Здесь можно найти образцы любых учебных материалов, т.е. получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ и рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


творческая работа Формулирование и доказательство великой теоремы Ферма методами элементарной алгебры с использованием метода замены переменных для показателя степени n=4. Необходимые условия решения уравнения. Отсутствие решения теоремы в целых положительных числах.

Информация:

Тип работы: творческая работа. Предмет: Математика. Добавлен: 17.10.2009. Сдан: 2009. Уникальность по antiplagiat.ru: --.

Описание (план):


4

Доказательство великой теоремы Ферма для показателя степени n=4

Великая теорема Ферма формулируется следующим образом: диофантово уравнение:

Аn+ Вn = Сn (1)

где n - целое положительное число, большее двух, не имеет решения в целых положительных числах.

Суть Великой теоремы Ферма не изменится, если уравнение (1) запишем следующим образом:

Аn = Сn - Вn (2)

Пусть показатель степени n=4. Тогда уравнение (2) запишется следующим образом:

А4 = С44 (3)

Уравнение (3) запишем в следующем виде:

А4 = (С2) 2 - (В2) 2 = (С22) • (С22) (4)

Пусть: (С22) = N4 (5)

Уравнение (5) рассматриваем как параметрическое уравнение 4 - ой степени с параметром N и переменными B и С. Преобразуем уравнение (5):

N4 = (С -В) · (С +В) (6)

Для доказательства используем метод замены переменных. Обозначим:

C-B=M (7)

Из уравнения (7) имеем:

C=B+M (8)

Из уравнений (6), (7) и (8) имеем:

N4=M• (B+M+B) =M• (2B+M) = 2B•M+M2 (9)

Из уравнения (9) имеем:

N4 - M2= 2B•M (10)

Отсюда:

B = (11)

Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.