На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Курсовик Особенности теоретических предпосылок методологии математического развития дошкольников, требований к методике преподавания математики дошкольникам. Характеристика игровых приемов в обучении старших дошкольников счету, с помощью сюжетно-дидактических игр.

Информация:

Тип работы: Курсовик. Предмет: Педагогика. Добавлен: 24.01.2010. Сдан: 2010. Страниц: 2. Уникальность по antiplagiat.ru: --.

Описание (план):


41
Содержание

Введение
Глава 1. Теоретические основы методологии формирования математических представлений у дошкольников
1.1 Предпосылки методологии математического развития дошкольников
1.2 Программные требования к методике преподавания математики дошкольникам в современных ДОУ
1.3 Игра - как метод математического развития
Глава 2. Экспериментальная часть
2.1 Методика обучения счету с помощью сюжетно-дидактических игр
2.2 Методика обучения счету в старшей группе с помощью дидактической игры "Цирк"
Заключение
Список использованной литературы
Приложение №1
Введение

Актуальность исследования. Для умственного развития детей существенное значение имеет приобретение ими математических представлений, которые активно влияют на формирование умственных действий, столь необходимых для познания окружающего мира и решения различного рода практических задач, а также для успешного обучения в младших классах средней школы.
Значение практического применения математических знаний в различных видах деятельности хорошо понимали многие прогрессивные педагоги еще в прошлых столетиях. Разрабатывая вопросы развития у детей математических представлений, они обязательно заботились об их использовании в жизни. Так, например, К. Д. Ушинский писал: «При первоначальном обучении счету ... также не должно спешить и идти дальше не иначе, как овладев прежним, а овладев чем-нибудь, никогда не оставлять его без постоянного приложения к делу».15, с.5 При этом он подчеркивал, что применять изученное лучше всего в новых условиях, противоположных тем, в которых ребенок их получал. Мысли выдающегося русского педагога не утратили своего значения и в настоящее время: они учитываются при разработке методов обучения детей элементам математики.
Многие видные психологи и педагоги (П.Я. Гальперин, А.Н. Леушина, Т.В. Тарунтаева и др.) считают, что формирование у детей математических представлений должно опираться на предметно-чувственную деятельность, в процессе которой легче усвоить весь объем знаний и умений, осознанно овладеть навыками счета.15, с.3.
Обучение математике не должно быть обязательно скучным занятием для ребенка, к тому же существует просто огромное количество математических игр и игр-обучалок для малышей. Дело в том, что детская память избирательна. Ребенок усваивает только то, что его заинтересовало, удивило, обрадовало или испугало. Он вряд ли запомнит что-то, на его взгляд, неинтересное, даже если взрослые настаивают. Поэтому основная задача педагогов и родителей сделать так, чтобы малышу было интересно заниматься счетом. Тогда маленькие непоседы и сами не заметят, как научатся считать.
Итак, в современной концепции дошкольного воспитания в качестве ключевой позиции обновления детского сада выделяется гуманизация целей и принципов образовательной работы с детьми, и в связи с этим обучение дошкольников рассматривается в контексте игровой деятельности. именно игра делает процесс познания интересным и занимательным, а значит, и успешным.
Формированию у ребенка математических представлений способствует использование разнообразных дидактических игр и игровых упражнений. В игре ребенок приобретает новые знания, умения, навыки. Игры, способствующие развитию восприятия, внимания, памяти, мышления, развитию творческих способностей, направлены на умственное развитие дошкольника в целом.
Следовательно, одной из наиболее важных задач воспитателя и родителей - развить у ребенка интерес к математике в дошкольном возрасте. Приобщение к этому предмету в игровой и занимательной форме поможет ребенку в дальнейшем быстрее и легче усваивать школьную программу.
В разное время вопросами формирования математических понятий, развития способностей, психологии игры, проблемами обучения в детском саду занимались: Е.Н. Водовозова, Ж. Пиаже, Л.С. Выготский, С.Л. Рубинштейн, П.Я. Гальперин, АН. Леонтьев, Д.Б. Эльконин, Н.А. Менчинская, А.А. Люблинская, А.В. Запорожец, Л.А.Венгер, А.П. Усова, Н.П. Сакулина, Н.А. Ветлугина, А.А. Смоленцева, Е.А. Флерина, Е.Ф. Проскура, Э. Пилюгина, В.С.Мухина, З.М. Истомина, Н.Н. Поддъяков, Р.С. Буре, ТС. Комарова, Я.А. Коменский, И.Г Песталоцци, К.Д. Ушинский, Л.Н. Толстой, В.И. Водовозов, Ф. Фребель, М. Монтессори, В.А. Кемниц, В.А.Лай, Д.В. Волковский, К.Ф. Лебединцев.
Неоценимый вклад в теорию и методику предматематической подготовки дошкольников детского сада внесли Е.И. Тихеева, Л. В. Глаголева, Ф.Н. Блехер, A.M. Леушина, А.П. Усова, М.Ф. Чекмарев, Е.И. Удальцова, А.А. Столяр, Л.С. Метлина, Т.В. Тарунтаева, Ф.А. Михайлова, Н.Г. Бакст, Р. Чуднова и многие другие педагоги, методисты и исследователи.
Целью данной курсовой работы является анализ использования игровых приемов при обучении детей дошкольного возраста счету.
Объект исследования: методы математического развития дошкольников.
Предмет исследования: использование игровых методов и приёмов для обучения детей дошкольного возраста счету.
Исходя из поставленной цели, ставлю перед собой следующие задачи:
1) Проанализировать научную математическую, психолого-педагогическую и методическую литературу по проблеме, программы математического обучения детей в детском саду ;
2) Изучить теоретические предпосылки методологии математического развития дошкольников;
3) Охарактеризовать требования к методике преподавания математики дошкольникам в современных ДОУ;
4) Проанализировать и охарактеризовать использование игровых приемов в обучении детей счету;
5) Проанализировать обучение счету с помощью сюжетно-дидактических игр.
6) Провести эксперимент по обучению детей счету в старшей группе с помощью дидактической игры «Цирк».
Основу гипотезы исследования составили положения о том, что обучение детей счету будет наиболее продуктивно, если оно идет в контексте игровой деятельности.
В исследовании применялась система методов: теоретического анализа (историографический, сравнительный); педагогическое обобщение.
Этапы исследования: На первом этапе формировались основные положения исследования, изучалась психолого-педагогическая литература и методическая, анализировалась методика обучения детей счету.
На втором этапе рассмотрено состояние исследуемой проблемы на практике и раскрыта сущность ее реализации.
В заключении подведены общие итоги исследования, сформулированы выводы по проделанной работе.
Все сюжетно-дидактические игры и их варианты опробованы на практике в дошкольном учреждении №31 г. Снежинска.
Исследования показали эффективность сюжетно-дидактических игр и игровых приемов для практического применения в обучении счету.
Структура и объем работы: курсовая работа состоит из введения, двух глав, заключения, библиографического списка, включающего 25 наименований.
Глава 1. Теоретические основы методологии формирования математических представлений у дошкольников
1.1 Предпосылки методологии математического развития дошкольников

Если в два одинаковых прозрачных стакана налить одинаковое количество слегка подкрашенной воды (для подкрашивания можно использовать несколько кристалликов марганцовки), а затем, показывая на стаканы, спросить у ребенка, в каком из них воды больше, а в каком - меньше? Практически все дети уверенно ответят, что воды в стаканах одинаковое количество. Затем, можно взять третий стакан, более узкий, и в присутствии ребенка перелить в него воду из первого стакана. Теперь снова спросить, в каком стакане, во втором или третьем, воды больше. Пусть вас не удивляет, если ребенок без колебаний заявит, что в третьем стакане воды больше. Все попытки переубедить ребенка ни к чему не приведут. В лучшем случае он сделает вид, что с вами согласился. Однако внимательное наблюдение покажет, что внутреннее его мнение осталось прежним. Почему это происходит? Разве ребенку непонятно, что при переливании осталась та же самая вода и больше ее не добавляли?
Эта задача - только одна из бесчисленной серии задач, которые предлагались детям в экспериментах известным швейцарским психологом Жаном Пиаже. В признание его заслуг эти задачи в научной литературе стали называться «задачами Пиаже», а выступающие в них явления - «феноменами Пиаже».8, с.13
Данный опыт можно повторить на самом разном материале и самыми разными способами, но, если одна из величин меняет свою форму так, что окажется в каком-то отношении явно больше или меньше другой, ребенок утверждает, что и величины стали больше или меньше.
Пиаже этот результат объясняет тем, что у ребенка еще отсутствует понимание «принципа сохранения количества». Ребенок думает, что количество вещества изменилось, если явно изменилось одно из его измерений. Если его спросить: «Почему?», то он, в случае с водой, отвечает: «Потому, что ее перелили».
Данные эксперименты требуют проведения целой серии занятий, которые ориентируют ребенка на количественную сторону объектов, создавая тем самым предпосылки для формирования у него потребности в счете.
Таким образом, математическое развитие - значимый компонент формирования «картины мира» ребенка. Одна из важных задач воспитателей и родителей - развить у ребенка интерес к математике в дошкольном возрасте. Приобщение к этому предмету в игровой и занимательной форме помогает ребенку в дальнейшем быстрее и легче усваивать школьную программу.
Особую остроту этой проблемы подчеркивал Л.С. Выготский, характеризуя возникающий в дошкольном возрасте тип обучения как промежуточный между спонтанным, свойственным ребенку раннего возраста, и реактивным, присущим школьному возрасту19,103. Ребенок в дошкольном возрасте уже может обучаться по программе, задаваемой взрослым, однако лишь в силу того, как программа взрослых становится его собственной программой, сливается с естественным ходом развития ребенка. Этот тип обучения Л.С.Выготский называл спонтанно-реактивным. 19,103
И если для воспитанника цель - в самой игре, то для взрослого, организующего игру, есть и другая цель - развитие детей, усвоение ими определенных знаний, формирование умений, выработка тех или иных качеств личности. Характер этого противоречия и определяет воспитательную ценность игры: если достижение дидактической цели будет осуществимо в игре как деятельности, заключающей цель в самой себе, то воспитательная ее ценность будет более значимой.
По словам Л.С. Выготского, научные понятия не усваиваются и не заучиваются ребенком, не берутся памятью, а возникают и складываются с помощью величайшего напряжений всей активности его собственной мысли 18,51. При этом математика может и должна играть особую роль в гуманизации образования, в его ориентации на воспитание и развитие детской личности. Особая роль математики - в умственном воспитании, в развитии интеллекта. Знания необходимы ребенку не ради знания, а как важная составляющая личности, включающая умственное, нравственное, эмоциональное (эстетическое) и физическое воспитание.
Обучению дошкольников основам математики отводиться важное место. Это вызвано целым рядом причин: началом школьного обучения с шести лет, обилием информации, получаемой ребенком, повышенное внимание к компьютеризации, желанием сделать процесс обучения более интенсивным.
Крутецкий В.А. выделил девять компонентов математических способностей 21,56:
1. Способность к формализации математического материала, к отделению формы от содержания абстрагированного, от конкретных количественных отношений и пространственных форм и оперированию формальными структурами, структурами отношений и связей;
2. Способность обобщать математический материал, вычленять главное, отвлекаясь от несущественного, видеть общее во внешне разном;
3. Способность к последовательному, правильно расчлененному логическому рассуждению, связанному с потребностью в доказательстве, обосновании, выводах;
4. Способность сокращать процесс рассуждения, мыслить развернутыми структурами, мыслить свернутыми структурами;
5. Способность сокращать процесс рассуждения, мыслить развернутыми структурами, мыслить свернутыми структурами;
6. Способность к обратимости мыслительного процесса (к переходу с прямого на обратный ход мысли);
7. Гибкость мышления, способность к переключению от одной умственной операции к другой. Свобода от сковывающего влияния шаблонов и трафаретов;
8. Математическая память - память на обобщенные формализованные структуры, логические схемы;
9. Способность к пространственным представлениям.
Я.А.Коменский в своей «Великой дидактике» указывал, что в первые 6 лет жизни ребенка должна быть заложена основа для многих последующих занятий. Определяя содержание этой основы, Я.А.Коменский отметил, что в период так называемой «Материнской школы» с ребенком необходимо пройти «первые шаги хронологии».
По мнению Ф. Фребеля первые математические представления ребенок должен усвоить в процессе деятельности, в играх и занятиях с дидактическим материалом.
В педагогических системах И.Г. Песталоцци, Ф. Фребеля, М. Монтессори и др. обосновывается необходимость математического развития детей, а в связи с этим выдвигаются идеи о совершенствовании методов их обучения. 23,114:
Основоположником теории начального обучения считают И.Г. Песталоцци, резко критиковавшего существовавшие тогда догматические методы обучения. Он предлагал обучать детей счёту на основе понимания действий с числами, а не простого запоминания результатов вычислений. Суть разрабатываемой И.Г.Песталоцци методики заключалась в переходе от простых элементов счёта к более сложным. Особое значение придавалось наглядным методам, облегчающим усвоение детьми чисел.
Ф. Фребель и М. Монтессори большое внимание уделяли наглядным и практическим методам. Разработанные специально пособия («дары» Ф.Фребеля и дидактические наборы М. Монтессори) обеспечивали усвоение достаточно осознанных знаний у детей. В методике Ф. Фребеля в качестве основного метода использовалась игра, в которой ребёнок получал достаточную свободу.
По мнению Ф. Фребеля и М. Монтессори, свобода ребёнка должна быть активной и опираться на самостоятельность. Роль педагога в таком случае сводилась к созданию благоприятных условий.[12, с. 53]
Теория и практика обучения накопила определённый опыт использования разных методов обучения в работе с детьми дошкольного возраста. При этом классификация методов используется с опорой на средства обучения. В период становления общественного дошкольного воспитания на развитие методики формирования элементарных математических представлений оказали влияние методы обучения математике в начальной школе. В практику работы детских садов проникли монографический метод А.В. Грубе и вычислительный метод (метод изучения действий). Работая с дошкольниками, Е.И. Тихеева внесла много нового в разработку методов обучения детей. Составленные ею игры-занятия сочетали в себе слово, действие и наглядность. По её мнению, дети до 7 лет должны учиться считать в процессе игры и повседневной жизни. Игру как метод обучения Е.И. Тихеева предлагала вводить по мере того, как то или другое числовое представление уже «извлечено детьми из самой жизни».
В 30-е гг. идею использования игр в обучении дошкольников счёту обосновывала Ф.Н. Блехер.
Существенный вклад в разработку дидактических игр и включения их в систему обучения дошкольников началам математики внесли Т.В. Васильева, Т.А. Мусейибова, А.И. Сорокина, Л.И. Сысуева, Е.И. Удальцова и др. Начиная с 50-х гг. в обучении детей всё чаще используют практические методы (А.М. Леушина). Она рассматривала практические методы в системе других (словесных и наглядных)методов. Именно с практических действий с предметными множествами начинается знакомство детей с элементарной математикой. Это было доказано в исследованиях как А.М. Леушиной, так и её учеников. [25, 95-99]
1.2 Программные требования к методике преподавания математики дошкольникам в современных ДОУ
Современная программа по математике направлена на развитие и формирование математических представлений и способностей, логического мышления, умственной активности, смекалки, то есть умения делать простейшие суждений, пользоваться грамматически правильными оборотами речи.
На занятиях по математике воспитатели используют различные методы (словесный, наглядный, игровой) и приемы (рассказ, беседа, описание, указание и объяснение, вопросы детям, ответы детей, образец, показ реальных предметов, картин, дидактические игры и упражнения, подвижные игры).
Большое место в работе с детьми всех возрастных групп занимают методы развивающего обучения. Это и систематизация предлагаемых им знаний, использование наглядных средств (эталонных образцов, простейших схематических изображений, предметов-заместителей) для выделения в реальных предметах и ситуациях различных свойств и отношений, применение общего способа действия в новых условиях.
Если педагоги сами подбирают наглядный материал, им при этом следует строго соблюдать требования, вытекающие из задач обучения и особенностей возраста детей. Эти требования следующие:
ѕ достаточное количество предметов, используемых на занятии;
ѕ разнообразие предметов по размерам (большие и маленькие);
ѕ обыгрывание с детьми всех видов наглядности до занятия в разные отрезки времени, с тем, чтобы на занятии их привлекала только математическая сторона, а не игровая (при обыгрывании игрового материала нужно указать ребятам его назначение);
ѕ динамичность (ребята действуют с предложенном им предметом в соответствии с заданиями воспитателя, поэтому предмет должен быть прочным, устойчивым, чтобы его можно было переставить, перенести с места на место, взять в руки);
ѕ художественное оформление. Наглядный материал должен привлекать детей эстетически. Красивые пособия вызывают у ребят желание заниматься с ними, способствуют организованному проведению занятий и хорошему усвоению материала. Для умственного развития дошкольников большое значение имеют занятия по развитию элементарных математических представлений. На занятиях по этому разделу программы дети не только занимаются усвоением навыков счета, решением и составлением простых арифметических задач, но и знакомятся с геометрическими формами, понятием множества, учатся ориентироваться во времени и пространстве. На этих занятиях в значительно большей степени, чем на других, интенсивно развивается сообразительность, смекалка, логическое мышление, способность к абстрагированию, вырабатывается лаконичная и точная речь. «Программа воспитания и обучения в детском саду» предусматривает преемственную связь с программой по этому предмету для 1 класса школы. Если ребенок не усвоил какое-либо правило или понятие, то это неизбежно повлечет за собой его отставание на занятиях по математике в школе.
Задача воспитателя детского сада, проводящего занятия по математике,-- включить всех детей в активное и систематическое усвоение программного материала. Для этого он, прежде всего, должен хорошо знать индивидуальные особенности детей, отношение их к таким занятиям, уровень их математического развития и степень понимания ими нового материала. Индивидуальный подход в проведении занятий по математике дает возможность не только помочь детям в усвоении программного материала, но и развить их интерес к этим занятиям. Обеспечить активное участие всех детей в общей работе, что ведет за собой развитие их умственных способностей, внимания, предупреждает интеллектуальную пассивность у отдельных ребят, воспитывает настойчивость, целеустремленность и другие волевые качества.
Воспитатель должен заботиться о развитии у детей способностей к проведению счетных операций, научить их применять полученные ранее знания, творчески подходить к решению предложенных заданий. Все эти вопросы он должен решать, учитывая индивидуальные особенности детей, проявляющиеся на занятиях по математике.
Обучение и воспитание ребенка - одно из возможных средств управления им. Образовательные программы для дошкольных учреждений ориентируют педагогов настойчиво и последовательно учить детей замечать время, соотносить с временем игры, занятия, повседневной жизни, приучать детей отдавать отчет о том, что сделано и могло быть сделано в то или другое время. Это вовсе не означает, что нужно постоянно говорить о времени, контролировать детей. Нужно так организовать жизнь, чтобы она была содержательна, интересна и полезна для развития у детей чувства времени. Чувство времени в общем его определении представляет способность ориентироваться при выполнении действий на определенное время без показания специальных приборов и вспомогательных средств. Воспитание чувства времени осуществляется на протяжении всего процесса формирования представлений о времени и не отделима от него.
Нужно отметить, что подготовка к операции «счет» начинается уже во второй младшей группе. Детей не учат считать, но, организуя разнообразные действия с предметами, подводят к усвоению счета, создают возможности для формирования понятия о натуральном числе.
Программа средней группы направлена на дальнейшее формирование математических представлений у детей. Таким образом, классическая программа обучения счету начинается в средней группе. Программа включает в себя обучение счету до 5 на сравнении двух множеств, выраженных смежными числами. Важной задачей в этом разделе остается умение устанавливать равенство и неравенство групп предметов, когда предметы находятся на различном расстоянии друг от друга, когда они различны по величине и т. д. Решение этой задачи подводит детей к пониманию абстрактного числа. 14.с.12.
Группировка предметов по признакам вырабатывает у детей умение сравнивать, осуществлять логические операции классификации. В процессе разнообразных практических действий с совокупностями дети усваивают и используют в речи простые слова и выражения, обозначающие уровень количественных представлений: много, один, по одному, ни одного, совсем нет, мало, такой же, одинаковый, столько же, поровну; столько, сколько; больше, чем; меньше, чем; каждый из.., все, всех. 7.с.154
Ребята средней группы должны научиться приемам счета:
1. Называть числительные по порядку.
2. Соотносить каждое числительное только с одним предметом.
3. В конце счета подводить итог его круговым движением и именовать названием пересчитанных предметов (например, «одна, две, три. Всего три куклы»). При подведении итога счета всегда обращать внимание на то, чтобы дети всегда первым называли число, а потом - предмет.
4. Учить отличать процесс счета от итога счета.
5. Считать правой рукой слева направо.
6. В процессе счета называть только числительные.
7. Учить детей правильно согласовывать числительные с существительными в роде, числе, падеже, давать развернутый ответ.
Одновременно с обучением счету формируется и понятие о каждом новом числе путем добавления единицы. В течении всего учебного года повторяется количественный счет до 5. При обучении счету на каждом занятии следует уделить особое внимание таким приемам, как сравнение двух чисел, сопоставление, установление равенства и неравенства их, приемы наложения и приложения.
Дается также счет по осязанию, счет на слух и счет различных движений в пределах 5.
Вводится знакомство с символикой - цифрами в пределах 5. В процессе обучения счету необходимо одновременно и знакомить с цифрами - соответствующими обозначениями чисел.
По мере ознакомления детей с первыми тремя числами их учат порядковому счету в пределах 5 и умению отличать его от количественного счета, правильно отвечать на вопросы: «Сколько всего?», «Который по счету?». Порядковый счет дается вместе с количественным в целях отличия их. На первом занятии необходимо раскрыть значение порядковых числительных. Раскрыть порядковое значение числа позволяет сопоставление его с количественным значением. Количественный счет: «Сколько?» - «один, два, три». Порядковый счет: «Который?», «Какой по счету?» - «первый, второй, третий».
Одной из важных задач в этой группе является обучение детей умению отсчитывать предметы. Для ребенка считать и отсчитывать не одно и тоже. Это разные счетные операции. Обучать отсчитыванию целесообразно в привычной для детей обстановке, где меньше отвлекающих моментов. При этом необходимо показать детям способ отсчета, указать, когда следует произносить числительное, отбирая предметы.
Например, отобрав кубик и поставив его на другой край стола, ребенок говорит: «Один», отобрав молча другой и поставив его к первому, говорит: «Два» и т. д. числительное произносить тогда, когда практическое действие отбора уже завершено. Этому способу важно обучить детей, так как, многие называют числительное, когда берут предмет, и называют следующее числительное, когда ставят его к первому, то есть считают свои движения, а не предметы. Следует учить отсчитывать, выкладывать, приносить определенное число предметов сначала по образцу, а затем по названному числу. Считать и отсчитывать по образцу детям легче, чем по названному числу. Воспитатель должен это знать и усложнять задания постепенно: сначала предлагать работать по наглядному образцу (дается образец-карточка с кружками и предлагается детям найти столько же игрушек, поставить каждую игрушку на кружок карточки, затем по названному числу (числовой карточке или цифре) найти трех уточек, поставить столько машин сколько цифр на доске).
Еще более сложным заданием будет отсчитывание предметов из большего количества. В начале обучения детям предлагают три предмета, которые необходимо расположить по порядку, далее количество предметов увеличить до пяти и более. 14.с.14.
Хорошую упражняемость в различении количественных отношений обеспечивает выполнение детьми поручений педагога. Например: принести много зайцев и одного мишку; найти, где лежит мало карандашей и много тетрадей; принести один стул и несколько кукол.7.с.56
Программа старшей группы направлена на расширение, углубление и обобщение у детей элементарных математических представлений, дальнейшее развитие деятельности счета. Детей учат считать в пределах 10, продолжают знакомить с цифрами первого десятка.
На основе действий с множествами и измерения с помощью условной меры продолжается формирование представлений о числах до десяти.
Образование каждого из новых чисел от 5 до 10 дается по методике, используемой в средней группе, на основе сравнения двух групп предметов путем попарного соотнесения элементов одной группы с элементами другой детям показывают принцип образования числа. Например, на счетной линейке раскладываются две группы предметов в ряд: на верхней полоске пять ромашек, на нижней - пять васильков. Сравнивая эти две группы предметов, дети убеждаются, что их поровну. Затем им предлагают пересчитать предметы на верхней и нижней полосках. Добавляется еще одна ромашка. Дети выясняют, что ромашек стало больше, а васильков меньше. Воспитатель обращает внимание на то, что образовалось новое число - шесть. Оно больше пяти. Число шесть получилось, когда к пяти добавили один.14.с.20
На основе этих знаний и умений у детей развивают глазомер.
В ходе упражнений по количественному сравнению групп предметов педагог показывает детям разные способы обозначения какого-либо количества. Для этого справа от группы предметов выкладывают такое же количество палочек, вывешивают счетную карточку, числовую фигуру и т. д. затем показывается графический способ обозначения числа - цифра.
В дальнейшем необходимо предоставить детям возможность выбрать нужную цифру, воспроизвести, нарисовать количество предметов, указанное цифрой. 23.с.173
Параллельно с показом образования числа детей продолжают знакомить с цифрами. Соотнося определенную цифру с числом, образованным тем или иным количеством предметов, воспитатель рассматривает изображенные цифры, анализируя его, сопоставляет с уже знакомыми цифрами, дети производят образные сравнения (единица, как солдатик, восемь похожа на снеговика и т. д.). 14.с.21
Особого внимания заслуживает число 10, так как оно записывается двумя цифрами: 0 и 1. Поэтому, прежде необходимо познакомить детей с нулем.
Понятие о нуле дети получают, выполняя задание отсчитывать предметы по одному. Например, у детей 9 игрушек, они по одной убирают и пересчитывают, остается 8, 7, 6, 5, 4, 3, 2, 1. Воспитатель просит убрать и последнюю игрушку. Объясняет детям, что не осталось ни одной игрушки. Или по-другому как говорят математики ноль игрушек. Ноль игрушек обозначается цифрой 0.
Воспитатель предлагает отыскать место нуля в числовом ряду. Дети самостоятельно или с помощью педагога решают, что ноль должен стоять перед единицей, так как он меньше единицы на один.
Возвращаем игрушки по одной пока не получится опять 9.воспитатель добавляет еще одну игрушку, получает число 10 и показывает, что оно записывается двумя цифрами: 0 и 1.7.с.56
В течении всего учебного года дети упражняются в счете в пределах десяти. Они пересчитывают предметы, игрушки, отсчитывают из большего количества предметов меньшее, отсчитывают предметы по заданному числу, по цифре, по образцу.
Образец может быть дан в виде числовой карточки с определенным количеством игрушек, предметов, геометрических фигур, в виде звуков, движений. При выполнении этих упражнений важно научить детей внимательно слушать задания воспитателя, запоминать их, а затем выполнять.
Важной задачей в старшей группе остается установление связей между смежными числами, понимание их отношений в пределах 10. Какое число следует за каким, какое из смежных чисел больше или меньше и как их сделать равными. Для этого все изучаемые детьми числа сравниваются на конкретном материале. Например, два мяча меньше, чем три квадрата. Знания закрепляются на разных группах предметах, чтобы дети убедились в постоянстве отношений между числами.14.с.21
Продолжая работу, начатую в средней группе, педагог должен уточнить представления детей о том, что число не зависит от величины предметов, от расстояния между ними, от направления счета. Решение этой программной задачи позволит сформировать у детей представление об отвлеченности числа, покажет независимость числа от направления счета.
Детей необходимо учить считать, начиная с любого указанного предмета в любом направлении, при этом, не пропуская предметы и не пересчитывая их дважды.
Для развития деятельности счета существенное значение имеют упражнения с активным участием различных анализаторов: счет звуков, движение на ощупь в пределах десяти.
В старшей группе продолжается работа над усвоением порядкового числа в пределах десяти. Детей учат различать порядковый и количественный счет. Считая предметы по порядку, необходимо условиться с какой стороны надо считать. Так как именно от этого зависит результат счета.
Например, если дети пересчитывают 10 игрушек слева направо, то матрешка будет третья, а если считать справа налево, то матрешка будет восьмая. Порядковый счет используется при определении того, которым, каким по счету стоит предмет.
Детей знакомят с количественным составом числа из единиц в пределах 10, Например, число 3: «Одна кукла, да еще одна матрешка, да еще одна рыбка. Всего три предмета». Обязательно на занятиях следует использовать разнообразный наглядный материал. На протяжении всего учебного года повторяется эта задача.14.с.22
1.3 Игра - как метод математического развития

В.А. Сухомлинский писал: «В игре раскрывается перед детьми мир, раскрываются творческие способности личности. Без игры нет и не может быть полноценного умственного развития. Игра - это огромное светлое окно, через которое в духовный мир ребёнка вливается живительный поток представлений, понятий об окружающем мире. Игра - это искра, зажигающая огонёк пытливости и любознательности». 4.с.3
При формировании элементарных математических представлений игра выступает, как метод обучения и может быть отнесена к практическим методам.
Широко используются разнообразные дидактические игры. Благодаря обучающей задаче, облечённой в игровую форму (игровой замысел), игровым действиям и правилам ребёнок непреднамеренно усваивает определённую «порцию» познавательного содержания.
Все виды дидактических игр (предметные, настольно-печатные, словесные и др.) являются эффективным средством и методом формирования элементарных математических представлений у детей во всех возрастных группах. Предметные и словесные игры проводятся на занятиях по математике и вне их, настольно-печатные, как правило, в свободное от занятий время. Все они выполняют основные функции обучения - образовательную, воспитательную и развивающую. [23, с.117]
Все дидактические игры по формированию элементарных математических представлений разделены на несколько групп:
1.Игры с цифрами и числами;
2.Игры путешествие во времени;
3.Игры на ориентировки в пространстве;
4.Игры с геометрическими фигурами;
5.Игры на логическое мышление.
Знания в виде способов действий и соответствующих им представлений ребёнок получает первоначально вне игры, в играх лишь создаются благоприятные условия для их уточнения, закрепления, систематизации. Структура большинства дидактических игр не позволяет сообщить детям новые знания, однако это не означает что в принципе такое невозможно. [23, с.118]
В настоящее время разработана система так называемых обучающих игр. В отличие от существующих они позволяют формировать у детей принципиально новые знания, которые нельзя получить непосредственно из окружающей действительности, так как их содержанием являются абстрактные понятия математики. Основной их целью является подготовка мышления дошкольника к восприятию фундаментальных математических понятий: «множество и операции над множествами», «функция», «алгоритм» и т. д. В этих играх используется специфический дидактический материал, подобранный по определённым признакам. Моделируя математические понятия, он позволяет выполнять логические операции: разбиение множества на классы, отыскание объектов по необходимым и достаточным критериям и т. д. Игры, содержание которых ориентировано на формирование математических понятий, способствуют абстрагированию в мыслительной деятельности, учат оперировать обобщёнными представлениями, формируют логические структуры мышления.
Дидактические игры выполняют обучающую функцию успешнее, если они применяются в системе, предполагающей вариативность, постепенное усложнение и по содержанию, и по структуре, связь с другими методами и формами работы по формированию элементарных математических представлений.
При подборе дидактических игр для занятий, индивидуальной работы с детьми воспитатель обращается к разнообразным источникам, использует народные и авторские игры, с предметами и без них.
Дидактические игры могут применяться в качестве одного из методов проведения занятий, индивидуальной работы, быть формой организации самостоятельной познавательной деятельности детей.
Игра как метод обучения и формирования элементарных математических представлений предполагает использование отдельных элементов разных видов игр (сюжетно-ролевой, игры-драматизации, подвижной и т. д.), игровых приёмов (сюрпризный момент, соревнование, поиск и т. д.), органическое сочетание игрового и дидактического начала в виде руководящей, обучающей роли взрослого и возрастающей познавательной активности и самостоятельности ребёнка.[23, с.119]
Обеспечить всестороннюю математическую подготовку детей всё-таки удаётся при умелом сочетании игровых методов и методов прямого обучения. Хотя понятно, что игра увлекает детей, не перегружает их умственно и физически. Постепенный переход от интереса детей к игре к интересу к учению совершенно естествен. [25, с.102]
Рассмотрим подробнее, какова роль одной из самых привлекательных форм деятельности дошкольников - игры в использовании счетно-измерительных умений и навыков.
В детских садах накоплен достаточный опыт применения дидактических игр для уточнения и закрепления представлений детей о последовательности чисел, об отношениях между ними, о составе каждого числа и т. д. При обучении началам математики педагоги широко используют игры, в которых у детей формируются новые математические знания, умения и навыки (например, игры типа «лото», «домино» и др.). Дошкольники совершают большое число действий, учатся реализовывать их в разных условиях, на разных объектах, тем самым повышается прочность и осознанность усвоения знаний. [16, с.6]
Однако в процессе умственных упражнений, которые так отчетливо выступают в существующих играх, дети имеют возможность отрабатывать и закреплять лишь отдельные счетные операции (количественный или порядковый счет, составление числа из единиц и др.), не связывая их друг с другом. Поэтому дошкольники зачастую не понимают взаимозависимости выполняемых действий, их роли в качестве способа познания количественной стороны действительности. [16, с.7]
Иногда значение дидактических игр умаляется и от того, что многие воспитатели плохо владеют методикой их проведения, вследствие чего активность играющих затормаживается (например, один ребенок действует, а остальные ждут своей очереди) или дидактические игры подчас превращаются в занятие, где воспитатель выступает в роли руководителя, диктующего, что нужно делать, а не в качестве партнера по игре,- в результате ограничивается и самостоятельность детей. Наличие в дидактической игре двух элементов (познавательного и игрового) приводит к тому, что первый часто подавляет второй - это обедняет игры, снижает интерес детей к ним, и самостоятельно в эти игры они почти не играют.
Наряду с дидактическими в детских садах бытуют увлекат и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.