На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


творческая работа Доказательство утверждения Уравнение al+bq=cq (где l и q больше или равно 3) не имеет решений в отличных от нуля попарно взаимно простых целых числах a, b и c таких, чтобы a - было четным, b и c - нечетными целыми числами. Частный случай теоремы Ферма.

Информация:

Тип работы: творческая работа. Предмет: Математика. Добавлен: 26.09.2014. Сдан: 2010. Уникальность по antiplagiat.ru: --.

Описание (план):


114
Работа Скворцова Александра Петровича,
учителя, ветерана педагогического труда

Доказательство утверждения, частным случаем которого является великая теорема Ферма
Содержание

Общее утверждение
Утверждение 1
Доказательство Части первой «Утверждения 1»
Доказательство Части второй «Утверждения 1»
Пример
Примечание
«Вывод» о Великой теореме Ферма (простое)
Утверждение 2
Доказательство Части первой «Утверждения 2»
Доказательство Части второй «Утверждения 2»
Примечание
Окончательный «Вывод» о Великой теореме Ферма
Утверждение 3
Доказательство Части первой «Утверждения 3»
Доказательство Части второй «Утверждения 3»
Примечание
Общий вывод
Литература
Доказательство нижеприведённого «Утверждения» осуществлено элементарными средствами. В данной работе рассматриваются уравнения , частными случаями которых являются уравнения Ферма , где а - чётное число, и - целые числа, , , - =натуральные числа.
Метод, используемый в этой работе, опирается на применение дополнительного квадратного уравнения и его общего решения, чётность которого совпадает с числами, исследуемыми в моей работе.
Этот метод позволяет:
1. Судить о возможности существования целых решений уравнения Ферма для , т.е. о возможности существования «Пифагоровых троек», т.к. при рассуждениях никаких «противоречий» не возникает (доказательство этого в данной работе не приведено).
2. Судить об отсутствии решений в попарно взаимно простых целых числах уравнения , где - натуральное число, а - чётное число, т.к. при рассуждениях возникают «противоречия» (доказательство этого в данной работе не приведено, но дан пример на стр. 33).
3. Судить о возможности существования частного решения уравнения при (или b = ±1, или c = ±1), которое входит в п. «Исключения» моего общего «Утверждения». И такие решения следующие:
а) b = ±1; c = ±3; a = 2.
б) b = 3; c = ±1; a = -2 («Пример» на стр. 33).
4. Судить о неразрешимости в целых числах уравнения , где а - чётное число. Это хорошо известный факт в теории чисел (доказательство этого в данной работе приведено).
5. Судить о неразрешимости в целых числах и уравнения Ферма . Это тоже хорошо известный факт в теории чисел (в данной работе это утверждение является следствием более общего утверждения).
6. Судить о неразрешимости в целых числах уравнения Ферма , где - натуральное число. Это тоже уже известный факт в теории чисел (в данной работе это утверждение является следствием более общего утверждения).
**********
Так как данное доказательство «Общего Утверждения» в этой работе проведено мною элементарными средствами, то думаю, и своё «Утверждение» великий Ферма вполне мог доказать подобным методом.
И последнее. Я думаю, что специалистам, наверное, известны ещё некоторые конкретные примеры (частные случаи уравнения ), подпадающих под доказываемое в данной работе «Общего Утверждения». Если такие примеры имеются, то в свою очередь это будет являться дополнительным подтверждением правильности выбранного пути доказательства вышеназванного «Общего Утверждения».
?
ОБЩЕЕ УТВЕРЖДЕНИЕ, частным случаем которого является Великая теорема Ферма

1. Уравнение (, - натуральные числа) не имеет решений в отличных от нуля попарно взаимно простых целых числах , и таких, чтобы - было четным, и - нечетными целыми числами.
2. Но есть и «исключение» из данного утверждения: среди этих чисел , и может быть либо , либо .

***********

Чтобы доказать «ОБЩЕЕ УТВЕРЖДЕНИЕ», необходимо рассмотреть 2 случая
для показателя q:
1) при - натуральном;
2) при - натуральном, а для этого достаточно рассмотреть случай .
Утверждение 1, частным случаем которого является Великая теорема Ферма, для простого показателя

Часть 1
Уравнение (, - натуральные числа, где при - натуральном) не имеет решений в отличных от нуля попарно взаимно простых целых числах , и таких, чтобы - было четным, и - нечетными целыми числами.
Часть 2
Возможны случаи: либо , либо .

**********

Последнее утверждение (либо , либо ) в дальнейшем будем называть «исключением» из общего правила.
*********

Часть первая (Утверждения 1)

Уравнение (, - натуральные числа, где при - натуральном) не имеет решений в отличных от нуля попарно взаимно простых целых числах , и таких, чтобы - было четным, и - нечетными целыми числами.

Доказательство

Понятно, что доказательство достаточно рассмотреть для - простого.
Докажем данное «Утверждение 1» методом от противного. Предположим, что уравнение разрешимо в отличных от нуля попарно взаимно простых целых числах , и . И если в конце доказательства мы придем к противоречию, доказав, что числа , и не являются попарно взаимно простыми целыми числами, то это будет означать, что «Утверждение 1» справедливо.
Из уравнения (1) следует:
(2),
где - четное целое число, т.к. и - нечетные;
? 0, т.к. и - взаимно простые нечетные целые числа, не равные нулю;
- нечетное целое число при и - нечетных, - простом.

********
Примечание

То, что - нечетное число при и - нечетных, хорошо известный факт в теории чисел.
Для подтверждения данного факта достаточно использовать разложение бинома
Ньютона , , , … и тогда получим для :
- сумму трех нечетных слагаемых, равную нечетному числу.
Для :
- сумму пяти нечетных слагаемых, равную нечетному числу.
Для степени - простой можно доказать, что при и нечетных
(3) - сумма нечетных слагаемых, равная нечетному числу (Алексеев С.Ф. Два обобщения классических формул // Квант. - 1988. - №10. - С. 23).
*******

Пусть (4),
где - нечетное число (на основании (3)).
Тогда уравнение (2) примет вид:
(5),
где - четное число, которое можно представить в виде
(6),
где - целое число (при = 0 а = 0, что противоречит нашему допущению),
(4) - нечетное число.
Тогда из соотношения (5) с учетом (6) получаем:
, т.е. (7), где - целое число (), - натуральное число.
Сумму же нечетных чисел и обозначим через , т.е.
(8),
где - целое число (, т.к. и - взаимно простые нечетные целые числа, не равные нулю).
Из (7) и (8) определим и :
=> =>

Откуда (11) - нечетное число при - нечетном и - четном, т.к. , причем (12) (явно) при .
********

Вывод:
На основании (8) и (11) имеем: (13) - нечетное число;
из соотношений (7) и (12) имеем: (14) (явно) при .
Это дополнительная информация о свойствах предполагаемых взаимно простых числах , которая в дальнейшем нам очень пригодится.
*******

Теперь попробуем выразить сумму квадратов чисел c и . Учитывая соотношения (9) и (10), получим:
Таким образом, получили следующее уравнение:
(15),
где - целые числа, которые, являясь решениями уравнения (15), в свою очередь, могут быть выражены через другие целые числа следующим образом:
(16) - нечетное число при - нечетном;
(17) - нечетное число при - нечетном;
(18) - нечетное число при - нечетном;
(19) - четное число.
Примечание: во всех последующих исследованиях (Случаях) нас не будут интересовать
t =0 и r=0 (при t =0 и - четные из (16) и (17), при r=0 = 0 (из (19)) => а = 0 (из (6)), что противоречит нашему допущению).
*******

Примечание.

Общий вид уравнения (15) следующий:
(20) ,
целыми решениями которого (это известный факт в теории чисел) являются:
(21) ;
(22) ;
(23) ;
(24) , где - целые числа.
То, что (21), …, (24) являются решениями уравнения (20), легко проверяется их подстановкой в данное уравнение (20), которое при этом превращается в тождество.
*******

Для простоты обозначим правые части уравнений (16), …, (19) буквами С, В, N, К, т.е.
= С
= В
= N
= К,
и рассмотрим случай, когда в правых частях уравнений (16), …, (19) перед С, В, N, К, стоят «плюсы» и выполняется Условие 1.

Условие1 (начало).

с = С
b = B
n = N


Случай «+».
(16+) = С - нечетное число при - нечетном;
(17+) = В - нечетное число при - нечетном;
(18+) = N - нечетное число при - нечетном;
(19+) = К - четное число.
Казалось бы, все в порядке: четность в (16+), …, (19+) совпадает при -нечетном с нашими предыдущими рассуждениями.
Однако не все так просто.
Помимо всего прочего, у нас есть еще две дополнительные информации (13) и (14) (о четности, заключенной в «Выводе» (стр.5)), вытекающие из предположения о том, что, вопреки условию «Утверждения 1», допустим, существуют попарно взаимно простые целые числа .
Попробуем найти сумму , воспользовавшись их выражениями (16+) и (17+):
,
т.е. пропорционально 4, откуда следует, учитывая (13) в «Выводе» (стр.5), !
Т.е., вопреки «Выводу», в Случае «+» является не нечетным, а четным числом, что возможно (из (18+)) при -четном.
Однако, если - четное, то (в (16+) и (17+)) являются четными, т.е. в уравнениях (2) и (1) числа - четные, а потому не являются попарно взаимно простыми целыми числами.
Мы пришли к противоречию в Случае «+» с нашим предположением о существовании у уравнения (1) попарно взаимно простых целых решений.
Вывод. Следовательно, это уравнение (1) в данном Условии 1 не имеет решений в целых попарно взаимно простых отличных от нуля числах.
*******
Казалось бы, 1-я часть «Утверждения доказана. На самом деле у уравнения (15) есть еще решения. Нетрудно догадаться, что решениями уравнения (15) являются следующие выражения n, :
Случаи «+» и «-».
(16±) ;
(17±) ;
(18±) ;
(19±) .
Мы рассмотрели случай, когда перед скобками в (16±), …,(19±) стояли только «плюсы» (Случай «+»)
******

Случай «-».
(16-) ;
(17-) ;
(18-) ;
(19-) .
Случай, когда перед теми же скобками стоят только «минусы» (Случай «-»), аналогичен вышерассмотренному Случаю «+».
И в этом случае сумма пропорциональна 4, откуда следует, (учитывая (13) в «Выводе» (стр.5)), !
Т.е., вопреки «Выводу», и в этом Случае «-» является не нечетным, а четным числом, что возможно (из (18-)) при -четном.
Однако, если - четное, то (16-) и (17-)) являются четными, т.е. в уравнениях (2) и (1) числа - четные, а потому не являются попарно взаимно простыми целыми числами.
Мы пришли к противоречию (в Случае «-») с нашим предположением о существовании у уравнения (1) попарно взаимно простых целых решений.
*******

Вывод. Следовательно, уравнение (1) в данном Условии 1(начало) не имеет решений в целых попарно взаимно простых отличных от нуля числах.

*******

Примечание.
Осталось рассмотреть еще 14 случаев, когда перед С, В, N, К стоят всевозможные знаки (плюсы и минусы). Но об этом - во 2-ой части данного Утверждения 1.
********

Т.к. уравнение (15) симметрично для с и b (для уравнения (15) они равнозначны), то с и b могут обмениваться не только знаками «+» и «-», но и своими выражениями (C и В). Это свойство назовем «новым свойством ». Поэтому аналогичны вышерассмотренному и случаи («Новые» случаи «+» и «-»), когда опять же перед теми же скобками стоят одинаковые знаки.
Условие 2 (начало)

с = B
b = С
n = N

«Новые» случаи «+» и «-».
(16ґ±) c В
(17ґ±) bС
(18±) =± N
(19±) =±К

И в этом случае сумма пропорциональна 4, откуда следует, (учитывая (13) в «Выводе» (стр.5)), !
Т.е., вопреки «Выводу», и в этих «Новых» случаях «+» и «-» является не нечетным, а четным числом, что возможно(из (18±)) при -четном.
Однако, если - четное, то (в ((16ґ±) и ((17ґ±)) являются четными, т.е. в уравнениях (2) и (1) числа - четные, а потому не являются попарно взаимно простыми целыми числами.
Мы пришли к противоречию (в «Новых» случаях «+» и «-») с нашим предположением о существовании у уравнения (1) попарно взаимно простых целых решений.
*******
Вывод. Следовательно, это уравнение (1) в данном Условии 2 (начало) не имеет решений в целых попарно взаимно простых отличных от нуля числах.

*******
Примечание
Осталось рассмотреть еще 14 случаев (пояснение ниже), рассматривающих «новые свойства », когда перед С, В, N, К стоят всевозможные знаки (плюсы и минусы). Но об этом во 2-ой части данного Утверждения 1.
********

Уравнение (15) симметрично и для n и для (для уравнения 15 они равнозначны), которые тоже могут меняться своими выражениями (N и К). Это свойство назовем «похожим свойством n и ». А это означает, что нам придется рассмотреть еще 16 «похожих» случаев (с 1-го по 14 и случаи «+» и «-», в которых n и меняются своими выражениями (N и К )).
Условие 3

c = C
b = B
n = К
N
« Похожие» случаи «+» и «-».
(16±) с = ± С = ± ()
(17±) b = ± В =± ()
(18ґ±) n = ± К = ± ()
(19ґ±) = ± N= ± ()

Согласно одному из Выводов (формула (14)) (явно) при . Но это возможно, глядя на (19ґ±) = ±N= ±() только при t- четном, при которых в (16±) и (17±) c и b - четные, чего не должно быть.
Мы пришли к противоречию (в «Похожих» случаях «+» и «-») с нашим предположением о существовании у уравнения (1) попарно взаимно простых целых решений.
*******

В остальных 14 «похожих» случаях, где опять же = ± N= ± ( ) и перед С, В, N, К стоят всевозможные знаки (плюсы и минусы), рассуждая аналогичным способом (и при этом не затрагивая «новые свойства » (пояснение следует)), мы придем к прежнему результату: c и b - четные, чего не должно быть.
Это значит, что мы опять придем к противоречию с нашим предположением о существовании у уравнения (1) попарно взаимно простых целых решений.

********
Вывод. Следовательно, это уравнение (1) в данном Условии 3 не имеет решений в целых попарно взаимно простых отличных от нуля числах.

********
Пояснение (почему не надо в Условии 3 затрагивать «новые свойства »).

Запишем Условия (1, …, 3).
Условие 1 Условие 2 Условие 3 Условие 2+3
с = С с = B c = C c = B
b = B b = С b = B => b = C
n = N n = N n = К n = К


Если теперь поменять обозначения между собой в Условии 2+3 с на b, а b на c
в верхних двух строчках и n на , а на n в нижних двух строчках, то вернемся снова к обозначениям в Условии 1, которое во 2-й части «Утверждения 1» нами будет исследовано до конца:
Условие 2+3 Условие 1
c = B b = B с = С
b = C => с = С => b = B
n = К n = N
n = N
Вывод.
1. Таким образом, в вышерассмотренных Условиях 1 (начало), 2 (начало) и 3,
Уравнение (1) (, - натуральные числа, где при - натуральном) не имеет решений в отличных от нуля попарно взаимно простых целых числах , и таких, чтобы - было четным, и - нечетными целыми числами.
2. 1-я часть «Утверждения 1» (для Условий 1(начало), 2 (начало) и 3) доказана.

*********

Часть вторая (Утверждения1)

Возможны случаи: либо , либо .
(Об «Исключении» из общего правила)
Доказательство

Условие 1 (продолжение).
Всего случаев 16. Два из них рассмотрели в 1-й части Утверждения 1 (Случаи «-» и «+»).
Осталось рассмотреть еще 14 случаев, когда перед С, В, N и К в решениях уравнения (15) стоят разные знаки.
Пояснение.
Случаев всего 14, когда перед С, В, N и К в решениях уравнения (15) стоят разные знаки и число их равно числу Р перестановок из m = 4 элементов (c, b, n и ) по n = 1; 2; 3 элементов (плюсов (+) перед С, В, N и К) в каждом (по n = 0; 4 элементов ( Р = 1+1 = 2 ) мы уже рассмотрели - это 2 случая: Случаи «-» и «+» соответственно):
********
Случай 1.

(16)
(17?)
(18)
(19)
Тогда сумма имеет вид:
Учитывая (14) и (19), можно получить разность :
=> .
Выразим из (25) и (26) :
=>
=> .
По условию должны быть взаимно простыми целыми числами, поэтому их общий множитель .
Т.о., имеют вид:
, , а их сумма .
Т.к. из (8) , то => .
Из (19) с учетом (29) выразим :
, т.е. .
Т.о., , , т.е.
,
выражения которых, с учетом (33), полностью совпадают с (9) и (10).
Теперь, с учетом (17?) и (18), найдем сумму :
т.к. , т.е. .
(Здесь чередование «плюса» и «минуса» такое же, как и у единицы в (29). В последующих действиях мы это учтем).
Теперь, учитывая (32), получим значение для b:
, т.к. из (29) вытекает .
Итак, .
Учитывая (35), получим => .
Теперь, с учетом (38),можно получить окончательное выражение для с (из (34)):
, т.е. .
Таким образом, уравнение (15), решениями которого являются (16), (17?), (18) и (19), в конечном счете имеет следующие решения:
, ,
, ,
где - взаимно простые нечетные целые числа.

*******

Случай 2
Нетрудно догадаться, что если бы у уравнения (15) были бы решения, противоположные по знаку с решениями (16), (17?), (18) и (19), мы бы получили, в конечном итоге, решения, противоположные по знаку решениям (39), (37), (38) и (33), т.е.
, ,
, ,
где - взаимно простые нечетные целые числа.
*******

Случай 3
(16)
(17?)
(18)
(19?).
Тогда сумма имеет вид:
Учитывая (14) и (19?), можно получить разность :
- => (26?).
Выразим из (25) и (26?) :
=>
=> .
По условию должны быть взаимно простыми целыми нечетными числами, поэтому их общий множитель .
Т.о., имеют вид:
(30?), (31?), а их сумма .
Т.к. из (8) , то => .
Из (19ґ) с учетом (29) выразим :
, т.е. (33ґ).
Т.о., , ,
где ,
т.е. (34ґ), (35ґ), выражения которых, с учетом (33ґ), полностью совпадают с (9) и (10).
Теперь, с учетом (17?) и (18), найдем сумму :
т.к. , т.е. .
(Здесь чередование «плюса» и «минуса» такое же, как и у единицы в (29). В последующих действиях мы это учтем).
Теперь, учитывая (32), получим значение для b:
, т.к. из (29) вытекает .
Итак, .
Учитывая (35ґ), получим => ().
Теперь, с учетом (), можно получить окончательное выражение для с (из (34ґ)):
, т.е. (39ґґ).
Таким образом, уравнение (15), решениями которого являются (16), (17?), (18) и (19ґ), в конечном счете имеет следующие решения:

(39ґґ), (38ґґ), где - взаимно простые нечетные
, (33ґ), целые числа.

********

Случай 4
Нетрудно догадаться, что если бы у уравнения (15) были бы решения, противоположные по знаку с решениями (16), (17?), (18) и (19ґ), мы бы получили, в конечном итоге, решения, противоположные по знаку решениям (39ґґ), (37), (38ґґ) и (33ґ), т.е.
(39ґґґ), (38ґґґ), (37ґ), (33),
где - взаимно простые нечетные целые числа.
*******

Подведем некоторый итог. Нами рассмотрено 4 случая решений уравнения (15).
Ранее мы обозначили правые части уравнений (16),…, (19) буквами С, В, N, К, т.е
= С
= В
= N
= К

Тогда эти первые 4 случая следующие:
1. (16) 2. (16ґ) (39ґ)
(17ґ) (37) (17) (37ґ)
(18) (18ґ) (38ґ)
(19) (33) (19ґ) (33ґ)
3. (16) (39ґґ) 4. (16ґ) (39ґґґ)
(17ґ) (37) (17) (37ґ)
(18) (38ґґ) (18ґ) (38ґґґ)
(19ґ) (33ґ) (19) (33)
*********
Рассмотрим еще 10 случаев.

5. с = С 6. с = - С 7. c = C 8. c = - C
b = - B b = B b = - B b = B
n= - N n = N n = - N n = N


9. с = С. 10. с = -С 11. с = С 12. с = -С
b = B b = -B b = B b = -B
n =- N n = N n = N n =- N

13. с = С 14. с = -С
b = B b =- B
n =- N n = N
*******
Итак, рассмотрим случай 5.
Случай 5

(16)
(17ґ)
(18ґ)
(19).
Тогда сумма имеет вид:
Учитывая (14) и (19), можно получить разность :
=> .
Выразим из (25) и (26) :
=>
=> .
По условию должны быть взаимно простыми целыми числами, поэтому их общий множитель .
Т.о., имеют вид:
, , а их сумма .
Т.к. из (8) , то => .
Из (19) с учетом (29) выразим :
, т.е. .
Т.о., , , т.е.
,
выражения которых, с учетом (33), полностью совпадают с (9) и (10).
Теперь, с учетом (17?) и (18ґ), найдем разность :
т.к. , т.е. (36ґ).
(Здесь чередование «плюса» и «минуса» такое же, как и у единицы в (29). В последующих действиях мы это учтем).
Теперь, учитывая (32), найдем разность (b-n)-n:
где .
Т.к. b + c =2n, то b-2n = b - (b + c) = - c = -1 => c = 1 (40).
Учитывая (34), получим => (38ґ).
Теперь, с учетом (38ґ), можно получить окончательное выражение для b (из (35)):
, т.е. (41).
Таким образом, уравнение (15), решениями которого являются (16), (17?), (18ґ) и (19), в конечном счете, имеет следующие решения:
(41), , где - взаимно простые нечетные целые (40), (38ґ), числа

*******

Случай 6
Нетрудно догадаться, что если бы у уравнения (15) были бы решения, противоположные по знаку с решениями (16), (17'), (18ґ) и (19), мы бы получили, в конечном итоге, решения, противоположные по знаку решениям (40), (41), (38ґґ) и (33), т.е.
(40ґ), (38),
(41ґ), (33ґ), где - взаимно простые целые нечетные числа.

*******
Случай7

(16)
(17ґ)
(18ґ)
(19ґ)
Тогда сумма имеет вид:
Учитывая (14) и (19ґ), можно получить разность :
=> (26ґ).
Выразим из (25) и (26ґ) :
=>
=> .
По условию должны быть взаимно простыми целыми числами, поэтому их общий множитель .
Т.о., имеют вид:

(30ґ), (31ґ), а их сумма .
Т.к. из (8) , то => .
Из (19ґ), с учетом (29), выразим :
, т.е. (33ґ).
Т.о., , , т.е.
(34ґ),
(35ґ),
выражения которых, с учетом (33), полностью совпадают с (9) и (10).
Теперь, с учетом (17?) и (18ґ), найдем разность :
т.к. , т.е. (36ґ).
(Здесь чередование «плюса» и «минуса» такое же, как и у единицы в (29). В последующих действиях мы это учтем).
Теперь, учитывая (32), найдем разность (b-n)-n:
где .
Т.к. b+c=2n, то b-2n = b-(b+c) = -c = -1 => c = 1 (40).

Учитывая (34ґ), получим => (38ґґґ).
Теперь, с учетом (38ґґґ), можно получить окончательное выражение для b (из (35ґ)):
, т.е. (41ґґ).
Таким образом, уравнение (15), решениями которого являются (16), (17?), (18ґ) и (19ґ), в конечном счете, имеет следующие решения:
(40), (38ґґґ),
(41ґґ), (33ґ), где - взаимно простые нечетные целые числа.

*******

Случай 8
Нетрудно догадаться, что если бы у уравнения (15) были бы решения, противоположные по знаку с решениями (16), (17?), (18ґ) и (19ґ), мы бы получили, в конечном итоге, решения, противоположные по знаку решениям (40), (41ґ), (38ґґґ) и (33ґ), т.е.

(40ґ), (38ґґ),
, (33), где - взаимно простые целые нечетные числа.

*******

Вывод

Итак, после анализа полученных решений в Случаях 1,…, 8, уравнение (15) , где c и b - взаимно простые целые нечетные числа, имеет решение в следующих целых числах:
а) ; ; ; ;
б) ; ; ; .
А это в свою очередь означает, что и уравнение при вышеназванных условиях (смотри Утверждение1) может иметь целые решения либо при , либо при .

Случай 9
(16)
(17)
(18ґ)
(19)
Из (16) и (17) имеем:
Учитывая (14) и (19), можно получить разность другим способом:
=> .
Следовательно,
==> 2t = 4r ( ? 0, т.к. в (26ґґ) с ? b) => t = 2r (32ґ) => в (16) и (17) c и b - четные, чего не должно быть.
Мы пришли к противоречию с нашим предположением о существовании у уравнения (1) попарно взаимно простых целых решений.
*********

Случай 10
(16ґ)
(17ґ)
(18)
(19ґ),
т.е. по сравнению с предыдущим случаем 9 здесь знаки перед скобками противоположные, а потому (по понятным причинам) результат будет таким же, что и в случае 9.
Действительно, из (16ґ) и (17ґ) имеем:
Учитывая (14) и (19ґ), можно получить разность другим способом:
- => .
Следовательно, -=-=> 2t = 4r ( ? 0, т.к. в (26ґґ) с ? b) => t = 2r (32ґ) => в (16ґ) и (17ґ) c и b - четные, чего не должно быть.
Мы пришли к противоречию с нашим предположением о существовании у уравнения (1) попарно взаимно простых целых решений.
********
Случай 11
(16)
(17)
(18)
(19ґ)
Из (16) и (17) имеем:
Учитывая (14) и (19ґ), можно получить разность другим способом:
- => .
Следовательно, =-=> 2t = - 4r ( ? 0, т.к. в (26ґґ) с ? b) => t = -2r (32ґ) => в (16) и (17) c и b - четные, чего не должно быть.
Мы пришли к противоречию с нашим предположением о существовании у уравнения (1) попарно взаимно простых целых решений.
Случай 12
(16ґ)
(17ґ)
(18ґ)
(19),
т.е. по сравнению с предыдущим случаем 11 здесь знаки перед скобками противоположные, а потому (по понятным причинам) результат будет таким же, что и в случае 11.
Действительно, из (16ґ) и (17ґ) имеем:
Учитывая (14) и (19), можно получить разность другим способом:
=> .
Следовательно, -==> 2t = - 4r ( ? 0, т.к. в (26ґґ) с ? b) => t = -2r (32ґ) => в (16) и (17) c и b - четные, чего не должно быть.
Мы пришли к противоречию с нашим предположением о существовании у уравнения (1) попарно взаимно простых целых решений.
*******
Случай 13
(16)
(17)
(18ґ)
(19ґ)
Из (16) и (17) имеем:
Учитывая (14) и (19ґ), можно получить разность другим способом:
- => .
Следовательно, =-=> 2t = - 4r ( ? 0, т.к. в (26ґґ) с ? b) => t = -2r (32ґ) => в (16) и (17) c и b - четные, чего не должно быть.
Мы пришли к противоречию с нашим предположением о существовании у уравнения (1) попарно взаимно простых целых решений.
********

Случай 14
(16ґ)
(17ґ)
(18)
(19),
т.е. по сравнению с предыдущим случаем 13 здесь знаки перед скобками противоположные, а потому (по понятным причинам) результат будет таким же, что и в случае 13.
Действительно, из (16ґ) и (17ґ) имеем:
Учитывая (14) и (19), можно получить разность другим способом:
=> .
Следовательно, -==> 2t = - 4r ( ? 0, т.к. в (26ґґ) с ? b) => t = -2r (32ґ) => в (16) и (17) c и b - четные, чего не должно быть.
Мы пришли к противоречию с нашим предположением о существовании у уравнения (1) попарно взаимно простых целых решений.
***********
Вывод.

1. Таким образом, случаи 9,…, 14 новых возможных решений уравнения (15) не выявили.
2. Условие 1 (продолжение) нами полностью рассмотрено.
**********
Условие 2 (продолжение).

Ранее мы отмечали, что уравнение (15) симметрично для с и b, поэтому с и b могут меняться своими выражениями (C и В). Это свойство нами было названо «новым свойством ».
В 1-й части Утверждения 1 мы рассмотрели два «Новых» случая «+» и «-».
Осталось исследовать еще 14 случаев, рассматривающих «новые свойства », когда перед С, В, N, К стоят всевозможные знаки (плюсы и минусы).
********
«Новый» случай 15

(Отличающийся «новым свойством » от случая 1: с = С, b= , n= N, K)

с = - В (16-B),
b= С (17+C),
n= N (18),

K (19) - это общие решения уравнения (15), окончательным видом которых являются (это мы покажем далее) окончательные решения уравнения (15) в случае 8, т.е.

(40ґ), (38ґґ),
, (33),
где - взаимно простые нечетные целые числа.

Доказательство

Сумма имеет вид:
Учитывая (14) и (19), можно получить разность :
=> .
Выразим из (25) и (26) :
=>
=> .
По условию должны быть взаимно простыми целыми числами, поэтому их общий множитель .
Т.о., имеют вид:
, , а их сумма .
Т.к. из (8) , то => .
Из (19) с учетом (29) выразим :
, т.е. .
Т.о., , , т.е.
, выражения которых, с учетом (33), полностью совпадают с (9) и (10).
Теперь найдем сумму с:

т.к. , т.е. .
(Здесь чередование «плюса» и «минуса» такое же, как и у единицы в (29). В последующих действиях мы это учтем).
Теперь, учитывая (32), получим значение для с:
,
т.к. из (29) вытекает .
Итак, .
Учитывая (34), получим => .
Теперь, с учетом (38ґґ), можно получить окончательное выражение для b (из (35)):
, т.е. .
Таким образом, уравнение (15), решениями которого являются (16-B), (17+C), (18) и (19), в конечном счете имеет следующие решения (являющиеся окончательными решениями в случае 8):

, где - взаимно простые нечетные целые числа, ч.т.д.
*********

Примечание

То, что окончательные решения в случаях 15 и 8 одинаковые, вытекает и из следующего соображения, которое используем в дальнейшем (для быстроты суждений).

Случай 15. Случай 8
с = - В (16-B), с = - С (16ґ),
b= С (17+C), b= В (17),
n= N (18), n= N (18),
K (19), K (19).
У этих случаев одинаковые знаки в правых частях с и b, но разные выражения (С и В), в остальном эти случаи похожи.

Соображение
Если в этих случаях решения совпадают, значит, у них надо выявить что-то общее. Этим общим свойством для них являются произведение и разность с и b.

«Общие свойства для с и b»:

сb= -СВ, с - b= -С -В, с - b=
Воспользуемся свойствами корней квадратного уравнения (теоремой Виета). Имеем:
с(-b)= СВ, с+(- b)= -С -В = .
Отсюда получаем квадратное уравнение

- 2К+ С В = 0 => X1,2 = К ,
где, например, Х1 = -b, а Х2 = с, то есть
Х1 = -b = К +=+= += + = -В => b = В,
где на основании и Х1 = - b= -

Х2= с = К-= -= -= - = -С => с = - С,
где на основании (40ґ) и Х2 = Таким образом, мы получили случай 8:
Случай 8

с = - С (16ґ),
b= В (17),
n= N (18),
K (19),

где

, а - взаимно простые нечетные целые числа.
Теперь обозначим Х1 = с, а Х2 = - b. Тогда получим:
Х1 = с = К+=+= += + = -В => с = -В,
где на основании (40ґ) и Х1 = с = -1.

Х2 = - b = К-= -= -= - = -С => - b= -С => b = С,
где на основании и Х2 = -
Таким образом, мы получили случай 15:
Случай 15
с = -В (16-B),
b= С (17+C),
n= N (18),
K (19),
где

, а - взаимно простые нечетные целые числа.
Таким образом, одно и то же квадратное уравнение - + С В = 0, дает одинаковые решения X1,2 = К (X1(2) =- Х2(1) = -1) и для Случая 8 и для Случая 15, значит и одинаковые их окончательные решения:

, а - взаимно простые нечетные целые числа.
В этом мы непосредственно и убедились.
Следовательно, «Общие свойства для с и b» (сb= -СВ, с - b= -С -В, с - b= 2К) действительно определяют Случаи 15 и 8, имеющие одинаковые знаки у с и b и отличающиеся друг от друга у них выражениями (С и В), а, значит, и одинаковый вид их окончательных решений. Этой похожестью с и b, их отличием друг от друга и вышерассмотренными «Общими свойствами для с и b» мы воспользуемся при рассмотрении последующих случаев.
*********

Вывод (критерий одинаковости окончательных решений).
Если в каких-либо двух случаях наблюдаются вышерассмотренные «Общие свойства для с и b» ( сb = constґ, с - b = constґґ, с - b = constґґґ ), то в этих случаях окончательные решения имеют одинаковый вид.
*********
«Новый» случай 16

(Отличающийся «новым свойством » от случая 2: с = - С, b= В, n = -N, -K)
Случай 16. Случай 7.

с = В с = С
b= -С b= -В
n = -N n = -N
-K -K

Окончательные решения в случае 7:

(40), (38ґґґ),
(41ґ), (33ґ),
где - взаимно простые нечетные целые числа.
Воспользуемся вышерассмотренным «Соображением» и его «Выводом».
Т.к. «Общие свойства для с и b» (сb= - СВ = constґ, с - b= С+В = constґґ, с - b= - 2К = constґґґ ) выполняются, то Случаи 16 и 7 имеют одинаковый вид окончательных решений уравнения (15), т.е.
(40), (38ґґґ),
(41ґ), (33ґ),
где - взаимно простые нечетные целые числа, являющиеся и окончательными решениями уравнения (15) в случае 7.

********

«Новый» случай 17
(Отличающийся « новым свойством » от случая 3: с = С, b= -В, n = N, -K)
Случай 17. Случай 6.
с = - В (16-B), с = - С (16ґ),
b= С (17+C), b= В (17),
n= N (18), n= N (18),
-K (19ґ), -K (19ґ).

Окончательные решения в случае 6:

(40ґ), (38),
(41ґ), (33ґ),
где - взаимно простые нечетные целые числа.
Воспользуемся вышерассмотренным «Соображением» и его «Выводом».
Т.к. «Общие свойства для с и b» (сb= - СВ = constґ, с - b= -В = constґґ, с - b= - = constґґґ ) выполняются, то Случаи 17 и 6 имеют одинаковый вид окончательных решений уравнения (15), т.е.
(40ґ), (38),
(41ґ), (33ґ),
где - взаимно простые целые нечетные числа.

*********

«Новый» случай 18

(Отличающийся «новым свойством » от случая 4: с = - С, b= В, n =- N, K)
Случай 18. Случай 5.
с = В (16+B), с = С (16),
b=- С (17-C), b= -В (17ґ),
n=- N (18ґ), n= -N (18ґ),
K (19), K (19).

Окончательные решения в случае 5:

(40), (38ґ),
(41), ,
где - взаимно простые нечетные целые числа.
Воспользуемся вышерассмотренным «Соображением» и его «Выводом».
Т.к. «Общие свойства для с и b» (сb= - СВ = constґ, с - b= С +В = constґґ, с - b= 2К = constґґґ ) выполняются, то Случаи 18 и 5 имеют одинаковый вид окончательных решений уравнения (15), т.е.
(41), ,
где - взаимно простые нечетные целые (40), (38ґ), числа.

********

«Новый» случай 19

(Отличающийся «новым свойством » от случая 5: с = С, b=- В, n =- N, K)
Случай 19. Случай 4.
с = - В (16-B), с = - С (16ґ),
b= С (17+C), b= В (17),
n=- N (18ґ), n= -N (18ґ),
K (19), K (19)

Окончательные решения в случае 4:

(39ґґґ), (38ґґґ),
(37ґ), (33),

где - взаимно простые нечетные целые числа.
Воспользуемся вышерассмотренным «Соображением» и его «Выводом».
Т.к. «Общие свойства для с и b» (сb= - СВ = constґ, с - b= -С - В = constґґ, с - b= 2К = constґґґ ) выполняются, то Случаи 19 и 4 имеют одинаковый вид окончательных решений уравнения (15), т.е.
(39ґґґ), (38ґґґ),
(37ґ), (33),
где - взаимно простые нечетные целые числа.
********

«Новый» случай 20
(Отличающийся «новым свойством » от случая 6: с = - С, b= В, n = N, -K)
Случай 20. Случай 3.
с = В (16+B), с = С (16),
b= -С (17-C), b= -В (17ґ),
n= N (18), n= N (18),
-K (19ґ), -K (19ґ).

Окончательные решения в случае 3:

(39ґґ), (38ґґ),
, (33ґ),

где - взаимно простые нечетные целые числа.

Воспользуемся вышерассмотренным «Соображением» и его «Выводом».
Т.к. «Общие свойства для с и b» (сb= - СВ = constґ, с - b= С + В = constґґ, с - b= - 2К = constґґґ ) выполняются, то Случаи 20 и 3 имеют одинаковый вид окончательных решений уравнения (15), т.е.
(39ґґ), (38ґґ), где - взаимно простые нечетные
, (33ґ), целые числа.
********

«Новый» случай 21

(Отличающийся «новым свойством » от случая 7: с = С, b= -В, n = -N, -K)
Случай 21. Случай 2.
с = -В (16-B), с = - С (16ґ),
b= С (17+C), b= В (17),
n=- N (18ґ), n= -N (18ґ),
-K (19ґ), -K (19ґ).

Окончательные решения в случае 2:

,
,

где - взаимно простые нечетные целые числа
Воспользуемся вышерассмотренным «Соображением» и его «Выводом».
Т.к. «Общие свойства для с и b» (сb= - СВ = constґ, с - b= - С - В = constґґ, с - b= - 2К = constґґґ ) выполняются, то Случаи 21 и 2 имеют одинаковый вид окончательных решений уравнения (15), т.е.
, ,
, ,
где - взаимно простые нечетные целые числа.
*********

«Новый» случай 22

(Отличающийся «новым свойством » от случая 8: с = -С, b= В, n = N, K)
Случай 22. Случай 1.
с = В (16+B), с = С (16),
b= -С (17-C), b=- В (17ґ),
n= N (18), n= N (18),
K (19), K (19)

Окончательные решения в случае 1:

, ,
,

где - взаимно простые нечетные целые числа.
Воспользуемся вышерассмотренным «Соображением» и его «Выводом».
Т.к. «Общие свойства для с и b» (сb= - СВ = constґ, с - b= С + В = constґґ, с - b= 2К = constґґґ ) выполняются, то Случаи 22 и 1 имеют одинаковый вид окончательных решений уравнения (15), т.е.
, ,
, ,
где - взаимно простые нечетные целые числа.

**********

Вывод

Таким образом, в «Новых» случаях 15,…, 22 новых возможных решений уравнения (15) не выявили.

*********

«Новый» случай 23

(Отличающийся «новым свойством » от случая 9: с = С, b= В, n = -N, K)
Случай 23. Случай 12.
с = В (16+B), с = - С (16ґ),
b= С (17+C), b= - В (17ґ),
n= - N (18ґ), n= - N (18ґ),
K (19), K (19)

Окончательный вывод в случае 12: c и b - четные, чего не должно быть.
Воспользуемся вышерассмотренным «Соображением» и его «Выводом».
Т.к. «Общие свойства для с и b» (сb= СВ = constґ, с - b= -С + В = constґґ, с - b= 2К = constґґґ ) выполняются, то Случаи 23 и 12 имеют одинаковый вид окончательных решений уравнения (15), т.е. c и b - четные, чего не должно быть.
Мы пришли к противоречию с нашим предположением о существовании у уравнения (1) попарно взаимно простых целых решений.
********
«Новый» случай 24
(Отличающийся «новым свойством » от случая 10: с = -С, b= -В, n = N, -K)
Случай 24. Случай 11.
с = -В (16-B), с = С (16),
b=-С (17-C), b= В (17),
n= N (18), n= N (18),
-K (19ґ), -K (19ґ).

Окончательный вывод в случае 11: c и b - четные, чего не должно быть.
Воспользуемся вышерассмотренным «Соображением» и его «Выводом».
Т.к. «Общие свойства для с и b» (сb= СВ = constґ, с - b= С - В = constґґ, с - b= - 2К = constґґґ ) выполняются, то Случаи 24 и 11 имеют одинаковый вид окончательных решений уравнения (15), т.е. c и b - четные, чего не должно быть.
Мы пришли к противоречию с нашим предположением о существовании у уравнения (1) попарно взаимно простых целых решений.
*******

«Новый» случай 25
(Отличающийся « новым свойством » от случая 11: с = С, b= В, n = N, -K)
Случай 25. Случай 10.
с = В (16+B), с = - С (16ґ),
b= С (17+C), b= - В (17ґ),
n= N (18), n= N (18),
-K (19ґ), -K (19ґ).

Окончательный вывод в случае 10: c и b - четные, чего не должно быть.
Воспользуемся вышерассмотренным «Соображением » и его «Выводом».
Т.к. «Общие свойства для с и b (сb= СВ = constґ, с - b= -С + В = constґґ, с - b= - 2К = constґґґ ) выполняются, то Случаи 25 и 10 имеют одинаковый вид окончательных решений уравнения (15), т.е. c и b - четные, чего не должно быть.
Мы пришли к противоречию с нашим предположением о существовании у уравнения (1) попарно взаимно простых целых решений.
*********
«Новый» случай 26

(Отличающийся «новым свойством » от случая 12: с = - С, b=- В, n = -N,K)
Случай 26. Случай 9.
с = - В (16-B), с = С (16),
b= - С (17-C), b= В (17),
n= - N (18ґ), n= - N (18ґ),
K (19), K (19).

Окончательный вывод в случае 9: c и b - четные, чего не должно быть.
Воспользуемся вышерассмотренным «Соображением» и его «Выводом».
Т.к. «Общие свойства для с и b» (сb= СВ = constґ, с - b= С - В = constґґ, с - b= 2К = constґґґ ) выполняются, то Случаи 26 и 9 имеют одинаковый вид окончательных решений уравнения (15), т.е. c и b - четные, чего не должно быть.
Мы пришли к противоречию с нашим предположением о существовании у уравнения (1) попарно взаимно простых целых решений.
********
«Новый» случай 27
(Отличающийся «новым свойством » от случая 13: с = С, b= В, n = -N,-K)
Случай 27. Случай «-».
с = В (16+B), с = - С (16ґ),
b= С (17+C), b= - В (17ґ),
n= - N (18ґ), n= - N (18ґ),
-K (19ґ), -K (19ґ).

Окончательный вывод в случае «-»: c и b - четные, чего не должно быть.
Воспользуемся вышерассмотренным «Соображением» и его «Выводом».
Т.к. «Общие свойства для с и b» ( < и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.