На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Курсовик О возможности применения векторных многоугольников для решения физических задач. Роль решения задач в процессе обучения физике. Традиционный способ решения задач кинематики и динамики в школьном курсе физики. О векторных способах решения задач механики.

Информация:

Тип работы: Курсовик. Предмет: Педагогика. Добавлен: 23.07.2010. Сдан: 2010. Страниц: 2. Уникальность по antiplagiat.ru: --.

Описание (план):


2
Министерство образования Республики Беларусь
Учреждение образования
"Брестский государственный университет имени А.С. Пушкина"
Физический факультет
Кафедра теоретической физики и астрономии
Курсовая работа
ВЕКТОРНЫЕ МНОГОУГОЛЬНИКИ В ФИЗИЧЕСКИХ ЗАДАЧАХ
по теоретической физике
Специальность: Физика и информатика
Выполнил
Научный руководитель
Брест 2010
Содержание
    Введение
      1. О решении физических задач в средней школе
      1.1 О возможности применения векторных многоугольников для решения физических задач
      1.2 Роль решения задач в процессе обучения физике
      1.3 Традиционный способ решения задач кинематики и динамики в школьном курсе физики
      2. О векторных способах решения задач механики
      2.1 Векторные треугольники скоростей и перемещений в задачах
      2.2 Векторные многоугольники сил в задачах
      2.3 Векторные многоугольники импульсов в задачах
      2.4 Векторные диаграммы импульсов в задачах о столкновениях частиц
      Заключение
      Литература

Введение

Межпредметные связи физики и математики вполне естественны: физика не только экспериментальная, но и точная наука, широко применяющая различные математические методы. Математика является языком физики, и свободное владение математическим аппаратом облегчает понимание физической сущности явлений и процессов. Однако, изучая, разрабатывая и используя новый математический аппарат, физики иногда незаслуженно забывают о ранее найденных и веками эффективно служивших делу физической науки математических способах и приемах. Изучение в школе дифференциального и интегрального исчисления, несомненно, способствует приобщению школьников к современным методам научных исследований, решение многих физических задач при этом существенно упрощается. Но в механике есть ряд задач повышенной для школьников трудности, которые решаются значительно проще не с помощью дифференцирования и интегрирования, а при использовании несложных геометрических приемов, вполне доступных учащимся старших классов (особенно классов с углубленным изучением физики). Примером может служить "забытый" в современной средней школе метод решения задач кинематики и динамики, основанный на построении так называемых векторных многоугольников перемещений, скоростей, ускорений, сил, импульсов.

При изучении механики в школьном курсе физики предполагается знакомство с векторным способом кинематического описания движения, с векторной формой записи законов и формул динамики, но значительно больше внимания и времени уделяется традиционным координатному и естественному способам. Вместе с тем в ряде случаев векторный способ имеет преимущество перед координатным, не только упрощая решение конкретной задачи, но и превращая иногда сложные на первый взгляд задачи в подстановочные, решаемые практически устно.

В данной работе будут даны краткие теоретические основы и некоторые методические рекомендации по возможности применения геометрических (векторных) способов решения избранных задач кинематики и динамики в школьном курсе физики. На примерах решения конкретных задач механики будет показана эффективность применения в ряде случаев указанных способов.

1. О решении физических задач в средней школе

1.1 О возможности применения векторных многоугольников для решения физических задач

Применение векторных способов, требующих знания основ тригонометрии (в частности, теорем синусов и косинусов), для решения задач механики в непрофильном 9 классе базовой школы вряд ли эффективно в силу недостаточной математической подготовки учащихся. Эти способы рассчитаны на учащихся классов с углубленным изучением физики (тогда вполне возможно их изучение и в 9 классе) или на старшеклассников: на уроках обобщающего повторения в 11 классе общеобразовательной школы, на курсах по выбору, при подготовке к олимпиадам. Естественно, что эти способы должны широко применяться при решении задач со студентами физических специальностей ВУЗов на практических занятиях по общей физике и в физическом практикуме по решению задач.

1.2 Роль решения задач в процессе обучения физике

В последнее время наблюдается тенденция усиления внимания к решению задач при обучении физике, и им отводится значительная часть курса. Решение задач выступает и как цель, и как метод обучения. Метод решения задач с успехом используется учителями при изложении нового учебного материала и его закреплении, при проведении фронтальных лабораторных работ и особенно физических практикумов.

Физической задачей в учебной практике обычно называют небольшую проблему, которая в общем случае решается с помощью логических умозаключений, математических действий и эксперимента на основе законов и методов физики. Задачи условно подразделяются на стандартные (для решения которых достаточно применить известные на данном уровне знаний формулы и уравнения, выражающие физические закономерности) и нестандартные (для решения которых необходимы не только знание физических законов и формул, но и умение делать не объединенные известными алгоритмами предположения, сопоставления, рассуждения и умозаключения). Вполне естественно, что нестандартные для данного уровня знаний и умений задачи могут быть отнесены к стандартным на другом, более высоком уровне.

Решение и анализ задач позволяют понять и запомнить основные законы и формулы физики, создают представления об их характерных особенностях и границах применения. Задачи развивают навык в использовании общих законов материального мира для решения конкретных вопросов, имеющих практическое и познавательное значение. Умение решать задачи является лучшим критерием оценки глубины изучения программного материала и его усвоения. Наряду с этим при решении задач у школьников воспитывается трудолюбие, пытливость ума, смекалка, самостоятельность в суждениях, интерес к учению, воля и характер, упорство в достижении поставленной цели, формируется особый стиль умственной деятельности, особый метод подхода к физическим явлениям. В процессе решения задач вырабатываются навыки вычисления, работы со справочной литературой, таблицами.

Решение задач служит простым, удобным и эффективным способом проверки и систематизации знаний, умений; позволяет в наиболее рациональной форме проводить повторение ранее изученного материала, расширение и углубление знаний, осуществлять действенную связь преподавания физики с обучением математике, химии, черчению и другим учебным предметам.

1.3 Традиционный способ решения задач кинематики и динамики в школьном курсе физики

Векторная запись многих уравнений физики более полно отображает соответствующие процессы и является более простой и компактной, поэтому она нашла свое применение в современном школьном курсе механики (пример тому - векторная форма записи законов и формул динамики). Векторная форма уравнений в сочетании с соответствующими рисунками раскрывает физическую ситуацию в задаче и предопределяет ее успешное решение. Однако, в процессе решения задач кинематики и динамики используют обычно проекции векторов (координатный способ).

В методической литературе по вузовскому курсу общей физике рекомендуется придерживаться следующего плана решения задачи кинематики:

1) рационально выбрать систему отсчета с указанием начала отсчета времени и обозначить на схематическом чертеже все кинематические характеристики движения (перемещение материальной точки за рассматриваемый промежуток времени, мгновенную скорость в конце и начале перемещения, ускорение и время);

2) записать кинематические законы движения для каждого из движущихся тел в векторной форме;

3) спроецировать векторные величины на координатные оси и проверить, является ли полученная система уравнений полной;

4) используя кинематические связи, геометрические соотношения и специальные условия, данные в задаче, составить недостающие уравнения;

5) решить полученную систему уравнений относительно неизвестных;

6) перевести все заданные величины в одну систему единиц и вычислить искомые величины;

7) проанализировать результат и проверить его размерность.

При решении задач в школьном курсе физики также приемлем данный алгоритм, причем в большинстве случаев пункт 2 опускается, и сразу записываются скалярные уравнения, включающие проекции рассматриваемых в задаче векторных величин.

Для решения задач по динамике общий алгоритм следующий:

1) выяснить, с какими телами взаимодействует движущееся тело, и, сделав схематический чертеж, заменить действие этих тел силами;

2) записать уравнение движения (второй закон Ньютона) в векторной форме;

3) спроецировать векторные величины на координатные оси (значительно облегчает решение задачи рациональный выбор расположения начала координат и направлений координатных осей);

4) если полученная система уравнений не является полной, составить недостающие уравнения, используя третий закон Ньютона, законы трения или законы кинематики;

5) решить полученную систему уравнений относительно неизвестных в общем виде и проверить размерность искомой величины;

6) сделать численные расчеты, проанализировать полученные результаты.

Если в задаче рассматривается движение нескольких тел, необходимо записать второй закон для каждого из них и учесть кинематические и динамические связи между ними (например, равенство ускорений тел, жестко связанных между собой, равенство сил действия и противодействия и т.д.).

При анализе задач и составлении уравнений, описывающих физические процессы и явления нужно хорошо знать, какие из величин, входящие в формулы физики, являются скалярными, а какие векторными.

Как видно из приведенных алгоритмов решения задач по кинематике и динамике, для вычислений чаще всего используют соответствующие уравнения в проекции на оси координат, поэтому возникает необходимость обучить учащихся преобразованию векторного уравнения в уравнения для проекций, т.е. прежде всего, выработать у них умение определять проекцию вектора на ось. Для этого полезно следующее алгоритмическое предписание:

1) изобразить вектор графически в избранном масштабе; указать на рисунке начало координат и координатную ось;

2) спроецировать на ось начальную и конечную точки вектора;

3) найти длину отрезка между проекциями этих точек на ось; если можно, выразить длину отрезка через модуль вектора;

4) обозначить наименьший угол между положительным направлением оси и направлением вектора; определить этот угол;

5) если указанный угол острый, то приписать проекции знак “+", если нет, то приписать проекции знак “-".

6) записать проекцию вектора: длину отрезка, определенную в п.3, со знаком, установленным в п.5 (или: вычислить проекцию вектора по формуле ax = acos, если известен |a|).

Таким образом, при решении задач школьного курса по кинематике и динамике применяется координатный способ, предполагающий использование, по крайней мере, двух алгоритмов.

Предлагаемый в последующих разделах данной работы векторный (геометрический) способ решения в ряде случаев имеет преимущество перед координатным. Решение задач с использованием векторного способа предполагает построение векторных многоугольников скоростей, перемещений, ускорений, сил, импульсов. Решение векторных многоугольников (т.е. таких, сторонами которых являются векторы) производится по тем же правилам, что и решение обычных многоугольников. При этом, если получившаяся при построении фигура является косоугольным треугольником, ее решение сводится к применению теоремы синусов и теоремы косинусов. Если же треугольник получается прямоугольным, решение упрощается (используются соотношения сторон и углов прямоугольного треугольника, теорема Пифагора). Таким образом, при применении векторных многоугольников для решения некоторых задач механики отпадает необходимость в проекцировании векторных величин на оси координат, чем, в первую очередь, и упрощается решение конкретной задачи.

2. О векторных способах решения задач механики

2.1 Векторные треугольники скоростей и перемещений в задачах

Кинематика изучает „геометрию” движения - математическое описание движения б и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.