка прогноза - апостериорная величина отклонения прогноза от действительного состояния объекта.
Источник ошибки прогноза - фактор, способный привести к появлению ошибки прогноза. Различают источники регулярных и нерегулярных ошибок.
Верификация прогноза - оценка достоверности и точности или обоснованности прогноза.
Эксперт - квалифицированный специалист по конкретной проблеме, привлекаемый для вынесения оценки по поставленной задаче прогноза.
При разработке социальных прогнозов в ряде случаев производится выявление мнения представителей различных групп населения, условно приравниваемых к экспертам.
Компетентность эксперта - способность эксперта выносить на базе профессиональных знаний, интуиции и опыта достоверные суждения об объекте прогнозирования. Количественная мера компетентности эксперта называется коэффициентом компетентности.
Экспертная группа - коллектив экспертов, сформированный по определенным правилам для решения поставленной задачи прогноза. Частным случаем экспертной группы выступает экспертная комиссия.
Компетентность группы экспертов - способность экспертной группы выносить суждения об объекте прогнозирования, адекватные мнению генеральной совокупности экспертов. Компетентность экспертной группы определяется различными методиками.
Экспертная оценка - суждение эксперта или экспертной группы относительно поставленной задачи прогноза. В первом случае используется термин «индивидуальная экспертная оценка», во втором - «коллективная экспертная оценка».
 
Прогнозирование тесно связано со статистикой и во многом базируется на статистических данных и методах исследования массовых явлений.
 
 
 
 
3.   Статистические методы прогнозирования
 
Статистические методы прогнозирования - научная и учебная дисциплина, к основным задачам которой относятся разработка, изучение и применение современных математико-статистических методов прогнозирования на основе объективных данных; развитие теории и практики вероятностно-статистического моделирования экспертных методов прогнозирования; методов прогнозирования в условиях риска и комбинированных методов прогнозирования с использованием совместно экономико-математических и эконометрических (как математико-статистических, так и экспертных) моделей. Научной базой статистических методов прогнозирования является прикладная статистика и теория принятия решений.
 
По оценкам некоторых ученых насчитывается более 150 методов прогнозирования. Базовых методов гораздо меньше, многие из "методов" скорее относятся к отдельным способам и процедурам прогнозирования, либо представляют собой набор отдельных приемов, отличающихся от базовых методов количеством частных приемов и последовательностью их применения.  
 
Под методом прогнозирования понимается совокупность приемов и способов мышления, позволяющих на основе анализа ретроспективных данных, экзогенных (внешних) и эндогенных (внутренних) связей объекта прогнозирования, а также их измерения в рамках рассматриваемого явления или процесса вывести суждения определенной достоверности относительно будущего развития объекта.
По степени формализации методы экономического прогнозирования можно подразделить на интуитивные и формализованные. 
 
Интуитивные методы базируются на интуитивно-логическом мышлении. Они используются в тех случаях, когда невозможно учесть влияние многих факторов из-за значительной сложности объекта прогнозирования или объект слишком прост и не требует проведения трудоемких расчетов. Такие методы целесообразно использовать и в других случаях в сочетании с формализованными методами для повышения точности прогнозов. 
 
Среди интуитивных методов широкое распространение получили методы экспертных оценок. Они используются как в нашей стране, так и за рубежом для получения прогнозных оценок развития производства, научно-технического прогресса, эффективности использования ресурсов и т.п. 
 
Применяются также методы исторических аналогий и прогнозирования по образцу. Здесь имеет место своеобразная экстраполяция. Техника прогнозирования состоит в анализе высокоразвитой системы (страны, региона, отрасли) одного и того же приближенного уровня, который теперь имеется в менее развитой аналогичной системе, и на основании истории развития изучаемого процесса в высокоразвитой системе строится прогноз для менее развитой системы. Практика свидетельствует, что такие аналогии можно использовать при определении путей развития новых отраслей и видов техники (производство ЭВМ, телевизоров и т.п.), структуры производства, потребления и т.д. Естественно, что полученный таким образом "образец" - лишь начальный пункт прогнозирования. К окончательному выводу можно прийти, лишь исследуя внутренние условия и закономерности развития. 
 
К формализованным методам относятся методы экстраполяции и методы моделирования. Они базируются на математической теории. 
 
Среди методов экстраполяции широкое распространение получил метод подбора функций, основанный на методе наименьших квадратов (МНК). В современных условиях все большее значение стали придавать модификациям МНК: методу экспоненциального сглаживания с регулируемым трендом и методу адаптивного сглаживания. 
 
Методы моделирования предполагают использование в процессе прогнозирования и планирования различного рода экономико-математических моделей, представляющих собой формализованное описание исследуемого экономического процесса (объекта) в виде математических зависимостей и отношений. Различают следующие модели: матричные, оптимального планирования, экономико-статистические (трендовые, факторные, эконометрические), имитационные, принятия решений. Для реализации экономико-математических моделей применяются экономико-математические методы. 
 
В практике прогнозирования и планирования широко используются -также метод экономического (системного) анализа, нормативный и балансовый методы. Для разработки целевых комплексных программ используется программно-целевой метод (ПЦМ) в сочетании с другими методами. Следует отметить, что представленный перечень методов и их групп не является исчерпывающим. Рассмотрим методы, получившие широкое распространение в мировой практике.  
 

Методы экспертных оценок 
 
Основная идея прогнозирования на основе экспертных оценок заключается в построении рациональной процедуры интуитивно-логического мышления человека в сочетании с количественными методами оценки и обработки получаемых результатов. 
 
Сущность методов экспертных оценок заключается в том, что в основу прогноза закладывается мнение специалиста или коллектива специалистов, основанное на профессиональном, научном и практическом опыте. Различают индивидуальные и коллективные экспертные оценки. 
 

Методы экстраполяции 
 
В методическом плане основным инструментом любого прогноза является схема экстраполяции. Сущность экстраполяции заключается в изучении сложившихся в прошлом и настоящем устойчивых тенденций развития объекта прогноза и переносе их на будущее. 
 
Различают формальную и прогнозную экстраполяцию. Формальная базируется на предположении о сохранении в будущем прошлых и настоящих тенденций развития объекта прогноза; при прогнозной фактическое развитие увязывается с гипотезами о динамике исследуемого процесса с учетом" изменений влияния различных факторов в перспективе. Следует отметить, что методы экстраполяции необходимо применять на начальном этапе прогнозирования для выявления тенденций изменения показателей.  
 

Методы моделирования и экономико-математические методы 
 
Моделирование предполагает конструирование модели на основе предварительного изучения объекта или процесса, выделения его существенных характеристик или признаков. Прогнозирование экономических и социальных процессов с использованием моделей включает разработку модели, ее экспериментальный анализ, сопоставление результатов прогнозных расчетов на основе модели с фактическими данными состояния объекта или процесса, корректировку и уточнение модели. 
 
В зависимости от уровня управления экономическими и социальными процессами различают макроэкономические, межотраслевые, межрайонные, отраслевые, региональные модели и модели микроуровня (модели развития фирмы). 
 
По аспектам развития экономики выделяют модели прогнозирования воспроизводства основных фондов, трудовых ресурсов, цен и др. Существует ряд других признаков классификации моделей: временной, факторный, транспортный, производственный. 
 
В современных условиях в республике развитию моделирования и практическому применению моделей стала придаваться особая значимость в связи с усилением роли прогнозирования и переходом к индикативному планированию. 
 

Метод экономического анализа 
 
Экономический анализ является неотъемлемой частью и одним из основных элементов логики прогнозирования и планирования. Он должен осуществляться как на макро-, так и на мезо- и микроуровнях. 
 
При проведении экономического анализа следует использовать системный подход. В качестве системы рассматривается народное хозяйство (экономика) в целом и его структурные части: сферы, регионы, отрасли, объединения, предприятия. Анализ должен быть комплексным, т.е. всесторонним. 
 
Сущность метода экономического анализа заключается в том, что экономический процесс или явление расчленяется на составные части и выявляются взаимосвязь и влияние этих частей друг на друга и на ход развития всего процесса. Анализ позволяет раскрыть сущность такого процесса, определить закономерности его изменения в прогнозируемом (плановом) периоде, всесторонне оценить возможности и пути достижения поставленных целей. 
 
Процесс экономического анализа подразделяется на ряд стадий: постановку проблемы, определение целей и критериев оценки; подготовку информации для анализа; изучение и аналитическую обработку информации; разработку рекомендаций о возможных вариантах решения проблемы и достижения целей; оформление результатов анализа.  
 

Балансовый метод 
 
С помощью балансового метода реализуется принцип сбалансированности и пропорциональности. Он применяется при разработке прогнозов, планов и программ. Сущность его заключается в увязке потребностей страны в различных видах продукции, материальных, трудовых и финансовых ресурсов с возможностями производства продукции и источниками ресурсов. 
 
Балансовый метод предполагает разработку балансов, представляющих собой систему показателей, в которой одна часть, характеризующая ресурсы по источникам поступления, равна другой, показывающей распределение (использование) по всем направлениям их расхода. 
 
В переходный период к рыночным отношениям усиливается роль прогнозных балансов, разрабатываемых на макроуровне: платежного баланса, баланса доходов и расходов государства, баланса денежных доходов и расходов населения, сводного баланса трудовых ресурсов, балансов спроса и предложения. Результаты балансовых расчетов служат основой при формировании структурной, социальной, финансово-бюджетной и кредитно-денежной политики, а также политики занятости и внешнеэкономической деятельности. Балансы применяются также для выявления диспропорций в текущем периоде, вскрытия неиспользованных резервов и обоснования новых пропорций. 
 
Система балансов, используемых в прогнозировании и планировании, включает: материальные, трудовые и финансовые. В каждую из указанных групп входит ряд балансов. 

 

Нормативный метод 
 
Нормативный метод является одним из основных методов прогнозирования и планирования. В современных условиях ему стало придаваться особое значение в связи с использованием ряда норм и нормативов в качестве регуляторов экономики. Сущность нормативного метода заключается в технико-экономическом обосновании прогнозов, планов, программ с использованием норм и нормативов. Последние применяются для расчета потребности в ресурсах и показателей их использования. С помощью норм и нормативов обосновываются важнейшие пропорции, развитие материального производства и непроизводственной сферы, осуществляется регулирование экономики. 
 
Норма характеризует научно обоснованную меру расхода ресурса на единицу продукции (работы) в принятых единицах измерения, например расход муки на 1 тонну хлебобулочных изделий согласно утвержденной рецептуре. В виде нормы выступает потребление того или иного продукта на душу населения согласно научно обоснованному рациону питания. Например, рекомендуемая норма потребления мяса и мясопродуктов в год на 1 человека - 82 кг. В непроизводственной сфере применяются нормы, характеризующие необходимый размер общей и жилой площади на 1 жителя, потребление воды на 1 человека и др. 
 
Нормативы, как правило, разрабатываются в относительном выражении. Они характеризуют степень использования ресурсов (например, процент выхода годного литья от металло-завалки), расход ресурса на 1 млн. р. продукции, размер платы за кредит (процентные ставки) и др. 
 

Программно-целевой метод 
 
По сравнению с другими методами программно-целевой метод (ПЦМ) является относительно новым и недостаточно разработанным. Широкое распространение он получил только в последние годы, хотя был известен давно и впервые использовался еще при разработке плана ГОЭЛРО. 
 
ПЦМ тесно связан с нормативным, балансовым и экономико-математическими методами и предполагает разработку плана начиная с оценки конечных потребностей исходя из целей развития экономики при дальнейшем поиске и определении эффективных путей и средств их достижения и ресурсного обеспечения. С помощью этого метода реализуется принцип приоритетности планирования. 
 
Сущность ПЦМ заключается в отборе основных целей социального, экономического и научно-технического развития, разработке взаимоувязанных мероприятий по их достижению в намеченные сроки при сбалансированном обеспечении ресурсами с учетом эффективного их использования. 
 
ПЦМ применяется при разработке целевых комплексных программ, представляющих собой документ, в котором отражаются цель и комплекс научно-исследовательских, производственных, организационно-хозяйственных, социальных и других заданий и мероприятий, увязанных по ресурсам, исполнителям и срокам осуществления.
Простейшие методы восстановления используемых для прогнозирования зависимостей исходят из заданного временного ряда, т. е. функции, определённой в конечном числе точек на оси времени. Временной ряд при этом часто рассматривается в рамках той или иной вероятностной модели, вводятся другие факторы (независимые переменные), помимо времени, например, объем денежной массы. Временной ряд может быть многомерным. Основные решаемые задачи - интерполяция и экстраполяция. Метод наименьших квадратов в простейшем случае (линейная функция от одного фактора) был разработан К. Гауссом в 1794-1795 гг. Могут оказаться полезными предварительные преобразования переменных, например, логарифмирование. Наиболее часто используется метод наименьших квадратов при нескольких факторах. Метод наименьших модулей, сплайны и другие методы экстраполяции применяются реже, хотя их статистические свойства зачастую лучше.
Оценивание точности прогноза (в частности, с помощью доверительных интервалов) - необходимая часть процедуры прогнозирования. Обычно используют вероятностно-статистические модели восстановления зависимости, например, строят наилучший прогноз по методу максимального правдоподобия. Разработаны параметрические (обычно на основе модели нормальных ошибок) и непараметрические оценки точности прогноза и доверительные границы для него (на основе Центральной Предельной Теоремы теории вероятностей). Применяются также эвристические приемы, не основанные на вероятностно-статистической теории: метод скользящих средних, метод экспоненциального сглаживания.
Многомерная регрессия, в том числе с использованием непараметрических оценок плотности распределения - основной на настоящий момент статистический аппарат прогнозирования. Нереалистическое предположение о нормальности погрешностей измерений и отклонений от линии (поверхности) регрессии использовать не обязательно; однако для отказа от предположения нормальности необходимо опереться на иной математический аппарат, основанный на многомерной Центральной Предельной Теореме теории вероятностей, технологии линеаризации и наследования сходимости . Он позволяет проводить точечное и интервальное оценивание параметров, проверять значимость их отличия от 0 в непараметрической постановке, строить доверительные границы для прогноза.
Весьма важна проблема проверки адекватности модели, а также проблема отбора факторов. Априорный список факторов, оказывающих влияние на отклик, обычно весьма обширен, желательно его сократить, и крупное направление современных исследований посвящено методам отбора «информативного множества признаков». Однако эта проблема пока еще окончательно не решена. Проявляются необычные эффекты. Так, установлено, что обычно используемые оценки степени полинома имеют в асимптотике геометрическое распределение . Перспективны непараметрические методы оценивания плотности вероятности и их применения для восстановления регрессионной зависимости произвольного вида. Наиболее общие результаты в этой области получены с помощью подходов статистики нечисловых данных.
К современным статистическим методам прогнозирования относятся также модели авторегрессии, модель Бокса-Дженкинса, системы эконометрических уравнений, основанные как на параметрических, так и на непараметрических подходах.
Для установления возможности применения асимптотических результатов при конечных (т. н. «малых») объемах выборок полезны компьютерные статистические технологии. Они позволяют также строить различные имитационные модели. Отметим полезность методов размножения данных (бутстреп - методов). Системы прогнозирования с интенсивным использованием компьютеров объединяют различные методы прогнозирования в рамках единого автоматизированного рабочего места прогнозиста.
Прогнозирование на основе данных, имеющих нечисловую природу, в частности, прогнозирование качественных признаков основано на результатах статистики нечисловых данных. Весьма перспективными для прогнозирования представляются регрессионный анализ на основе интервальных данных, включающий, в частности, определение и расчет нотны и рационального объема выборки, а также регрессионный анализ нечетких данных, разработанный в . Общая постановка регрессионного анализа в рамках статистики нечисловых данных и ее частные случаи - дисперсионный анализ и дискриминантный анализ (распознавание образов с учителем), давая единый подход к формально различным методам, полезна при программной реализации современных статистических методов прогнозирования.
Основными процедурами обработки прогностических экспертных оценок являются проверка согласованности, кластер-анализ и нахождение группового мнения. Проверка согласованности мнений экспертов, выраженных ранжировками, проводится с помощью коэффициентов ранговой корреляции Кендалла и Спирмена, коэффициента ранговой конкордации Кендалла и Бэбингтона Смита. Используются параметрические модели парных сравнений Терстоуна, Бредли-Терри-Льюса -  и непараметрические модели теории люсианов . Полезна процедура согласования ранжировок и классификаций путем построения согласующих бинарных отношений. При отсутствии согласованности разбиение мнений экспертов на группы сходных между собой проводят методом ближайшего соседа или другими методами кластерного анализа (автоматического построения классификаций, распознавания образов без учителя). Классификация люсианов осуществляется на основе вероятностно-статистической модели.
Используют различные методы построения итогового мнения комиссии экспертов. Своей простотой выделяются методы средних арифметических и медиан рангов. Компьютерное моделирование позволило установить ряд свойств медианы Кемени, часто рекомендуемой для использования в качестве итогового (обобщенного, среднего) мнения комиссии экспертов. Интерпретация закона больших чисел для нечисловых данных в терминах теории экспертного опроса такова: итоговое мнение устойчиво, то есть мало меняется при изменении состава экспертной комиссии, и при росте числа экспертов приближается к «истине». При этом в соответствии с принятым в подходом предполагается, что ответы экспертов можно рассматривать как результаты измерений с ошибками, все они - независимые одинаково распределенные случайные элементы, вероятность принятия определенного значения убывает по мере удаления от некоторого центра - «истины», а общее число экспертов достаточно велико.
Многочисленны примеры ситуаций, связанных с социальными, технологическими, экономическими, политическими, экологическими и другими рисками. Именно в таких ситуациях обычно и необходимо прогнозирование. Известны различные виды критериев, используемых в теории принятия решений в условиях неопределенности (риска). Из-за противоречивости решений, получаемых по различным критериям, очевидна необходимость применения оценок экспертов.
В конкретных задачах прогнозирования необходимо провести классификацию рисков, поставить задачу оценивания конкретного риска, провести структуризацию риска, в частности, построить деревья причин (в другой терминологии, деревья отказов) и деревья последствий (деревья событий).
Центральной задачей является построение групповых и обобщенных показателей, например, показателей конкурентоспособности и качества. Риски необходимо учитывать при прогнозировании экономических последствий принимаемых решений, поведения потребителей и конкурентного окружения, внешнеэкономических условий и макроэкономического развития России, экологического состояния окружающей среды, безопасности технологий, экологической опасности промышленных и иных объектов.
Современные компьютерные технологии прогнозирования основаны на интерактивных статистических методах прогнозирования с использованием баз эконометрических данных, имитационных (в том числе на основе применения метода статистических испытаний) и экономико-математических динамических моделей, сочетающих экспертные, математико-статистические и моделирующие блоки разновидность математических методов прогнозирования, позволяющих построить динамические ряды на перспективу.
Статистические методы прогнозирования охватывают разработку, изучение и применение современных математико-статистически
и т.д.................


Перейти к полному тексту работы


Скачать работу с онлайн повышением уникальности до 90% по antiplagiat.ru, etxt.ru или advego.ru


Смотреть полный текст работы бесплатно


Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.