На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Курсовик Систематизований учбовий матерал за темою Трикутники по новй програм геометрї для 7 класу 12-рчної школи. Трикутник, його елементи та ознаки рвност. Рвнобедрений трикутник, його властивост та ознаки. Висота, бсектриса медана трикутника.

Информация:

Тип работы: Курсовик. Предмет: Педагогика. Добавлен: 26.09.2014. Сдан: 2010. Страниц: 2. Уникальность по antiplagiat.ru: --.

Описание (план):


25
Міністерство освіти і науки України
Дніпропетровський національний університет ім. Олеся Гончара
КУРСОВА РОБОТА
з дисципліни “Математика”
на тему
„ВИКЛАДЕННЯ ТЕМИ „ТРИКУТНИКИ" ПО ПРОГРАМІ КУРСА
ГЕОМЕТРІЇ В 7 КЛАСІ СЕРЕДНЬОЇ ШКОЛИ"
Виконавець: студент групи
Перевірив:
м. Дніпропетровськ 2010 р.
Анотація
Курсова робота на 25 стор.,20 рис., 1 табл., 8 джерел літератури.
Систематизований учбовий матеріал викладення теми „Трикутники" по новій програмі геометрії для 7 класу 12 - річної школи. Наведений перелік нових підручників „Геометрія 7 клас”, які у 2008 - 2009 році створено у відповідності до Державного стандарту та нових програм з геометрії для 7 класу загальноосвітніх навчальних закладів.
Результати можуть бути використані в якості практичного посібника - конспекта вчителю при викладені глави „Трикутники" в курсі „Геометрія” для 7 класу середньої школи.

The summary

Course work on 25 pages,20 fig., 1 tab., 8 sources of the literature.

The educational material of a statement of a subject „Triangles” under the new program of geometry for 7 classes 12 - years schools is systematized. The list of the new tutorials „ Geometry 7 classes ” is given which in 2008 - 2009 are issued according to State standard and new programs on geometry for 7 classes of a school.

The results can be used as the practical grant - abstract to the teacher at a statement of the chapter „Triangles” in a rate „Geometry" for 7 classes of a school.

Зміст
    Вступ
      1. Трикутник і його елементи
      2. Ознаки рівності трикутників
      3. Рівнобедрений трикутник, його властивості та ознаки
      4. Висота, бісектриса і медіана трикутника
      5. Сума кутів трикутника
      6. Властивості та ознаки рівності прямокутних трикутників
      7. Зовнішній кут трикутника та його властивості
      8. Нерівність трикутника
      Висновки
      Список використаної літератури

Вступ

В курсовій роботі конспективно викладений теоретичний матеріал теми „Трикутники" в курсі геометрії 7 класу, який згідно “Програми для загальноосвітніх навчальних закладів. Математика. 5-12 класи" (видавництво “Перун”, Київ, 2005р. - у науково-методичному журналі “Математика в школі" №2, 2006 р) розподілений на 3 частини в новій програмі курсу „Геометрія” у 7 (введено в 2007/2008 навч. році), 8 (введено в 2008/2009 навчальному році), 9 (введено в 2009/2010 рр.) класах 12 річної школи.

У 2007 - 2008 навчальному році учні 7х класів вперше розпочали навчання за новими навчальними планами і програмами 12 річної школи.

Нова програма з геометрії для 7го класу містить такі теми: найпростіші геометричні фігури та їх властивості; взаємне розташування прямих на площині; трикутники; коло і круг (геометричні побудови).

В курсовій роботі систематизований матеріал викладення теми „Трикутники" по новій програмі геометрії для 7 класу 12 - річної школи згідно підходу, викладеному в підручниках:

“Геометрія.7 клас” (автори Бевз Г.П., Бевз В.Г., Владімірова Н. Г) видавництва “Вежа”;

“Геометрія.7 клас” (автор Апостолова Г. В) видавництва “Ґенеза”;

“Геометрія.7 клас” (автори А.Г. Мерзляк, В.Б. Полонський, М.С. Якір) видавництва “Гімназія”.

Ці підручники створено у відповідності до Державного стандарту та нових програм з геометрії для 7 класу загальноосвітніх навчальних закладів.

В роботі використаний графічний матеріал з посібників:

Погорелов А.В. Геометрия: Учеб. для 7-9 кл. общеобразоват. учреждений/ А.В. Погорелов. - 2е изд. - М.: Просвещение, 2001.;

Дергачов В.А. Геометрія у визначеннях, формулах і таблицях: Довідковий посібник для учнів 7-11 класів. - X.: Веста: Видавництво „Ранок”, 2006.

1. Трикутник і його елементи

Трикутником називається фігура, що складається із трьох точок, що не лежать на одній прямій, і трьох відрізків, які попарно сполучають ці точки. Точки називаються вершинами трикутника.

На рисунку 1.1 наведений трикутник з вершинами й сторонами .

Рис.1.1 Визначення основних елементів трикутника [5]

Трикутник позначається вказівкою його вершин. Замість слова „трикутник ” іноді вживають знак . Наприклад, трикутник на рисунку 1.2 позначається так: .

Рис.1.2 Трикутник та визначення кутів , , при його вершинах А, В, С [5]

Кутом трикутника при вершині називається кут , утворений напівпрямими й (див. рис.1.2). Так само визначаються кути трикутника при вершинах і .

Два відрізки називаються рівними, якщо вони мають однакову довжину. Два кути називаються рівними, якщо вони мають однакову кутову міру в градусах.

Трикутники називаються рівними, якщо в них відповідні сторони й відповідні кути рівні. При цьому відповідні кути повинні лежати проти відповідних сторін.

На рисунку 1.3 два рівних трикутники й .

Рис. 1.3 До визначення рівності трикутників [8]

У них

На кресленні відрізки звичайно відзначають однією, двома або трьома рисками, а рівні кути - однієї, двома або трьома дужками (див. рис.1.3).

Для позначення рівності трикутників використовується звичайний знак рівності: =. Запис : = читається так: „Трикутник дорівнює трикутнику ". При цьому має значення порядок, у якому записуються вершини трикутника. Рівність = означає, що

. А рівність = означає вже зовсім інше:

Задача 1.1 Трикутники і рівні. Відомо, що сторона дорівнює , а кут дорівнює . Чому рівна сторона й кут ?

Розв'язок. Тому що трикутники й рівні, то в них , C=R. Виходить, м, R=900.

2. Ознаки рівності трикутників

Теорема 2.1 (Перша ознака рівності трикутників по двох сторонах і куту між ними). Якщо дві сторони й кут між ними одного трикутника рівні відповідно двом сторонам і куту між ними іншого трикутника, то такі трикутники рівні.

Рис.2.1 До теореми 2.1 (ознака рівності трикутників по двох сторонах і куту між ними) [8]

Доведення.

Нехай у трикутників й - дві сторони та кут між ними рівні: (див. рис.2.1). Доведемо, що трикутники рівні.

Нехай - трикутник, дорівнює трикутнику , з вершиною на промені й вершиною в тій же напівплощині відносно прямій , де лежить вершина (рисунок 2.2, а).

Рис.2.2, а) До доведення 1 признаку рівності трикутників [8]

Тому що , то вершина збігається з вершиною (див. рис.2.2, б).

Рис.2.2, б) До доведення 1 признаку рівності трикутників [8]

Тому що то промінь збігається із променем

(див. рис.2.2, в).

Рис. .2.2, в) До доведення 1 признаку рівності трикутників [8]

Тому що =, то вершина збігається з вершиною (рис.2.2, г).

Рис.2.2, г) До доведення 1 признаку рівності трикутників [8]

Отже, трикутник збігається із трикутником , виходить, дорівнює трикутнику .

Теорема доведена.

Теорема 2.2 (Друга ознака рівності трикутників по стороні й прилеглим до неї кутам).

Якщо сторона й прилеглі до неї кути одного трикутника рівні відповідно стороні й прилеглим до неї кутам іншого трикутника, то такі трикутники рівні.

Доведення.

Нехай і - два трикутники, у яких

(рисунок 2.3).

Рис.2.3 До доведення 2ї ознаки рівності трикутників [8]

Доведемо, що трикутники рівні.

Нехай - трикутник, дорівнює трикутнику з вершиною на промені й вершиною в тій же напівплощині відносно прямій , де лежить вершина .

Тому що , то вершина збігається з вершиною . Тому що й , то промінь збігається із променем , а промінь збігається із променем . Звідси витікає, що вершина збігається з вершиною .

Отже, трикутник збігається із трикутником , а виходить, дорівнює трикутнику .

Теорема доведена.

Теорема 2.3 (Третя ознака рівності трикутників по трьох сторонах).

Якщо три сторони одного трикутника рівні відповідно трьом сторонам іншого трикутника, то такі трикутники рівні.

Доведення.

Нехай і два трикутники, у яких . Потрібно довести, що трикутники рівні.

Допустимо, трикутники не рівні. Тоді в них . Інакше вони були б рівні по першій ознаці.

Нехай - трикутник, дорівнює трикутнику , у якого вершина лежить в одній напівплощині з вершиною відносно прямій (рисунок 2.4).

Рис.2.4 До доведення 3 признаку рівності трикутників [8]

Нехай середина відрізка й - рівнобедрені із загальною основою . Тому їхні медіани й перпендикуляри прямої . Прямі й не збігаються, тому що точки не лежать на одній прямій. Але через точку прямої можна провести тільки одну перпендикулярну їй пряму. Ми прийшли до протиріччя

Теорема доведена.

Задача 2.1 Відрізки й перетинаються в точці , що є серединою кожного з них. Чому дорівнює відрізок , якщо відрізок м?

Розв'язок. Трикутники й рівні по першій ознаці рівності трикутників (рисунок 2.5).

Рис.2.5 До задачі 2.1 [8]

У них кути й рівні як вертикальні, а й тому, що точка є серединою відрізків і . З рівності трикутників і треба рівність їхніх сторін і . А тому що за умовою задачі м, те й м.

Задача 2.2 У трикутників і . Доведіть, що .

Розв'язок. Нехай і дані трикутники (рисунок 2.6).

Рис.2.6 До задачі 2.2 [8]

Побудуємо трикутник , який дорівнює трикутнику , і трикутник , який дорівнює трикутнику .

Трикутники й рівні по третій ознаці. У них за умовою задачі; тому що ; , тому що . З рівності трикутників і треба рівність кутів . Тому що за умовою ,, а , по доведеному, то трикутники й рівні по першій ознаці.

3. Рівнобедрений трикутник, його властивості та ознаки

Трикутник називається рівнобедреним, якщо в нього дві сторони рівні. Ці рівні сторони називаються бічними сторонами, а третя сторона називається основою трикутника.

На рисунку 3.1 зображений рівнобедрений трикутник . У нього бічні сторони й , а основа.

Рис.3.1 До визначення рівнобедреного трикутника [8]

Теорема 3.1 (властивість кутів рівнобедренного трикутника)

В рівнобедренному трикутнику кути при основі рівні.

Доведення.

Нехай - рівнобедрений трикутник з основою (див. рис.3.2). Доведемо, що в нього .

Рис.3.2 До доведення теореми 3.1 [8]

Трикутник дорівнює трикутнику по першій ознаці рівності трикутників. Дійсно, З рівності трикутника треба, що .

Теорема доведена.

Трикутник, у якого всі сторони рівні, називається рівностороннім.

Теорема 3.2 (ознака рівнобедреного трикутника).

Якщо в трикутнику два кути рівні, то він рівнобедрений.

Доведення. Нехай - трикутник, у якому (рисунок 3.3).

Рис. 3.3 До доведення теореми 3.2 [8]

Доведемо, що він рівнобедрений з основою .

Трикутник дорівнює трикутнику по другій ознаці рівності трикутників. Дійсно, З рівності трикутників треба, що . Виходить, по визначенню трикутник рівнобедрений.

Теорема доведена.

Теорема (3.2) називається зворотньою теоремі (3.1). Висновок теореми (3.1) є умовою теореми (3.2). А умова теореми (3.1) є висновком теореми (3.2). Не всяка теорема має зворотну, тобто якщо дана теорема вірна, те зворотна теорема може бути невірна.

Теорема 3.3 (властивість медіани рівнобедреного трикутника).

У рівнобедреному трикутнику медіана, проведена до основи, є бісектрисою й висотою.

Доведення. Нехай - даний рівнобедрений трикутник з основою й - медіана, проведена до основи (рисунок 3.4)

Рис.3.4 До доведення теореми 3.3 [8]

Трикутники й рівні по першій ознаці рівності трикутників. (У них сторони й рівні, тому що трикутник рівнобедрений. Кути й рівні як кути при підставі рівнобедреного трикутника. Сторони й рівні, тому що - середина відрізка )

З рівності трикутників витікає рівність кутів: . Тому що кути й суміжні й рівні, те - бісектриса. Тому що кути й суміжні й рівні, то вони прямі, тому висота трикутника.

Теорема доведена.

Задача 3.1 Доведіть, що в рівностороннього трикутника всі кути рівні.

Рішення. Нехай - даний трикутник з рівними сторонами: (рисунок 3.5).

Рис.3.5 До задачі 3.1 [8]

Тому що , то цей трикутник рівнобедрений з основою . По теоремі 3.1 . Тому що , то трикутник рівнобедрений з основою . По теоремі 3.1 . Таким чином, , тобто всі кути трикутника рівні.

Задача 3.2 Сформулюйте й доведіть теорему, зворотну тв и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.