На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Реферат Система легочной вентиляции - обновление воздуха в альвеолах, где он вступает в контакт с кровью в легочных капиллярах. Давление газов в воде и тканях. Диффузия газов через респираторную мембрану. Химические формы транспортирования двуокиси углерода.

Информация:

Тип работы: Реферат. Предмет: Медицина. Добавлен: 31.03.2009. Сдан: 2009. Уникальность по antiplagiat.ru: --.

Описание (план):


16
Министерство образования Российской Федерации
Пензенский Государственный Университет
Медицинский Институт
Кафедра Травматологии, ортопедии и военно-экстремальной хирургии
Курсовая работа
на тему: «Газовый состав крови»
Выполнила: студентка V курса
Проверил: к.м.н., доцент
Пенза 2008
План

1. Минутная вентиляция
2. Альвеолярная вентиляция
3. Мёртвое пространство
4. Давление газа
5.Альвеолярные газы
6. Газы артериальной крови
Литература
1. Минутная вентиляция
Минутная вентиляция -- это общее количество вновь поступившего в дыхательные пути и в легкие воздуха и вышедшего из них в течение одной минуты, что равно дыхательному объему, умноженному на частоту дыхания. В норме дыхательный объем составляет приблизительно 500 мл, а частота дыхания -- 12 раз в минуту.
Таким образом, в норме вентиляционный минутный объем в среднем составляет около 6 л. При снижении минутной вентиляции до 1,5 л и уменьшении частоты дыхания до 2--4 в 1 мин человек может жить лишь очень непродолжительное время, если только у него не разовьется сильное угнетение метаболических процессов, как это бывает при глубокой гипотермии.
Частота дыхания иногда возрастает до 40--50 дыханий в минуту, а дыхательный объем может достигать величины, близкой к жизненной емкости легких (около 4500--5000 мл у молодых здоровых мужчин). Однако при большой частоте дыхания человек обычно не может поддерживать дыхательный объем на уровне, превышающем 40 % жизненной емкости легких (ЖЕЛ), в течение нескольких минут или часов.
2. Альвеолярная вентиляция
Основной функцией системы легочной вентиляции является постоянное обновление воздуха в альвеолах, где он вступает в тесный контакт с кровью в легочных капиллярах. Скорость, с которой вновь поступивший воздух достигает указанной области контакта, называется альвеолярной вентиляцией. При нормальной, спокойной вентиляции дыхательный объем заполняет дыхательные пути вплоть до терминальных бронхиол, и лишь небольшая часть вдыхаемого воздуха проходит весь путь и контактирует с альвеолами. Новые порции воздуха преодолевают короткую дистанцию от терминальных бронхиол до альвеол путем диффузии. Диффузия обусловлена передвижением молекул, причем молекулы каждого газа перемещаются с большой скоростью среди других молекул. Скорость движения молекул во вдыхаемом воздухе настолько велика, а расстояние от терминальных бронхиол до альвеол столь мало, что газы преодолевают это оставшееся расстояние в считанные доли секунды.
3. Мертвое пространство
Обычно не менее 30 % вдыхаемого человеком воздуха никогда не достигает альвеол. Этот воздух называют воздухом мертвого пространства, так как он бесполезен для процесса газообмена. В норме мертвое пространство у молодого мужчины с дыхательным объемом в 500 мл составляет примерно 150 мл (около 1 мл на 1 фунт массы тела), или приблизительно 30 % дыхательного объема.
Объем дыхательных путей, проводящих вдыхаемый воздух до места газообмена, называется анатомическим мертвым пространством. Иногда, однако, некоторые альвеолы не функционируют из-за недостаточного притока крови к легочным капиллярам. С функциональной точки зрения эти альвеолы без капиллярной перфузии рассматриваются как патологическое мертвое пространство.
С учетом альвеолярного (патологического) мертвого пространства общее мертвое пространство называют физиологически мертвым пространством. У здорового человека анатомическое и физиологическое мертвое пространство практически одинаковы по объему, так как все альвеолы функционируют. Однако у лиц с плохо перфузируемыми альвеолами общее (или физиологическое) мертвое пространство может превышать 60 % дыхательного объема.
4. Давление газа
Давление обусловлено постоянным столкновением движущихся молекул с той или иной поверхностью. Следовательно, давление газа, действующего на поверхность дыхательных путей и альвеол, пропорционально суммарной силе столкновений всех молекул, соприкасающихся с поверхностью в любой момент времени. В легких мы имеем дело со смесью газов, в частности с кислородом, азотом и углекислым газом. Скорость диффузии каждого из этих газов прямо пропорциональна его парциальному давлению.
Давление газов в воде и тканях
Концентрация газа в растворе определяется не только его давлением, но и коэффициентом его растворимости. Молекулы некоторых газов, особенно углекислого газа, имеют физическое или химическое сродство с молекулами воды, тогда как молекулы других газов от них отталкиваются. Когда молекулы газа притягиваются к воде, гораздо большее их количество может быть растворено в ней, при этом не создается избыточного давления в растворе. С другой стороны, газы, молекулы которых отталкиваются от молекул воды, создают избыточное давление при слабой их растворимости в воде.
По закону Генри, объем газа, растворяемого в данном объеме жидкости, определяется как парциальным давлением газа, так и коэффициентом его растворимости. Коэффициенты растворимости для наиболее важных для дыхания газов при температуре тела таковы: кислород -- 0,024: углекислый газ -- 0,57; окись углерода -- 0,018; азот -- 0,012; гелий -- 0,008. Таким образом, растворимость углекислого газа более чем в 20 раз выше, чем у кислорода; кислород же более растворим, чем три других из основных перечисленных газов. Знание этих коэффициентов растворимости необходимо, так как оно помогает определить количество газа, который физически может быть растворен в жидких средах организма. А это в свою очередь является одним из главных факторов, определяющих скорость, с которой газы диффундируют в тканях.
Давление испарения воды
При поступлении воздуха в дыхательные пути вода немедленно начинает испаряться с их поверхности, увлажняя, таким образом, вдыхаемый воздух. Это обусловлено тем, что молекулы воды, подобно другим молекулам растворенных газов, постоянно отрываются от поверхности воды и переходят в газовое состояние (в газовую фазу). Давление, которое молекулы воды преодолевают, чтобы оторваться от ее поверхности, называется давлением испарения воды. При температуре 37 °С (98,6 °F) давление испарения равно 47 мм рт.ст. Следовательно, как только смесь газов полностью увлажнится, парциальное давление паров воды в газовой смеси также составит 47 мм рт.ст.
Диффузия газов в жидкостях -- градиент давления при диффузии
Основные факторы, влияющие на скорость диффузии газов в жидкости, включают: 1) парциальное давление газа; 2) растворимость газа в жидкости; 3) поперечное сечение той части поверхности, через которую происходит диффузия; 4) расстояние, которое газ должен преодолеть при диффузии; 5) молекулярная масса газа; 6) температура жидкости.
Чем больше растворимость газа и площадь поверхности для диффузии, тем больше количество молекул, способных диффундировать при любой данной разнице давления. С одной стороны, чем больше расстояние, которое молекулы должны пройти при диффузии, тем больше для этого требуется времени. И наконец, чем больше скорость движения молекул (которая при любой данной температуре обратно пропорциональна квадратному корню молекулярной массы), тем выше скорость диффузии газа.
Таким образом, характеристики самого газа в этой формуле определяют два фактора: растворимость и молекулярную массу, которые вместе называются диффузионным коэффициентом газа. Следовательно, диффузионный коэффициент, равный S,/MW, определяет относительную скорость, с которой различные газы диффундируют при одинаковом уровне давления. Если диффузионный коэффициент кислорода равен 1,0, то относительные диффузионные коэффициенты других газов, необходимых для дыхания, составляют: углекислый газ -- 20,3; окись углерода -- 0,81; азот --0,53; гелий -- 0,95.
Диффузия газов в тканях
Необходимые для дыхания газы имеют высокую жирорастворимость и, следовательно, хорошо растворимы в клеточных мембранах. Стало быть, эти газы диффундируют через клеточные мембраны при очень слабом сопротивлении. Основным лимитирующим фактором движения газов через ткани является скорость, с которой газы могут диффундировать через тканевую воду.
Диффузия газов через респираторную мембрану
Респираторная единица состоит из респираторной бронхиолы, альвеолярных ходов, отверстия, открывающегося в альвеолу, и альвеолы.
В обоих легких имеется около 300 млн альвеол, диаметр каждой альвеолы в среднем составляет примерно 0,2 мм (200 мкм). Стенки альвеол чрезвычайно тонки и тесно соприкасаются с относительно плотной сетью сообщающихся между собой капилляров.
Ввиду большой распространенности капиллярного сплетения движение крови возле альвеол описывается как "сплошной лист" протекающей крови. Мембрана, через которую осуществляется газообмен между альвеолярным воздухом и кровью, известна как респираторная, или легочная, мембрана.
Для того чтобы кислород прошел из альвеол в легочное капиллярное русло, он должен проникнуть через четыре отдельных слоя, часто называемых в совокупности альвеолярно-капиллярной, или респираторной, мембраной. Эти четыре слоя включают следующее.
Слой жидкости, омывающей альвеолу. Она называется альвеолярной жидкостью и содержит в себе сурфактант, уменьшающий поверхностное натяжение.
Альвеолярный эпителий, состоящий из очень тонкого слоя эпителиальных клеток и базальной мембраны.
Очень ограниченное интерстициальное пространство между альвеолярным эпителием и капиллярной мембраной.
Капиллярная эндотелиальная мембрана и ее базальная мембрана, сливающаяся во многих местах с альвеолярной базальной мембраной.
Несмотря на такое количество слоев, общая толщина респираторной мембраны в некоторых местах составляет всего лишь 0,2 мкм, а в среднем -- 0,63 мкм.
Как установлено при гистологических исследованиях, общая площадь поверхности респираторной мембраны у здорового взрослого составляет примерно 160 м2 (что приблизительно соответствует размерам теннисного корта). Хотя легкие могут содержать около 700 мл крови, ее общее количество в легочных капиллярах в тот или иной момент времени составляет лишь 60-140 мл.
Средний диаметр легочных капилляров составляет менее 8 мкм; это означает, что эритроциты должны действительно проникать через них. Следовательно, мембрана эритроцита обычно соприкасается с капиллярной стенкой, так что кислород и углекислый газ вовсе не обязательно должны пройти через значительное количество плазмы в процессе их диффундирования между альвеолой и эритроцитом. Это способствует увеличению скорости диффузии газов между альвеолой и эритроцитом.
Факторы, влияющие на диффузию газов через респираторную мембрану
Факторы, определяющие скорость прохождения газа через респираторную мембрану, таковы:
1) толщина мембраны;
2) площадь поверхности мембраны;
3) коэффициент диффузии газа в воде данной мембраны;
4) разница давления по обе стороны мембраны.
Толщина респираторной мембраны иногда увеличивается, обычно в результате накопления отечной жидкости в интерстициальном пространстве. Кроме того, некоторые легочные заболевания вызывают фиброз легких, при котором отдельные участки респираторной мембраны могут еще больше утолщаться. Поскольку скорость диффузии через мембрану обратно пропорциональна ее толщине, любой фактор, увеличивающий толщину мембраны более чем в 2 или 3 раза по сравнению с нормой, может существенно нарушить оксигенацию крови. Диффузия практически никогда не представляет проблемы для углекислого газа.
Площадь поверхности респираторной мембраны может значительно уменьшаться при многих различных состояниях, таких как ателектаз или резекция легочной ткани. При эмфиземе многие альвеолы сливаются друг с другом при исчезновении альвеолярных стенок. Вновь образовавшиеся альвеолярные полости значительно больше первоначальных, однако общая площадь поверхности респираторной мембраны значительно сокращается. Когда общая площадь поверхности легких уменьшается примерно на одну треть или одну четверть нормы, обмен газов через мембрану в значительной степени замедляется даже в условиях покоя. При спортивных соревнованиях и других физических нагрузках даже небольшое уменьшение дыхательной поверхности легких может стать серьезной помехой для адекватного газообмена. Разница в давлении по обе стороны респираторной мембраны является по сути дела разницей между парциальным давлением газа в альвеолярах и парциальным давлением этого газа в крови. При дыхании комнатным воздухом нормальная артериально-альвеолярная разница для кислорода составляет 2--10 мм рт.ст. Для углекислого газа нормальная разница равна нулю.
Диффузионная способность респираторной (альвеолярно-капиллярной) мембраны.
Способность респираторной мембраны к газообмену между альвеолярами и кровью в легких может быть выражена количественно при использовании диффузионной способности, которая определяется как объем газа, диффундирующего через мембрану в течение 1 мин при разнице давления в 1 мм рт.ст. У среднего молодого взрослого диффузионная способность для кислорода в покое составляет в среднем 21 мл/мин на 1 мм рт.ст. Средняя разница давления кислорода по обе стороны респираторной мембраны при нормальном, спокойном дыхании составляет примерно 12 мм рт.ст. Умножение этого параметра на диффузионную способность (21 * 12) дает общее количество (около 250 мл) кислорода, диффундирующего через респираторную мембрану каждую минуту, что приблизительно равно скорости, с которой средний взрослый поглощает кислород в условиях покоя.
При большой физической нагрузке или при других состояниях, существенно увеличивающих легочный кровоток и альвеолярную вентиляцию, диффузионная способность кислорода у молодых мужчин возрастает до максимума -- примерно до 65 мл/мин на 1 мм рт.ст., что втрое превосходит диффузионную способность в состоянии покоя. Подобное повышение обусловлено рядом различных факторов, включающих: 1) раскрытие прежде "спавших" легочных капилляров, что увеличивает поверхность крови, в которую кислород может диффундировать; 2) расширение легочных капилляров, которые уже были открыты, что еще больше увеличивает площадь поверхности.
Диффузионная способность двуокиси углерода не определена, так как этот газ настолько быстро диффундирует через респираторную мембрану, что средняя разница между РСо, в крови легочных капилляров и в альвеолах составляет менее 1 мм рт.ст. Поскольку диффузионный коэффициент углекислого газа в 20 раз выше, чем у кислорода, можно ожидать, что диффузионная способность углекислого газа в покое составит примерно 400--450 мл/мин на 1 мм рт.ст., а при физической нагрузке -- около 1200--1300 мл/мин на 1 мм рт.ст.
Способность кислорода к диффузии может быть рассчитана по следующим параметрам: 1) альвеолярное POl; 2) POl в крови легочных капилляров; 3) скорость поглощения кислорода кровью. Ввиду трудностей, возникающих при определении диффузионной способности кислорода, физиологи предпочитают определять данный параметр для окиси углерода и лишь затем, используя полученное значение, рассчитывать диффузионную способность кислорода. При таком методе в альвеолы вдыхается небольшое количество окиси углерода, а затем его парциальное давление измеряется в образцах альвеолярного воздуха. Измерив, объем окиси углерода, абсорбированного в течение определенного времени, и разделив полученное значение на парциальное давление окиси углерода в воздухе в конце дыхательного цикла, определяют диффузионную способность окиси углерода.
Диффузионный коэффициент кислорода составляет 1,23 такового окиси углерода. Следовательно, если средняя диффузионная способность окиси углерода у молодого мужчины составляет 17 мл/мин на 1 мм рт.ст., то диффузионная способность кислорода будет равна 1,23 этой величины, или 21 мл/мин на 1 мм рт.ст.
5. Альвеолярные газы

Вдыхаемые газы
Воздух на уровне моря при среднем барометрическом давлении в 760 мм рт.ст. содержит приблизительно 20,93 % кислорода и 0,04 углекислого газа; остальное приходится в основном на азот. Следовательно, парциальное давление кислорода и углекислого газа в воздухе на уровне моря составляет соответственно 159 и 0,3 мм рт.ст.
Концентрация газов в альвеолярном воздухе отличается от таковой атмосферного воздуха по следующим причинам: 1) сухой атмосферный воздух, поступающий в дыхательные пути, увлажняется на пути к альвеолам; 2) альвеолярный воздух при каждом дыхании лишь частично замещается атмосферным; 3) кислород постоянно абсорбируется из альвеолярного воздуха; 4) углекислый газ в легких постоянно диффундирует из крови в альвеолы.
Увлажнение вдыхаемого воздуха
Воздух, поступая в верхние дыхательные пути, согревается и насыщается водой, что уменьшает общее парциальное давление вдыхаемых газов на 47 мм рт.ст., т. е. примерно до 713 мм рт.ст. Таким образом, давление вдыхаемого кислорода (PlOl) в трахее и бронхах падает до (713) (0,2093), или до 149 мм рт.ст. (см. табл. 7.1). Если пациент вдыхает 60 % кислород [фракция вдыхаемого кислорода (ЛО;) = 0,6], то РЮ1 в трахее и бронхах составляет (713)(0,6), или 428 мм рт.ст.
Функциональная остаточная емкость легких, которая определяется количеством воздуха, остающегося в легких в конце нормального выдоха, составляет примерно 2500--3000 мл. Более того, с каждым новым дыхательным объемом в альвеолы поступает лишь 350 мл нового воздуха и выдыхается такое же количество старого альвеолярного воздуха. Следовательно, количество альвеолярного воздуха, замещаемого новым атмосферным воздухом, при каждом дыхании составляет всего 12--16 % общего количества газа, обычно присутствующего в легких. При нормальной альвеолярной вентиляции примерно половина старого альвеолярного воздуха заменяется в течение 17 с. Если скорость альвеолярной вентиляции у данного лица составляет лишь половину нормы, то половина объема газа заменяется в течение 34 с; если же скорость вентиляции вдвое превышает норму, то на замену половины объема уходит около 8 с.
Такое медленное замещение альвеолярного воздуха особенно важно для предупреждения внезапных изменений в концентрациях газов крови. Тем самым устанавливается достаточно стабильный респираторный контроль, что помогает предупреждать чрезмерное повышение и снижение тканевой оксигенации, концентрации углекислоты в тканях и тканевого рН в случае временного прекращения дыхания.
Концентрация кислорода и парциальное давление в альвеолах. В легких кислород непрерывно абсорбируется в кровь, а новый кислород постоянно поступает в альвеолы из атмосферного воздуха. Чем быстрее абсорбируется кислород, тем ниже становится его концентрация в альвеолах. С другой стороны, чем быстрее новые порции кислорода поступают в альвеолы из атмосферного воздуха, тем выше становится его концентрация. Следовательно, концентрация кислорода в альвеолах контролируется скоростью абсорбции кислорода в кровь и скоростью поступления нового кислорода в легкие при вентиляции.
Концентрация углекислого газа в альвеолах
Двуокись углерода (углекислый газ), постоянно образуясь в организме, приносится в альвеолы и столь же постоянно удаляется из альвеол в процессе вентиляции. Таким образом, двумя факторами, определяющими парциальное давление в альвеолах (Лсо2). являются: 1) скорость экскреции двуокиси углерода из крови в альвеолы; 2) скорость, с которой СО2 удаляется из альвеол при альвеолярной вентиляции.
При нормальной скорости альвеолярной вентиляции в 4,2 л/мин альвеолярное Рсо>Со;) обычно составляет 40 мм рт.ст. Если альвеолярная вентиляция удваивается, то /^^ снижается до 20 мм рт.ст. При уменьшении альвеолярной вентиляции до 2,1 л/мин /эАс0; возрастает до 80 мм рт.ст.
Выдыхаемый воздух
Выдыхаемый воздух -- это комбинация воздуха мертвого пространства и альвеолярного воздуха; его суммарный состав определяется пропорцией каждого из названных компонентов. Самой первой порцией выдыхаемого воздуха является воздух мертвого пространства. Затем по нарастающей к нему примешивается альвеолярный воздух, постепенно вытесняя воздух мертвого пространства; так что в конце выдоха остается лишь альвеолярный воздух. Стало быть, если предусматриваются исследования только альвеолярного воздуха, надо просто собрать газ в конце выдоха.
6. Газы артериальной крови
Альвеолярная вентиляция
Двуокись углерода диффундирует настолько быстро, что РаСОг обычно служит прекрасным показателем адекватности общей вентиляции перфузируемых альвеол. Если этот показатель больше нормы у пациента с нормальным рН артериальной крови, то обычно делается заключение о снижении вентиляции. Однако больной может также иметь увеличенное мертвое пространство вследствие эмфиземы легочной эмболии или сепсиса. Повышенное РаСог в присутствии метаболического алкалоза, как правило, отражает компенсаторные усилия, направленные на нормализацию артериального рН. Как правило, при каждом падении артериальной концентрации бикарбоната на 1,0 мЭкв/л ниже уровня 24,0 мЭкв/л /со, снижается примерно на 1,4 мм рт.ст. В противном случае можно предположить наличие ухудшения минутной вентиляции, увеличения мертвого пространства или повышения метаболизма углеводов.
На рН артериальной крови влияют как содержание бикарбоната, так и Рас02, но показатель Расо, может изменяться в 100-- 200 раз быстрее, чем уровень бикарбоната. С учетом этой информации можно получить некоторое представление об остроте различных респираторных изменений, отмечая влияние Расо> на рН. На каждый 1 мм рт.ст. при резком возрастании или падении PaCOl приходится уменьшение или увеличение рН примерно на 0,01. Это предполагает, что уровень бикарбоната в плазме остается относительно постоянным, как это часто наблюдается в течение нескольких часов после резкого изменения РаСОу
Если у больного с рН 7,4, РаСОх в 40 мм рт.ст. и плазменным уровнем бикарбоната 24 мЭкв/л отмечаются внезапная гипервентиляция и снижение PaCOl до 30 мм рт.ст. в течение нескольких минут, то уровень бикарбоната плазмы изменится лишь минимально, а рН крови повысится примерно до 7,5. С другой стороны, если изменение Агсо, наблюдается у больного более нескольких часов, то плазменный уровень бикарбоната будет иметь время для некоторой компенсации и изменение рН будет менее ожидаемого.
Например, если PaCOl составляет 60 мм рт.ст., а рН -- 7,35, то обычно предполагается наличие повышенного PaCOj в течение некоторого времени, а также определенный рост уровня бикарбоната плазмы для частичной компенсации при респираторном ацидозе.
Мертвое пространство
Когда вентиляция альвеолярно-капиллярной единицы нормальна, а перфузия альвеолярного капилляра отсутствует, то вентиляцию этих альвеол и связанных с ними дыхательных путей относят к мертвому пространству. Объем мертвого пространства (Vd) и общий дыхательный объем (V,) часто выражается как отношение (Vd -- V,).
Когда физиологическое мертвое пространство очень велико, значительная часть работы вентиляции совершается впустую, так как большая фракция вентиляционного воздуха никогда не достигает крови.
Углеводный обмен
Если у больного ежедневно метаболизируется более 450 г углеводов, то для выведения возросшего количества углекислого газа может потребоваться увеличение альвеолярной вентиляции. Чаще всего это становится проблемой у больных с тяжелым хроническим обструктивным заболеванием легких, если они получают 2,5--3,0 л 20--25 % раствора глюкозы в день.
Перенос двуокиси углерода кровью никогда не представляет столь же серьезной проблемы, как транспорт кислорода, ибо даже при наиболее аномальных состояниях двуокись углерода обычно может транспортироваться в гораздо большем количестве, чем кислород. Однако количество двуокиси углерода в крови влияет на кислотно-щелочное равновесие. При нормальном состоянии покоя каждые 100 мл крови переносят из тканей в легкие в среднем 4 мл двуокиси углерода.
Химические формы транспортирования двуокиси углерода. Из тканевых клеток двуокись углерода диффундирует в основном в той же форме и лишь отчасти -- в виде бикарбоната, так как тканевая мембрана почти непроницаема для ионов бикарбоната. Вхождение двуокиси углерода в капилляры инициирует ряд почти мгновенных физических и химических реакций, необходимых для транспорта двуокиси углерода.
Транспорт двуокиси углерода в растворенном состоянии
Небольшая часть двуокиси углерода в растворенном состоянии трансформируется с плазмой в легкие. Количество двуокиси углерода, растворенной в плазме при давлении в 46 мм рт.ст., составляет 2,76 мл/л, а ее объем, растворенный при 40 мм рт.ст., около 2,4 мл/дл; таким образом, разность составляет 0,36 мл/дл. Следовательно, лишь около 0,36 мл двуокиси углерода транспортируется в растворенном виде каждыми 100 мл крови. Это составляет примерно 9 % всей транспортируемой двуокиси углерода.
Транспорт двуокиси углерода в виде бикарбоната
Большая часть растворенного в крови углекислого газа реагирует с водой с образованием углекислоты. Однако эта реакция протекала бы слишком медленно и, следовательно, не имела бы важного значения, если бы ее не ускоряла (примерно в 500 раз) угольная ангидраза -- фермент, находящийся внутри эритроцитов.
Эта реакция в эритроцитах происходит настолько быстро, что практически полное равновесие достигается в считанные доли секунды. Это позволяет огромному количеству двуокиси углерода вступить в реакцию с водой в эритроците прежде, чем кровь успеет покинуть тканевые капилляры.
Для диссоциации образованной в эритроцитах углекислоты на ионы водорода и бикарбоната также требуются доли секунды. Большинство водородных ионов затем соединяется с гемоглобином в эритроцитах, так как гемоглобин является мощным кислотно-щелочным буфером. В то же время многие ионы бикарбоната диффундируют в плазму; для компенсации этого ионного сдвига ионы хлора диффундируют в эритроциты. Это становится возможным благодаря присутствию в мембране эритроцитов особого белка -- переносчика бикарбоната и хлора, который с большой скоростью переправляет указанные ионы в противоположных направлениях. Таким образом, эритроцитарное содержание хлора в венозной крови больше, чем в артериальной. Этот феномен называется "сдвигом хлора".
Обратимое соедин и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.