На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Диплом Гуманизация и гуманитаризация химии как средство формирования здоровой нравственной основы будущего специалиста. Программные требования к преподаванию темы Белки. Нуклеиновые кислоты в средней школе. Подача материала лекцией и интегрированным уроком.

Информация:

Тип работы: Диплом. Предмет: Педагогика. Добавлен: 26.09.2014. Сдан: 2010. Страниц: 2. Уникальность по antiplagiat.ru: --.

Описание (план):


Выпускная квалификационная работа
Исследование возможности реализации обучающей, развивающей и воспитывающей функций естественнонаучного образования при изучении темы «Белки. Нуклеиновые кислоты»

СОДЕРЖАНИЕ

ВВЕДЕНИЕ

ГЛАВА I. РЕШЕНИЕ ЗАДАЧ РАЗВИТИЯ И ВОСПИТАНИЯ В СИСТЕМЕ ОБУЧЕНИЯ СРЕДНЕЙ ШКОЛЫ И ВУЗА

1.1 Единство образования, воспитания и развития в процессе обучения

1.2 Гуманизация и гуманитаризация химии как средство формирования здоровой нравственной основы будущего специалиста

1.3 Психолого-педагогические основы развивающего обучения

1.4 Средства развивающего обучения

1.5 Лабораторные работы как средство закрепления знаний, умений, навыков, развития мышления и формирования интеллекта учащихся

Глава II. ТЕМА «БЕЛКИ. НУКЛЕИНОВЫЕ КИСЛОТЫ» В КУРСЕ ХИМИИ СРЕДНЕЙ ШКОЛЫ И ВУЗА

2.1 Программные требования к преподаванию темы «Белки. Нуклеиновые кислоты» в средней школе

2.2 Программные требования к преподаванию темы «Белки. Нуклеиновые кислоты» в вузе

2.3 Теоретическая поддержка темы

2.3.1 Аминокислоты

2.3.2 Белки

2.3.3 Нуклеиновые кислоты

2.4 Анализ учебного материала в школьной программе

2.5 Анализ учебного материала в вузовской программе

Глава III. БАНК МЕТОДИЧЕСКИХ ЗАДАНИЙ ПО ТЕМЕ «БЕЛКИ. НУКЛЕИНОВЫЕ КИСЛОТЫ

3.1 Разработка учебных занятий в средней и высшей школе

3.1.1 Интегрированный урок химии и биологии в 11-м классе по теме: "Химия, биология и толерантность»

3.1.2 Лекция по теме «Белки. Нуклеиновые кислоты»

3.1.3 Урок по теме «Нуклеиновые кислоты»

3.1.4 Обобщающий интегрированный урок-семинар

«Белки - строение и свойства»

3.2 Задачи по теме «Белки. Нуклеиновые кислоты»

3.3 Тесты

3.3.1 Тесты по школьной программе

3.3.2 Тесты по вузовской программе

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

ВЫВОДЫ

ЛИТЕРАТУРА

ПРИЛОЖЕНИЕ

ВВЕДЕНИЕ

Каждая наука представляет собой сложную систему, возникшую на основе взаимной интеграции двух или нескольких равноправных систем, понятий [1]. Каждая из функций обучения - обучающая, развивающая и воспитывающая - является предметом разных психолого-педагогических наук - соответственно дидактики, психологии и теории воспитания. При взаимной интеграции этих наук, т.е. систем их понятий в сочетании с системой понятий химических, и синтезируется методика обучения химии.

Цель обучения химии в школе и вузе - вооружить химическими знаниями, привить профессиональные навыки, развивать их мыслительную активность и самостоятельность, формировать научно-материалистическое мировоззрение, осуществлять трудовое и нравственное воспитание. Не менее важно сделать курс таким, чтобы он способствовал формированию личности самого будущего специалиста.

В связи с этим особую важность приобретает разработка и использование при проектировании учебного процесса таких программ обучения, которые выполняют не только образовательную, но также воспитательную и развивающую функцию.

Актуальность предлагаемой работы обусловлена следующими положениями: во-первых, белки - высшая ступень развития вещества в природе, обусловившая появление жизни, научные успехи в области изучения белков подтверждают правильность материалистического понимания природы и познаваемость объективного мира. Во-вторых, тема «Белки. Нуклеиновые кислоты» открывает широкие возможности для умственного развития учащихся и несет в себе большую философскую и нравственную нагрузку и формирует интерес к познанию тайн мироздания.

К сожалению, приходится констатировать, что выпускники и школ и вузов затрудняются составить целостное представление о химических законах, действующих в живых системах.

Одной из основных причин этой проблемы является отсутствие методического материала, обеспечивающего доступность восприятия темы «Белки. Нуклеиновые кислоты». Итак, целью работы послужило исследование возможности реализации обучающей, развивающей и воспитывающей функций естественнонаучного образования при изучении темы «Белки. Нуклеиновые кислоты».

Достижение поставленной цели потребовало решения ряда частных задач:

1. Провести аналитический обзор литературных данных по современному состоянию естественнонаучного образования в области решения триединой задачи.
2. Проанализировать методические материалы преподаваемой темы «Белки. Нуклеиновые кислоты».
3. Учитывая изучаемый материал разработать различные подходы к проведению занятий по данной теме в школьном и вузовском курсе.
4. Оценить эффективность разработанных методических подходов после проведения уроков по результатам итогового тестирования.
Объектом исследования является тема «Белки. Нуклеиновые кислоты» в курсе химии средней и высшей школы.
Предмет исследования - реализация триединой функции естественнонаучного образования при преподавании прикладных аспектов темы «Белки. Нуклеиновые кислоты».
В своей работе мы попытались найти подтверждение главной гипотезы: «Разработанный нами методический материал по теме «Белки. Нуклеиновые кислоты» позволяет комплексно реализовать обучающую, развивающую и воспитывающую функции образования».
При решении поставленных задач использовались следующие методы исследования: анализ психолого-педагогической и методической литературы по проблеме исследования; анализ учебников по химии и специальной научной литературы на предмет поиска межпредметных связей; моделирование структуры системы учебных занятий, в которой межпредметные связи выступают одним из основных средств системного подхода к обучению; анкетирование, тестирование, целенаправленное наблюдение за студентами и школьниками в учебном процессе.
Научная новизна работы. Впервые на химическом факультете в целях комплексного решения триединой задачи естественнонаучного образования в преподавании курса «Высокомолекулярные соединения» разработана и апробирована интегрированная лекция на тему «Белки. Нуклеиновые кислоты». В рамках школьной программы разработан и впервые проведен обобщающий интегрированный урок-семинар на тему «Белки. Нуклеиновые кислоты», раскрывающий взаимосвязь биологии, химии и физики.
Теоретическая и практическая значимость работы. Работа проводилась в рамках цикла исследований, которые ведутся на кафедрах химии высокомолекулярных соединений и педагогики и психологии для оказания методической поддержки студентам химического факультета. Полученные результаты также представляют определенный интерес для учителей общеобразовательных школ и преподавателей химического факультета.
ГЛАВА I. РЕШЕНИЕ ЗАДАЧ РАЗВИТИЯ И ВОСПИТАНИЯ В СИСТЕМЕ ОБУЧЕНИЯ СРЕДНЕЙ ШКОЛЫ И ВУЗА

1.1 Единство образования, воспитания и развития в процессе обучения

Всестороннее, гармоническое развитие личности предполагает единство ее образованности, воспитанности и общей развитости. Все эти компоненты всестороннего развития понимаются в их узком смысле, т. е. соответственно как сформированность знаний, умений и навыков, воспитанность личностных качеств и развитость психической сферы личности. Исходя из общей цели современной школы и вуза, процесс обучения призван осуществлять три функции -- образовательную, воспитательную и развивающую. Современная дидактика подчеркивает, что задачи учебного процесса нельзя сводить лишь к формированию знаний, умений и навыков. Он призван комплексно влиять на личность, несмотря на то, что образовательная функция является особенно специфичной для этого процесса. Заметим, что грани между образованием, воспитанием и развитием в их узком смысле весьма относительны и некоторые аспекты их взаимно перекрещиваются. Например, в понятие «образование» часто включают усвоение не только фактических и теоретических знаний, специальных умений, но и формирование общеучебных умений и навыков. В то же время интеллектуальные умения и навыки, входящие в общеучебные, часто относят к развитию личности. Термины «образование», «воспитание» и «развитие» употребляются еще и в широком смысле. Тогда воспитание (в широком смысле) включает в себя обучение, образование и воспитание (в узком смысле). Само образование в широком смысле предполагает уже не только формирование знаний и умений, но и формирование личностных качеств, мировоззрения, идейности, нравственности личности и др.

Образовательная функция (в ее узком смысле) предполагает усвоение научных знаний, формирование специальных и общеучебных умений и навыков. Научные знания включают в себя факты, понятия, законы, закономерности, теории, обобщенную картину мира. Специальные умения и навыки включают в себя специфические только для соответствующего учебного предмета и отрасли науки практические умения и навыки. Например, по химии это решение задач, проведение лабораторных опытов, показ демонстраций, осуществление исследовательских работ. Кроме специальных умений и навыков, в процессе образования учащиеся овладевают общеучебными умениями и навыками, которые имеют отношение ко всем предметам, например навыками работы с книгой, справочниками, библиографическим аппаратом, навыками чтения и письма, рациональной организации домашнего труда, соблюдения режима дня и др. Одновременно с образовательной процесс обучения реализирует и воспитательную функцию, формируя у учащихся мировоззрение, нравственные, трудовые, эстетические, этические представления, взгляды, убеждения, способы соответствующего поведения и деятельности в обществе, систему идеалов, отношений, потребностей, физическую культуру, т. е. совокупность качеств личности, характерных для человека социалистического типа Воспитательная функция органически вытекает из самого содержания и методов обучения, но вместе с тем она осуществляется и посредством специальной организации общений учителя с обучаемыми. Объективно обучение не может не воспитывать определенных взглядов, убеждений, отношений, качеств личности. Ведь формирование качеств личности невозможно без усвоения ею определенных нравственных и других понятий, требований, норм. Это закономерно предполагает обучающий аспект воспитания. Суть воспитывающей функции обучения состоит в том, что она придает этому объективно возможному процессу определенную целенаправленность и общественную значимость. Между образованием и воспитанием существует не односторонняя связь: от обучения к воспитанию. Процесс воспитания при правильной организации тотчас же оказывает благотворное влияние на ход обучения, так как воспитание дисциплинированности, организованности, общественной активности и многих других качеств создает условия для более активного и успешного обучения. Вот почему процесс обучения закономерно предполагает единство образовательной и воспитательной функции. Подчеркнем, что речь идет о единстве, а не о параллельном независимом их осуществлении. Единство образовательной и воспитательной функций обучения проявляется и в том, что методы обучения выступают в роли отдельных элементов методов воспитания, а сами методы воспитания - в роли методов стимулирования учения.

Обучение и воспитание способствуют развитию личности. В таком случае, казалось бы, нет необходимости говорить еще и о развивающей функции обучения. Но жизнь показывает, что обучение осуществляет развивающую функцию более эффективно, если имеет специальную развивающую направленность и включает учеников в такие виды деятельности, которые развивают у них сенсорные восприятия, двигательную, интеллектуальную, волевую, эмоциональную, мотивационную сферы. В связи с этим в дидактике в 60-е гг. появился специальный термин «развивающее обучение». Он предполагает, что в ходе обучения помимо формирования знаний и специальных умений надо предпринимать специальные меры по общему развитию школьников. Правда надо особо подчеркнуть, что обучение всегда было развивающим, но круг развиваемых качеств вследствие недостаточной ориентированности на это содержания и методов обучения был несколько суженным. В этом смысле переход к развивающему обучению означал расширение сферы развивающих влияний, усиление творческих элементов в учебной деятельности. В работах, посвященных проблеме развивающего обучения (Л. В Занков, Н. А. Менчинская, Д Б Эльконин, В. В. Давыдов М А. Данилов. М. Н. Скаткин и др.), выдвигались разнообразные принципы и пути ее решения. Наиболее известными являются положения Л. В. Занкова о том, что для интенсивного развития мышления в процессе обучения необходимо обеспечить преподавание на высоком уровне трудности, в быстром темпе обеспечить осознание учащимися своих учебных действий. Вместе с тем развитие нельзя свести к формированию мышления. Как было указано выше, оно должно охватить все сферы личности. И поэтому современная дидактика ищет пути расширения развивающего влияния обучения Особенностью функции развития является то, что она не существует самостоятельно, а является следствием образовательной и воспитательной функций обучения. Но интенсивность, разносторонность широта и углубленность развития зависят от того, как будут реализовываться образование и воспитание. Все три функции обучения нельзя представлять себе как три параллельно осуществляемые, неперекрещивающиеся линии в потоке влияний учебного процесса. Все они находятся в сложно переплетающихся связях: одна предшествует другой, является ее причиной, другая является ее следствием, но и одновременно условием активации первопричины. Две из них -- образовательная и воспитательная -- являются в единстве основой третьей, развивающей функции Последняя в свою очередь интенсифицирует а последующем образовательную и воспитательную функции обучения и т. д Вот почему к взаимосвязи этих функций надо подходить, учитывая диалектический характер их единства. Основные функции обучения реализуются на практике, во-первых, путем планирования комплекса задач урока, включающих в себя задачи образования, воспитания и развития школьников, во-вторых, путем подбора такого содержания деятельности учителя и школьников, которое бы обеспечило реализацию всех трех видов задач, имея в виду, что на каждом этапе урока какие-то из них будут решаться в большей или меньшей мере; в-третьих, единство этих функций осуществляется путем сочетания разнообразных методов, форм и средств обучения; в-четвертых, в процессе контроля и самоконтроля за ходом обучения и при анализе его результатов одновременно оценивается ход осуществления всех трех функций, а не одной из них.

Совокупность этих требований при построении учебного процесса поднимает его на качественно новый уровень, при котором комплексно осуществляются задачи, стоящие перед школой.

На сегодняшний день необходима дифференциация целей обучения химии. В классах и школах гуманитарного профиля задача обучения - раскрытие роли и места химии в формировании естественнонаучной картины мира, в культурной жизни общества. Цели обучения химии в классах и факультетах естественнонаучной направленности предусматривают углубленное изучение теории и понятий, усиление практической стороны предмета, в школах - подготовка к продолжению образования. В физико-математических классах и факультетах усиливается математическая компонента химии как точной науки [1].

Содержание естественнонаучного образования и, следовательно, любого учебного предмета должно быть представлено четырьмя видами:

1) системой научных знаний;

системой умений (специальных, интеллектуальных, общеучебных);

опытом творческой деятельности, накопленной человечеством в данной области науки;

опытом отношения к окружающей действительности, правильной ценностной ориентации.

Все эти четыре вида содержания взаимосвязаны. Так, не зная закономерностей протекания химической реакции, нельзя осуществить ее практически (1). Без эксперимента нельзя приобрести полноценных знаний об изучаемом объекте, как нельзя их получить, не умея работать с учебником (2) [2]. Учащийся не сможет решать усложненные задачи, отвечать даже на простые, но необычно поставленные вопросы, потому что не умеет перенести свои знания в новые ситуации, не умеет видеть проблему и т. д. [3]. На основе эмоционально-волевой сферы личности, ее отношения к изучаемому, знания перерастают в убеждения, формируется мировоззрение [4]. Этот процесс невозможен без творческой деятельности по овладению знаниями и умениями. При этом знания должны быть связаны с жизнью. Например, убеждения в необходимости охраны окружающей среды не могут возникнуть без изучения химических производств и т.д., осознания того, что каждый человек своей деятельностью может нанести вред природе, если действует химически неграмотно.

Научность содержания может быть достигнута лишь тогда, когда учащихся знакомят не только с готовыми выводами, но и с методами исследования. Глубина научной интерпретации процессов, фактов, явлений ограничивается другим дидактическим принципом - доступностью. Устранение противоречия между необходимостью отражения современного уровня науки и соблюдением требований принципа доступности - главный путь совершенствования содержания. Доступность учебного материала определяется числом связей этого материала с уже известными сведениями. Принцип доступности базируется на третьем важном принципе - систематичности, который связан с системностью - отражение в сознании обучаемых системы научных знаний со всеми их фактами, связями, теориями и т. д. Вещества, процессы, элементы и другие объекты изучения рассматриваются с разных сторон, чтобы у учащихся создавалось более полное, объективное представление. Систематичность курса выражается в строгой логической последовательности построения учебного материала, в подчинении его единой идее [3].

При систематическом построении материала возможны два логических подхода -- индуктивный и дедуктивный. Индуктивный применяется в основном на первых ступенях обучения, когда еще отсутствует фактическая база, необходимая для теоретических обобщений, а дедуктивный - когда теоретическая база достаточна и может осуществляться прогнозирование. Примером дедукции может служить подход к темам, изучаемым после периодического закона и теории строения вещества.

Реализации принципа систематичности способствует выявлению и осуществлению межпредметных связей. Большое значение придается в настоящее время принципу историзма [4].

Связь обучения с жизнью, с практикой -- это еще один важный дидактический принцип. Именно он обеспечивает мотивацию обучения. Этот принцип требует раскрытия прикладного значения химических знаний [1].

Ю. К. Бабанский предлагал следующие критерии оптимизации объема и сложности учебного материала, применимые как в школьной, так и вузовской программе [5]:

- Критерий целостности содержания. Учебный предмет должен отражать все основные направления развития науки, культуры, общественной жизни, всех аспектов воспитания [6].

- Критерий научной общепризнанности. В подлежащее обязательному усвоению содержание включаются только вопросы и научные трактовки, которые уже не встречают разночтений у подавляющего большинства ученых.

- Критерий научной значимости, отражающий широту применения научных знаний. Они могут носить всеобщий, общий и частный характер. Знания, носящие всеобщий характер, должны включаться в первую очередь. На этом основании в действующую программу по химии включен закон о сохранении и превращении энергии.

- Критерий соответствия возрастным особенностям учащихся, тесно связанный с принципом доступности.

- Критерий соответствия времени, отведенному на изучение химии.

- Критерий соответствия имеющимся в массовой школе и вузам условиям.

- Критерий соответствия международным стандартам.

Ведущие идеи:

Идея интегративности: раскрытие межпредметных связей с другими науками, взаимопроникновение научных понятий, трактовка которых в этом случае становится более широкой и тем самым расширяет кругозор учащихся, способствует формированию естественнонаучной картины мира.

Идея методологизации - до обучающихся должен быть доведен не просто результат научных изысканий, но и процесс его поиска, чтобы они осваивали и методы науки, понимали связь между научным результатом и методами, которыми он получен.

Экологизация естественнонаучного курса.

Идея экономизации: экономическая сторона практического использования достижений химии, ее прикладное значение и экономическая оценка.

Идея гуманизации - раскрыть роль химии в создании общечеловеческих ценностей, использования ее достижений на благо [1].

1.2 Гуманизация и гуманитаризация химии как средство формирования здоровой нравственной основы будущего специалиста


Нет в мире ничего сложнее и богаче человеческой личности

В. А. Сухомлинский
Изменения социальных условий в конце 80 - х начале 90 - х годов, привело к кризису воспитательной работы в образовательных учреждениях. Отказ от коммунистического воспитания привел к потере цели воспитания (гармонически развитая личность), основного направления воспитательной работы (деятельности пионерской и комсомольской организации). В результате воспитательная работа, представляющая собой совокупность воспитательных мероприятий, перестала решать современные проблемы воспитания. В настоящее время распространен иной взгляд на воспитание, воспитательную работу с акцентом на гуманистический смысл данных мероприятий. Под гуманизацией понимают введение в науку человеческих критериев - прежде всего критериев нравственности и красоты. Гуманитаризация - освоение химией и технологией методов, свойственных гуманитарным наукам, связанных с образным мышлением, эстетическими оценками, поиском далеких аналогий, метафоричностью и т.д.
В освоении гуманистического смысла воспитания выделяют следующие шаги:
1) Формирование теоретико-методологической и технологической готовности педагогов к работе в системе гуманистических отношений, постепенный отказ от стереотипов профессиональной деятельности.
2) Развитие и анализ педагогических целей учебно-воспитательных учреждений, их "очеловечивание", гуманизация, переориентация на совершенствование личностных качеств и межличностных отношений.
3) Выработка каждым учреждением своей концепции воспитания с учетом потребностей, интересов, пожеланий, учеников, и их родителей. Экспертная оценка замыслов и хода проводимой опытно - экспериментальной работы с позиции воспитательных целей .
4) Творческое освоение современных направлений, форм, технологий воспитания, обращение к опыту прошлых лет, сохранившему интересные, продуктивные варианты организации воспитательной работы.
В этих условиях путь к новой модели воспитания, к перестройке позиции педагога лежит через переосмысление сущности педагогической профессии, ее целей, задач, содержания, методов; через реалистическое понимание функций и роли учителя воспитателя. Современная наука предлагает педагогу комплексный взгляд на человека, его роль в масштабе социума и вселенной в целом [6].Философские идеи о безграничности личностного потенциала, о ноосфере, этногенезе, стремительно вошедшие в общественный контекст значительно расширяют и углубляют педагогическое понимание природы ребенка и взрослого, открывая новые подходы в работе школы, в деятельности учителя, смысл которого все яснее видится как Созидание Человека.
Насущность гуманизации определяется особенностями нашей исторической эпохи. В работе московского философа Кутырева [7] современный мир определяется как постчеловеческий. Что это значит? В процессе своего развития человечество создало большое количество социальных, экономических, технических систем. Ныне многие из них стали настолько сложными, что выработали свои цели функционирования, не определяемые целями, волей, желаниями и намерениями тех людей, которые их создавали, и тех, которые взаимодействуют с ними или включены в них. Более того, все чаще цели этих систем враждебны человеку или даже губительны для человечества.
Исключительно остры проблемы гуманизации для химического производства. Положение этого производства в современном мире крайне противоречиво. Сегодня человечество не может обходиться без химической продукции, и в тоже время химические предприятия - один из мощнейших и опаснейших загрязнителей Земли. При разрешении данного противоречия массовое сознание бросается из крайности в крайность - от хемоэлпидии (возлагание на химию неоправданно высоких надежд) до хемофобии. В этой сложнейшей обстановке выбор правильного пути невозможен без подключения к поиску таких нехимических ориентиров, как порядочность и совесть. Принять безнравственное техническое решение для человека должно быть также невозможно, как выйти голым на улицу.
Таким образом, воспитание современного химика немыслимо без привития, кроме профессиональных знаний, умения так спроектировать и осуществить процесс, чтобы обеспечить не только технико-экономически оптимальные условия его проведения, но и надежную защиту природы и самого человека. Это воспитание социальной ответственности за результаты своей деятельности может быть лишь результатом системного подхода ко всему процессу химического образования [9, 13, 23].
1.3 Психолого-педагогические основы развивающего обучения

Обучение, которое, обеспечивая полноценное усвоение знаний, формирует учебную деятельность и тем самым непосредственно влияет на умственное развитие, и есть развивающее обучение [24].
Для того чтобы обучение успешно выполняло развивающую функцию, необходима специальная методическая обработка химического содержания, особая организация учебного процесса и глубокое проникновение в психологию каждого ученика. «Вся сложность развивающего обучения заключается в том, что, так как развитие учащихся индивидуально, к одному и тому же результату они идут разным путем, и этот путь требует разного времени. И более того, развитие не терпит насилия». [25]
Развивающее обучение постоянно находится в центре внимания психологов. Л. В. Занковым сформулирована теория развивающего обучения, в соответствии с которой в настоящее время разрабатываются учебники. Сущность этой теории:
построение обучения на высоком, но посильном уровне трудности. Следует соблюдать меру трудности. Иначе вместо сознательного усвоения будет наблюдаться механическое запоминание;
изучение материала быстрым, но доступным для учащихся темпом;
резкое повышение удельного веса теоретических знаний;
осознание учащимися процесса учения.
Л. С. Выготский отмечает, что обучение наиболее успешно тогда, когда учитывается зона ближайшего развития ребенка, т. е. когда ученик настолько подготовлен к пониманию учебного материала, что при минимальной помощи учителя в состоянии его усвоить.
Свою теорию развивающего обучения, в основу которого положена реализация идеи формирования научно-теоретического мышления, выдвинул и разработал В. В. Давыдов [34, 35]. Д. Н. Богоявленский и Н. А. Менчинская [36] отмечали, что для умственного развития важно накопление не только фонда знаний, но и прочно закрепленных умственных приемов, интеллектуальных умений. Этому тоже нужно обучать.
Психологическими условиями развивающего обучения являются:
формирование и развитие знаний химического материала; выработка умственных действий, т. е. при формировании химического понятия надо объяснять, какими приемами, мыслительными операциями надо пользоваться, чтобы знания были правильно усвоены, а эти приемы затем использованы как по аналогии, так и в новых ситуациях. Развитие знаний -- это основа развития самостоятельности, творческих способностей;
формирование и развитие интеллектуальных умений. Очень важно научить учащихся логически мыслить, использовать приемы сравнения, анализа, синтеза, выделять главное, существенное, делать выводы, обобщать, аргументировано спорить, излагать мысли последовательно, обоснованно, непротиворечиво;
формирование и развитие умения пользоваться рациональными приемами учебной работы (умение учиться).
В процессе обучения при соблюдении всех психологических условий можно добиться постепенного умственного развития учащихся, которое, по выводам ряда психологов, может проявляться:
ь в системности мышления, под которым понимается его упорядоченность на последовательно усложняющихся уровнях (А. Ф. Эсаулов);
ь в умении проводить широкий перенос знаний на решение новых познавательных задач (Е. Н. Кабанова-Меллер);
ь в умении выделять главное, делать обобщения (В. А. Крутецкий, Н. А. Менчинская, Ю. К. Бабанский);
ь в более экономичном мышлении, свернутости мыслительных операций, самостоятельности, лаконичности.
Развитие учащихся происходит только в деятельности.

1.4 Средства развивающего обучения

Средствами развития учащихся при изучении химии являются сама система содержания курса химии, в основе которой лежит постепенное развитие химических понятий, а также активный характер учебного процесса. Система определена программой школьного курса химии и предусматривает постепенное повышение уровня развития учащихся по мере изучения предмета, которое согласуется с возрастными особенностями учащихся. В содержание последовательно вводятся теории. При переходе от теории к теории происходит развитие понятий. Таким образом, все разделы предмета химии связаны между собой последовательно развивающимися понятиями, объединяющими их в систему. Следствием системности содержания является системность знаний учащихся. А когда знания становятся убеждениями, достоянием учащихся, то и мышление их приобретает свойство системности.

Включение в курс химии как атомно-молекулярного учения, учения о периодичности, теории строения неорганических и органических веществ, ионных представлений и т. д. в разном объеме говорит о том, что структура содержания химии может быть базой для реализации развивающего обучения. Для этого необходимо периодически обобщать накопленный материал.

Обобщение - это высший уровень мыслительной деятельности. Обобщение осуществляется тогда, когда происходит поиск связей (генетических, причинно-следственных, взаимного влияния и пр.) между изучаемыми объектами, когда постоянно меняется ситуация поиска. Самое ценное обобщение осуществляется в процессе самостоятельной работы учащихся. Однако конечным этапом познания является конкретизация обобщенных знаний.

Для развития мышления учащихся Н. Ф. Воловой [11] предпринята успешная попытка включения в химическое содержание элементов психологических знаний. Ученикам на химическом материале объясняется сущность мыслительных приемов, предлагается тренировка внимания, памяти и т. п.

Кроме перечисленных средств, способствующих развивающему обучению химии, активный характер учебного процесса обеспечивается:

ь проблемным обучением;

ь широким использованием средств наглядности, а также технических средств обучения (ТСО);

ь систематическим контролем знаний;

ь разнообразными видами самостоятельной работы;

ь системой химических задач;

ь дифференцированным подходом к учащимся. [1, 29 - 31]

Таким образом, развитие учащихся в процессе обучения химии - это часть проблемы, стоящей перед школой - проблемы формирования всесторонне развитой личности [11, 25 - 29, 32, 33 - 36].

1.5 Лабораторные работы как средство закрепления знаний, умений, навыков, развития мышления и формирования интеллекта учащихся


Слушаю - забываю,
Смотрю - запоминаю,
Делаю - понимаю.
Конфуций.
Тенденции развития современного общества предъявляют новые требования к учебному процессу, в том числе и предметам естественного цикла. С одной стороны, изменяется содержание образования - увеличивается нагрузка на ученика, с другой - возникает необходимость качественно новых методик преподавания, которые позволили бы не только увязать разнообразные знания в единую систему, но и сформировать у детей компетенции, необходимые для жизни в современном мире.
В системе методов обучения химии особое место занимают лабораторные работы. Их значимость в сообщении учащимся новых знаний заключается в том, что через ощущения учеников они формирует первоначальные представления об изучаемых явлениях, создает чувственные образы, лежащие в основе многих химических и физических понятий. Нет иного пути, кроме как через наглядно чувственные образы, к пониманию, например, химической реакции, химических свойств веществ, и т. д.
Познание реальной действительности происходит, в конечном счете, на основе ощущений. Современная психология рассматривает образное мышление как один из уровней мысленной переработки и преобразования информации. Экспериментальные психологические исследования убедительно свидетельствуют о влиянии образов на продуктивность мышления в различных видах деятельности, в том числе в научном и техническом творчестве. Поэтому развитие образной стороны мышления -- существенная часть формирования интеллекта учащихся. В этом важная роль принадлежит химическому эксперименту.
Трудности сообщения знаний о химических явлениях, закономерных связях между ними и их практических применениях могут быть легко преодолены путем применения химических опытов. Являясь носителем учебной информации, лабораторные работы, убедительны своей объективностью, выразительны своей образностью, экономны по затратам учебного времени, впечатляющи, а потому легко запоминаются и активно формируют знания школьников [12].
Доводом в пользу усиления роли химического эксперимента в школе служат и результаты анкетирования учащихся с целью выявления их интересов. При ответе на вопрос о том, какая форма проведения занятий вызывает наибольший интерес, в разных группах от 60 до 90% учащихся ставят на первое место лабораторные работы.
Именно недооценка роли химического эксперимента является одной из главных причин формализма знаний у студентов и школьников. В реальной педагогической деятельности ему уделяется мало внимания. В школах и вузах часто не хватает оборудования, реактивов, и в этой ситуации преподавателю тяжело справиться с проведением опытов. К этому добавим, что преподаватель не всегда умеет продемонстрировать опыт, подать его доказательно.
Однако при стечении самых благоприятных обстоятельств, при обилии химического эксперимента знания школьника и студента заметно не улучшаются. Одно только наблюдение и механическое воспроизведение химического эксперимента к знаниям не ведет. Не понимая сущности, учащийся не увидит того, на что направлен опыт. Психологами доказано, что человек видит то, что понимает. Непонятный объект производит действие только на сетчатку глаза, но не на мозг. Понимание сущности помогает глубже увидеть опыт, так же как опыт помогает понять глубже сущность.
Проблемные опыты позволяют учителю в увлекательной и интересной форме знакомить учащихся с сущностью изучаемого процесса. При постановке проблемных опытов ученики осуществляют перенос знаний на незнакомые объекты, активно участвуют в эвристических формах организации работы, приобретая глубокие и прочные знания. Кроме того, активное применение знаний в незнакомых ситуациях способствует выработке у учащихся творческого мышления [20-24]. Существующие программы и учебники практически не содержат проблемных опытов, т.е. в школе фактически отсутствует какая-либо альтернативная система химических экспериментов, кроме сложившейся системы стандартных опытов и лабораторных работ. Вероятно, по этим причинам интерес учащихся к познанию химии невысок.
Существуют разные способы создания проблемной ситуации при проведении лабораторной работы. За постановкой проблемы, естественно должен следовать творческий поиск ее решения, и учащиеся, участвуя в поиске научной истины, учатся творческому подходу, овладевают приемами логического мышления, приобщаются к научному методу [25].
Курс химии высокомолекулярных соединений, построенный на идеях развития и зависимости свойств веществ от строения, предоставляет особенно широкие возможности для проблемно-развивающего эксперимента.
Постановка проблемных ситуаций при проведении лабораторных работ часто вызывают необходимость дополнительных сведений, что стимулирует учащихся к приобретению знаний через чтение книг, журналов и консультации у учителя. Выполняя задания, ученики приобщаются к соблюдению правил эксплуатации различного рода приборов и инструментов, всевозможных механизмов и транспортных средств [25].
В частности, М.И. Махмутов писал: „Под проблемными ситуациями имеются в виду такие учебные ситуации затруднения, которые возникают в моменты, когда учащийся принимает задачу, пытается ее решить, но чувствует недостаточность прежних знаний. Эти ситуации вызывают активную мыслительную деятельность учащегося, направленную на преодоление затруднения, т.е. на приобретение новых знаний, умений, навыков“ [20].
Важно и то, что в процессе систематического и самостоятельного выполнения опытов учащиеся подчас даже непроизвольно усваивают методологию экспериментального исследования. Необходимость действовать в такой последовательности: постановка цели задания, выработка способа ее достижения, планирование эксперимента, его проведение, представление результатов эксперимента в виде таблиц, графиков, математических зависимостей или словесного описания, защита полученных из эксперимента знаний (выводов) при обсуждении работы.
В процессе проведения лабораторных работ учащиеся приобретают следующие конкретные умения:
1.наблюдать и изучать явления и химические свойства веществ;
2.выполнять измерения физических величин;
3.описывать результаты наблюдений;
4.вычислять погрешности прямых и косвенных измерений;
5.определять динамику, взаимосвязь и взаимообусловленность химических процессов;
6.выдвигать гипотезы;
7.отбирать необходимые приборы и лабораторную посуду;
8.представлять результаты измерений в виде таблиц;
9.интерпретировать результаты эксперимента;
10.делать выводы;
11.обсуждать результаты эксперимента, участвовать в дискуссии;
12.пользоваться химической посудой и измерительными приборами.
Лабораторные работы могут проводиться по готовым инструкциям или по устным указаниям учителя. Наиболее удобна следующая форма организации работы. Учащиеся получают инструкцию по проведению работы. Она может быть написана на доске, или продиктована, или подготовлена заранее и роздана учащимся. Это позволяет спокойно провести работу при разной степени подготовки к ней учеников и разной скорости ее выполнения. Инструкция сочетает в себе элементы проблемного подхода и конкретные указания к проведению работы. В проблемном плане в ней могут быть обсуждены пути достижения цели работы, подбор приборов и оборудования, использование необходимых формул и закономерностей. Конкретные указания позволяют избежать ошибок, приводящих к срыву работы, содержат рекомендации по ее наиболее целесообразному и удобному проведению.
Химия - наука экспериментальная. Наблюдения, опыты являются источником знаний о природе химических явлений. Наблюдения, измерения и анализ полученных результатов, которые производят учащиеся на практических занятиях, являются по существу воспроизведением основных методов химии как науки. Ученики, которые имеют склонность к выполнению эксперимента и не находят подкрепления и развития этих склонностей на занятиях, постепенно утрачивают интерес к продолжению занятий химией.
Преимуществами химического эксперимента в форме выполнения лабораторной работы являются высокая степень активности и самостоятельности школьников, выработка умений работы с химическими реактивами и навыков обработки результатов наблюдений и измерений, возможность проведения эксперимента или наблюдения по индивидуальному плану и в темпе, определяемом самим учащимся. Не последним по значению является и такой фактор, как устранение посредника между учеником и изучаемым явлением природы.
Выполнение лабораторных работ химического практикума открывает большие возможности для учета индивидуальных интересов и склонностей учащихся, развития их творческих способностей. В практикуме можно поставить работы, различные по уровню сложности и характеру заданий. Одних можно снабдить подробными инструкциями, других - краткими указаниями, третьим - лишь сформулировать задачу, для решения которой ученику необходимо самостоятельно подобрать реактивы и разработать схему выполнения эксперимента.
Простоту и доступность лабораторной работы вовсе не следует рассматривать как отрицательное качество. Именно простые работы по наблюдению химических процессов и явлений позволяют воздействовать не только на разум, но и на чувства учащихся, помогают им понять, чем может химия заинтересовать человека на всю жизнь.
Разработанные в данной работе лабораторные работы по химии высокомолекулярных соединений достаточно просты, но требуют от учащихся осмысленного подхода к выполнению. Для этих работ не нужно сложного оборудования. Но при их выполнении школьники и студенты приобретут теоретические, практические и исследовательские навыки. Эти занятия научат учащихся:
· выполнять задания осмысленно, т.е. действовать с пониманием процедуры, четко, логически последовательно, грамотно и в оптимальном варианте;
· разграничивать известную и неизвестную информацию;
· выдвигать идею и разрабатывать план её осуществления;
· видеть причину события, явления;
· связывать теорию и практику;
· проводить анализ данных и синтез информации, делать выводы.
Прав физик Луи де Броль, сказавший: „Удивление - мать открытия“. Что в обучении химии чаще всего ставит ученика в проблемную ситуацию, которой предшествует удивление? Это химические реакции, которые сопровождается яркими наглядными эффектами, необычными явлениями. Они являются сильнейшими возбудителями познавательного интереса, обостряющими эмоционально - мыслительные процессы при обучении химии. Лабораторная работа, включающая в себя разнообразные химические реакции, создает определенный эмоциональный настрой учеников (поисковый интерес при проведении опытов) и заставляет наблюдать, искать, догадываться, находить выход из возникшей проблемной ситуации. Таким образом, разработка доступных лабораторных работ проблемно-развивающего характера способствует активизации всей познавательной деятельности учащихся, а также развитию мышления и формированию интеллекта.

Глава II. ТЕМА «БЕЛКИ. НУКЛЕИНОВЫЕ КИСЛОТЫ» В КУРСЕ ХИМИИ СРЕДНЕЙ ШКОЛЫ И ВУЗА

2.1 Программные требования к преподаванию темы «Белки. Нуклеиновые кислоты» в средней школ

№ урока
Тема занятия
Вводимые опорные понятия
и представления.
Формирование специальных навыков
Актуализация опорных знаний, умений, навыков по химии и междисциплинарным наукам
1.
Белки - строение и свойства (2 часа)
Знать основные аминокислоты, образующие белки; понятие о первичной, вторичной и третичной структуре белков; свойства белков - гидролиз, денатурация, цветные реакции; превращения белков пищи в организме; иметь представление об успехах в изучении строения и синтезе белков.
Закрепление и углубление знаний об азотсодержащих органических соединениях, изомерии органических соединений, роли белков как биополимеров и нуклеиновых кислот в жизнедеятельности организмов.
2.
Нуклеиновые кислоты (1 час)
Знать состав нуклеиновых кислот (ДНК, РНК); строение нуклеотидов; принцип комплементарности в построении двойной спирали ДНК.
Демонстрации. Доказательство наличия функциональных групп в растворах аминокислот.
Лабораторные опыты. Решение экспериментальных задач на получение и распознавание органических веществ.
Практические занятия. Распознавание органических веществ по характерных реакциям; установление принадлежности вещества к определенному классу [45, 46].

2.2 Программные требования к преподаванию темы «Белки. Нуклеиновые кислоты» в вузе

пп
Тема лекции
Содержание
Объем в час.
1
Белки. Нуклеиновые кислоты (НК).
Белки и НК как биополимеры. Состав, структура, свойства и функции белков. Ферменты - биокатализаторы. ДНК и РНК, их состав, свойства и функции. Принцип комплементарности. Биосинтез белка.
2

Согласно программе по химии высокомолекулярных соединений после изучения темы «Белки. Нуклеиновые кислоты» студент должен знать:

ь иметь представление о белках и биологически активных веществах, структуре и свойствах важнейших типов биомолекул;

ь основные физические свойства, способы идентификации и физико-химические методы исследования аминокислот, белков и нуклеиновых кислот;

ь химические свойства аминокислот, белков и нуклеиновых кислот;

ь нахождение в природе, использование в промышленности и народном хозяйстве аминокислот, белков и нуклеиновых кислот.

должен уметь:

ь теоретически обосновать методы получения данных соединений;

ь синтезировать, исследовать и идентифицировать аминокислоты, белки и нуклеиновые кислоты;

ь выносить научно-обоснованное суждение об изученных закономерностях [47].

2.3 Теоретическая поддержка темы

2.3.1 Аминокислоты

Аминокислоты - органические соединения, в молекулах которых содержатся одновременно аминогруппа -NH2 и карбоксильная группа -COOH.

Их можно рассматривать как производные карбоновых кислот, получающихся замещением одного или нескольких атомов водорода в углеводородном радикале аминогруппами. Например:

Все аминокислоты, которые содержатся в белках любого происхождения, делят на 2 группы: ациклические (нециклические) и циклические.

Алициклические подразделяются на 3 подгруппы:

1) Моноаминомонокарбоновые - аминокислоты, содержащие одну амино- и карбоксильную группу.

б-аминоуксусная кислота (глицин) б-аминопропионовая кислота (аланин)

б-амино-в-гидроксопропионовая б-амино-в-меркаптопропионовая

кислота (серин) кислота (цистеин)

б-амино-в-оксимасляная кислота б-амино-в-тиометилмасляная

(треонин) кислота (цистеин)

б-амино-в-изовалерьяновая кислота б-амино-в-изокапроновая кислота изолейцин

(валин) (лейцин)

2) Диаминомонокарбоновые - аминокислоты, содержащие две амино- и одну карбоксильную группу.

аспаргин диаминокапроновая кислота (лизин)

аргинин глутамин

3) Моноаминодикарбоновые - аминокислоты, содержащие одну амино- и две карбоксильные группы.

аспарагиновая кислота (аминоянтарная) глутаминовая кислота (аминоглутаровая)

Циклические:
б-амино-в-фенилпропионовая б-амино-в-параоксифенилаланин кислота (фенилаланин) (тирозин)
б-амино-в-имидазолпропионовая б-амино-в-индолилпропионовая пролинкислота (гистидин) кислота (триптофан)
Номенклатура
Названия аминокислот производятся от названий соответствующих кислот с добавлением приставки амино-.
Тривиальная номенклатура. Аминокислоты, входящие в состав белков, имеют исторически сложившиеся практические названия. Например: аминоуксусная кислота - гликокол или глицин H2N-CH-COOH и т.д [48, 49-51].
Изомерия
Изомерия аминокислот зависит от расположения аминогруппы и строения углеводородного радикала. По расположению аминогруппы (по отношению к карбоксилу) различают: - аминокислоты (аминогруппа находится у 1 атома углерода), - аминокислоты (аминогруппа находится у 2 атома углерода), - аминокислоты (аминогруппа находится у 3 атома углерода) и т.д.
Например: CH3-CH2-COOH пропионовая кислота;
- аминопропионовая кислота; - аминопропионовая кислота.
Изомерия, обусловленная разветвлением углеводородного радикала - например, формулы изомерных соединений состава C3H6(NH2)COOH:
б-аминомасляная кислота в-аминомасляная кислота
в-аминоизомасляная кислота
Все природные аминокислоты не ароматического ряда, за исключением глицина, являются оптически активными и относятся к L-ряду, т.е. все вращают плоскость поляризации света влево:
D-аланин L-аланин
Организм животных и человека усваивает только L-аминокислоты [48, 49-51, 53-57].
Получение аминокислот
1. Общий уровень синтеза аминокислот любого строения - замена на аминогруппу галогена в галогензамещенных кислотах, например:
б-бромпропионовая к-та б-аминопропионовая к-та
-хлормасляная кислота -аминомасляная кислота
2. Удобный метод получения -аминокислот предложен Н.Д. Зелинским. Исходными веществами служат альдегиды или кетоны:
3. Для получения -аминокислот можно воспользоваться присоединением аммиака к двойной связи - , - непредельных кислот:
кротоновая кислота в-аминомасляная кислота
4.Восстановлением оксимов и гидрозонов кетокислот:
ацетоуксусный эфир
5. Ароматические аминокислоты могут быть получены восстановлением нитропроизводных карбоновых кислот аренов:
Физические свойства
Аминокислоты - бесцветные кристаллические вещества с высокой температурой плавления (150 - 330С). Плавятся с разложением, нелетучи. Хорошо растворяются в воде и плохо в органических растворителях.
Химические свойства
Аминокислоты являются амфотерными соединениями, сочетающими в себе свойства кислот и оснований [49-51, 53-57].
Аминокислоты взаимодействуют со щелочами и кислотами с образованием солей:
2. Способность вступать в реакцию конденсации друг с другом с отщеплением воды и образованием линейных, циклических и линейно- циклических полимеров.
а) - аминокислоты могут образовать циклические амиды, построенные из двух молекул - аминокислот, такие соединения называются дикетопиперазинами:
б) - аминокислоты легче других теряют молекулы аммиака и превращаются в непредельные кислоты:
в-аминомасляная кислота кротоновая кислота
в) - аминокислоты образуют внутримолекулярные циклические амиды- лактамы:
-аминомасляная кислота лактам--аминомасляной кислоты
Применение
Аминокислоты необходимы для построения белков живого организма. Человек и животные получают их в составе белковой пищи. Многие аминокислоты применяются в медицине как лечебные средства, а некоторые используются в сельском хозяйстве для подкормки животных. Неразветвленные аминокислоты, как содержащие две функциональные группы, используются для производства синтетических волокон, в том числе капрона и энанта [49-51, 53-57].

2.3.2 Белки

Белки (полипептиды) - биополимеры, построенные из остатков -аминокислот, соединенных пептидными (амидными) связями.

Формально образование белковой макромолекулы можно представить как реакцию поликонденсации -аминокислот :

При взаимодействии двух молекул -аминокислот происходит реакция между аминогруппой одной молекулы и карбоксильной группы - другой. Это приводит к образованию дипептида.

Из трех молекул -аминокислот (глицин+аланин+глицин) образуется трипептид: H2N-CH2CO-NH-CH(CH3)-CO-NH-CH2COOH

Аналогично происходит образование тетра-, пента- и полипептидов. Молекулярные массы различных белков составляют от 10 000 до нескольких миллионов. Макромолекулы белков имеют стеререгулярное строение, исключительно важное для проявления ими определенных биологических свойств.

Несмотря на многочисленность белков, в их состав входят остатки лишь 22 -аминокислот.

Функции белков в природе универсальны:

· каталитические (ферменты);

· регуляторные (гормоны);

· структурные (кератин шерсти, фиброин шелка, коллаген);

· двигательные (актин, миозин);

· транспортные (гемоглобин);

· запасные (казеин, яичный альбумин);

· защитные (иммуноглобулины) и т.д.

Разнообразные функции белков определяются -аминокислотным составом и строением их высокоорганизованных макромолекул. Выделяют 4 уровня структурной организации белков [57 60].

Первичная структура - определенная последовательность -аминокислотных остатков в полипептидной цепи.
Вторичная структура - конформация полипептидной цепи, закрепленная множеством водородных связей между группами N-H и С=О. Одна из моделей вторичной структуры - -спираль, обусловленная кооперативными внутримолекулярными Н-связями.
Другая модель - b-форма ("складчатый лист"), в которой преобладают межцепные (межмолекулярные) Н-связи.
Третичная структура - форма закрученной спирали в пространстве, образованная главным образом за счет дисульфидных мостиков -S-S-, водородных связей, гидрофобных и ионных взаимодействий.
Четвертичная структура - агрегаты нескольких белковых макромолекул (белковые комплексы), образованные за счет взаимодействия разных полипептидных цепей

2.3.3 Нуклеиновые кислоты

Нуклеиновые кислоты - это биополимеры, макромолекулы которых состоят из многократно повторяющихся звеньев - нуклеотидов. Поэтому их называют также полинуклеотидами. В состав нуклеотида входят три части:
· азотистое основание - пиримидиновое или пуриновое
· моносахарид - рибоза или 2-дезоксирибоза;
· остаток фосфорной кислоты.
Нуклеотид - фосфорный эфир нуклеозида. В состав нуклеозида входят моносахарид (рибоза или дезоксирибоза) и азотистое основание [57].
Ди- и полинуклеотиды
При конденсации под действием катализаторов (или ферментов) из двух нуклеотидов образуется динуклеотид:
Поликонденсация различных нуклеотидов приводит к образованию полинуклеотидов (нуклеиновых кислот). Полинуклеотиды относят к кислотам, т.к. в каждом структурном звене их макромолекул содержится остаток ортофосфорной кислоты, определяющий кислотные свойства за счет диссоциации связи О-Н. В зависимости от того, какой моносахарид содержится в структурном звене полинуклеотида - рибоза или дезоксирибоза, различают рибонуклеиновые кислоты (РНК) и дезоксирибонуклеиновые кислоты (ДНК). Так, главная (сахарофосфатная) цепь в ДНК содержит остатки 2-дезоксирибозы:
Молекулярная масса ДНК достигает десятков миллионов. Молекулярная масса РНК ниже - десятки тысяч и менее [56-58].
ДНК (дезоксирибонуклеиновые кислоты)
Макромолекула ДНК представляет собой две параллельные неразветвленные полинуклеотидные цепи, закрученные вокруг общей оси в двойную спираль.
Такая пространственная структура удерживается множеством водородных связей, образуемых азотистыми основаниями, направленными внутрь спирали.
Водородные связи возникают между пуриновым основанием одной цепи и пиримидиновым основанием другой цепи. Эти основания составляют комплементарные пары (от лат. complementum - дополнение).
Образование водородных связей между комплементарными парами оснований обусловлено их пространственным соответствием. Пиримидиновое основание комплементарно пуриновому основанию:
Водородные связи между другими парами оснований не позволяют им разместиться в структуре двойной спирали. Таким образом,
· ТИМИН (Т) комплементарен АДЕНИНУ (А),
· ЦИТОЗИН (Ц) комплементарен ГУАНИНУ (Г).
·
Способность ДНК не только хранить, но и использовать генетическую информацию определяется следующими ее свойствами:
молекулы ДНК способны к репликации (удвоению), т.е. могут обеспечить возможность синтеза других молекул ДНК, идентичных исходным
молекулы ДНК могут направлять совершенно точным и определенным образом синтез белков, специфичных для организмов данного вида [57].

2.4 Анализ учебного материала в школьной программе

В курсе биологии учащиеся получили первоначальные сведения о белках и нуклеиновых кислотах. Эти знания, наряду со знаниями, полученными в курсе органической химии, станут опорными при изучении химии белков и нуклеиновых кислот.

Раздел «Нуклеиновые кислоты» изучается с целью подготовки учащихся к усвоению роли нуклеиновых кислот в биосинтезе белков и передачи организмами признаков наследственности. Эти вопросы, изучаемые в курсе общей биологии, имеют большое значение для формирования материалистических представлений о сущности явлений жизни.

На уроках органической химии учащиеся знакомятся с составом и строением нуклеотидов, узнают, как из нуклеотидов образуется первичная структура нуклеиновых кислот, в чем заключаются особенно дезоксирибонуклеиновой кислоты (ДНК), как происходит удвоение двойной спирали ДНК при делении клеток. Такие знания позволяют им понять, как в последовательности нуклеотидов кодируется последовательность аминокислотных звеньев в синтезируемом белке, как считывается информация об этом с макромолекул ДНК, какова роль других нуклеиновых кислот в синтезе белковых молекул, осуществляемом на рибосомах в клетке [52-54].

При обсуждении двойной спирали ДНК обогащаются знания учащихся о водородной связи. Здесь они встретятся с примерами установления связи чрез водородные атомы не только с атомами кислорода, но и с атомами азота, несущими достаточный отрицательный заряд. Это позволяет объяснить ряд новых для учащихся явлений химии.

Анализ материала по теме «Белки. Нуклеиновые кислоты», представленный в различных учебниках [47, 48], показал, что в учебнике [50] материал дан доступно, логически последовательно и в то же время развернуто. Однако на сегодняшний день в школах республики наиболее распространен комплект учебников авторов Рудзитис Г. Е., Фельдман Ф. Г. [49, 53].

В программе школьного курса химии на изучение темы «Белки. Нуклеиновые кислоты» согласно программным требованиям отводится 3 часа, причем изучение определенных разделов (например, нуклеиновые кислоты) проводится по желанию учителя или при углубленном изучении предмета. Выше приведены программные требования к данным темам.

Выделим основные понятия, изучаемые в данной теме: аминокислоты, их свойства; амфотерность аминокислот, их роль в организме, синтез пептидов, пептидная связь; белки, их строение, синтез и роль в организме, многообразие белков, структура молекулы белка; важнейшие биологические функции нуклеиновых кислот в живых организмах; типы нуклеиновых кислот - РНК и ДНК; принцип комплементарности; генная инженерия.

Для более полной реализации триединой функции естественнонаучного образования, на наш взгляд, необходимо наряду с теоретической нагрузкой усилить и практическую сторону данной темы, что возможно реализовать при помощи использования межпредметных связей, в частности, биологических знаний. Например, белки необходимо представить как главные носители жизни и рассмотреть важнейшие биологические функции белков в организме человека. В этой связи обсуждаются глобальные проблемы человечества - проблема голода и пути ее решения, дается понятие о биотехнологии. Здесь вообще большое поле для деятельности. Материал по сырью для получения искусственного белка, кормовых добавок для сельскохозяйственных животных, лекарственных препаратов для населения, переработки отходов, создание экологически чистых технологий, совершенствование способов очистки отходов, производство экологически чистой продукции. Эти направления могут быть представлены учениками реферативно.

После изучения темы учащиеся должны знать:

* о биологической роли белков, нуклеиновых кислот, о понятии сбалансированного питания и путях решения проблемы голода;

* содержание понятия «биотехнология» (проблема создания искусственной пищи, кормового белка);

* влияние различных форм хозяйственной деятельности и загрязнения природной среды на биологические ресурсы;

* сущность понятий «экологический кризис», «антропогенный пресс», «экологическая безопасность»;

* сущность экологических понятий «живой организм», «экосистема», «экологические факторы», «биосфера», «биогеохимические циклы», «трофические цепи и сети», «жизнь», «природа», «окружающая среда»;

* о роли химии в решении экологических проблем.

Учащиеся должны уметь:

* составлять схемы сбалансированного питания (с учетом индивидуальных особенностей организма);

* применять знания по химии для объяснения причин возникновения экологических проблем (разного уровня) и поиска путей их решения;

* использовать дополнительный информационный материал для проведения исследований по изучению местных экологических проблем.

2.5 Анализ учебного материала в вузовской программе

Курс «Химия высокомолекулярных соединений» читается после курсов физики, математики, неорганической, аналитической и органической химии и предполагает знания основных положений этих дисциплин.

На химическом факультете при обучении химии высокомолекулярных соединений в качестве учебного материала используются несколько изданий [54-63]. Как видно из литературных источников, теоретический материал освещен достаточно полно. Однако на изучение аминокислот, белков и нуклеиновых кислот отводится не так много времени - 2 часа. Этот материал преподается в рамках раздела «Наиболее важные синтетические и природные полимеры» и ограничен следующими темами: «Белки и нуклеиновые кислоты как биологически важные полимеры. Состав и структура белков. Белки - полипептиды. Свойства белков. Разнообразие белков и их роли в живых организмах. Ферменты - биокатализаторы. Механизм действия ферментов. Нуклеиновые кислоты. Дезоксирибонуклеиновая и рибонуклеиновая кислоты, их состав, свойства и функции. Принцип комплементарности. Биосинтез белка». На наш взгляд, для достаточно полного рассмотрения темы «Белки. Нуклеиновые кислоты» и составления представления о белках и нуклеиновые кислотах как биомолекулах необходимо привлекать дополнительные сведения. Данная установка подразумевает привлечение биохимического материала, на недостаток которого в литературе нельзя пожаловаться [64-68]. Таким образом, задача преподавания данной темы в вузе в нашем случае сводилась к разработке лекции, содержащей расширенный биохимический материал, и ее реализации.

Глава III. БАНК МЕТОДИЧЕСКИХ ЗАДАНИЙ ПО ТЕМЕ «БЕЛКИ. НУКЛЕИНОВЫЕ КИСЛОТЫ»

3.1 Разработка учебных занятий в средней и высшей школе

3.1.1 Интегрированный урок химии и биологии в 11-м классе по теме: "Химия, биология и толерантность"

Цели:
Образовательные:
· систематизация и углубление знаний учащихся о зависимости строения, свойств и функций белков - антител;
· углубление понятия толерантность.
Развивающие:
· развитие способности комплексного применения знаний;
· работа над формированием логического мышления при составлении логико-смысловой модели (ЛСМ) по технологии Штейнберга В.Э.
Воспитывающие:
· содействие толерантности у учащихся как в общественной потребности;
· способствовать созданию на уроке ситуации успеха в обучении, как основы саморазвития и самореализации;
· развитие творческих способностей, духовное совершенство личности в процессе общения с беженцами, вынужденными переселенцами и мигрантами;
· патриотическое воспитание.
Тип урока: интегрированный урок по технологии Штейнберга В.Э.
Оборудование: телевизор с в/магнитофоном, в/ф Биосинтез белка”, штатив с пробирками, растворы NaOH, H2SO4, CuSO2, HNO3 конц., (CH3COO)2Pb, CH3OH, C2H5OH, NaCl конц., спиртовка,раствор яичного белка (альбумина), герметичный сосуд с кровью свиньи, резиновые перчатки, защитные очки, марлевая повязка, халат.
Девиз урока:
“Нам друг от друга нужно так немного -
щепотку нежности да горсточку тепла…
(Г.Георгиев)
ПЛАН УРОКА
I. Организационный момент.
1. Урок начинаем с вопросов к ученику - вынужденному из Таджикистана Вахидову Вали:
Как ты чувствуешь себя у нас в Башкортостане?
Как адаптировался за 3 месяца, что учишься у нас?
Что нравится тебе у нас? Какое отношение к себе чувствуешь со стороны одноклассников, учителей, соседей?
2. Постановка задач урока.
II. Систематизация и углубление знаний учащихся.
· Моделирование и конструирование логико-смысловой модели (ЛМС) по теме урока.
· Заполнение координат соответственно понятийно-смысловым вопросам.

История микробиологии.

Сообщение учеников по предварительной поисково-исследовательской работе.
· Луи Пастер 1862 г.
· Мечников Н.И. - 1883 г. сформулирована биологическая (фагоцитарная) теория иммунитета.
· Ивановский Д.И. - 1892 г. открыты вирусы.
· Гамалея Н.Ф. - 1899 г. открыты бактериофаги.
· Медавар П. - 1945 г. доказана иммунологическая природа отторжения при трансплантации (пересадке) тканей и органов.

К2

Свойства белков.

Учащиеся разделены на исследовательские лаборатории. Каждая лаборатория проводит химические эксперименты по заданному алгоритму, затем анализирует результаты работы, и учащиеся самостоятельно делают выводы.
Экспериментальная лаборатория № 1
Методом фракционирования солевым раствором NaCl выделить белки из крови свиньи.
Экспериментальная лаборатория № 2
Провести гидролиз яичного белка (альбумина) и записать схему гидролиза белка.
Экспериментальная лаборатория № 3
Провести Биуретовую (цветную) реакцию на белки.
Экспериментальная лаборатория № 4
Провести Ксантопротеиновую реакцию на белки. (Предварительно руководители экспериментальных лабораторий проводят инструкцию по технике безопасности).

К3

Строение белков - антител.

Монолог - сообщение учителя, диалог с учащимися =>беседа, в процессе которой рождается истина, и заполнятся К
3. Антитело - сложной белок - иммуноглобулин плазмы крови человека и теплокровных синтезируемый клетками животных лимфоидной ткани под воздействием различных антигенов.

К4

Функции белков.

Перечисляем известные функции белков и особенно выделяем защитную функцию белков - антител.

· Сообщение учащихся о пандемии XХ и XXI века - СПИДе.
· Сообщение учителя биологии о механизме внедрения в организм ВИЧ-инфекции, о мерах борьбы и профилактики.
· Сообщение учителя химии о достижениях медицины, биохимии в области лечения больных СПИДом.

К5

Биосинтез белков.

· Демонстрация видеосюжет “Биосинтез белков”.

· Краткое повторение основных этапов биосинтеза белка.

К6

Структура лимфоидных тканей.

Сообщение учащихся по группам.
1 гр. - Строение и функции вилочковой железы.
2-гр. - Строение и функции лимфатических тканей.
3-гр. - Строение и функции селезёнки.
Затем формулируется общий вывод: В лимфоидных тканях идёт синтез иммуноглобулина плазмы крови человека и теплокровных животных.

К7

Понятие толерантности.

Самостоятельная работа учащихся со словарём Н.Ф. Реймерса “Основные биологические понятия и термины”.
Толерантность (лат. толеранция - терпение):

· способность организмов выносить отклонения экологических факторов от оптимальных для себя;
· полное или частичное отсутствие иммунологических реакций - потеря или снижение организмом человека способности вырабатывать антитела.
Иммунитет (лат. иммунитас - освобождение, избавление) - невосприимчивость к инфекционным агентам и чужеродным веществам, пересажанных от одного организма к другому из-за генетического своеобразия каждого индивида. Гистонесовместимость можно искусственно подавить при пересадке органов.
Учитель биологии: В биологии о толерантности организма говорят тогда, когда он не отторгает, но принимает и использует во благо, поступающие извне медикаментозные средства, усиливает их, улучшая собственную жизнедеятельность. А также толерантность - возможность пересадке органов, возвращающей нас к полноценному существованию.
· Постановка проблемного вопроса:
- Ребята, как вы думаете, какое смысловое понятие мы отложим на К8? (После ответов учащихся заполняем К8).

К8

Толерантность как общественная потребность.

Беседа по вопросам:
Учитель химии: Какие факторы влияют на иммунную систему?
Ученики:
Учитель биологии: В результате воздействия этих факторов, что может возникнуть?
Ученики:
Учитель химии: Ребята, как вы оцениваете своё отношение
к вашим одноклассникам, беженцам, мигрантам, вынужденным переселенцам, к людям - носителям любых культурных, религиозных и этнических традиций?
Ученики размышляют => обсуждают => делают умозаключения.
Учитель биологии: Мигранты, а особенно беженцы находятся в стрессовом состоянии, ведь они потеряли всё, что накопили за свою жизнь, а может и близких людей.
Ученики делают вывод: Мы должны оказывать им помощь!
Мы в состоянии оказать моральную поддержку и помощь людям, попавшим в беду добрым гуманным отношением, терпимостью и сочувствием.
Учитель химии: Помогая мигрантам, беженцам, и вынужденным переселенцам, общаясь с ними, мы обогащаемся духовно, изучая их язык, религию, культуру и традиции. Эти люди - не только объекты помощи, но и неисчерпаемый источник обогащения общества, в которое они вливаются. Такое обогащение происходило во все времена и у всех народов, в том числе и в России.
Учитель биологии: Мы живём в дружной многонациональной республике, где мирно трудятся и взаимно обогащают друг друга башкиры, русские, татары, чуваши, мордва, марийцы, немцы, украинцы, белорусы и удмурты. История Башкортостана - это история народов её населяющих. Это история Родины, величиной с “берёзовый листок”, которая хранима всеми, кому она дорога, невзирая на национальность. Наша республика знаменита башкирским мёдом, кумысом, мелодичным кураем и своим гостеприимством. В Уфе - столице, Башкортостана возвышается 35 метровой высоты монумент “Дружбы”. Во время её открытия, приуроченному к 400 летнему юбилею добровольного присоединения Башкирии к России, аксакалы республики дали такой наказ своим детям:
“Мы завещаем нашим потомкам: пока текут воды Агидели, пока стоят горы Урал, пока матери кормят грудью своих детей - быть верными знамени дружбы и братства с русским народом, осенённому общей славой”.
Учитель химии: Ребята, приведите в пример людей - выходцев из нашей Республики Башкортостан, которые внесли большой вклад в развитие мировой культуры, искусства и науки.
Белки-антитела
(Cхема)
Учитель биологии: Нашему уроку толерантности созвучны стихи
Г.Молодцова “Человек - человеку”
“Когда беда унизит человека,
В бараний рок, согнув его судьбу,
И человек решит, что он - калека,
На веки не способный на борьбу,
Буди его. Буди истошным криком,
Предельно негодуя и любя:
Ты - человек, Ты был рождён великим.
Не смей, не быть похожим на себя!”
Учитель химии: Мы надеемся, что этот урок способствовал формированию толерантного отношения к мигрантам России, воспитанию доброжелательного и терпеливого отношения к людям, попавшим в беду.
III. Итог урока.
· Д/з, подведение итогов урока.
· Рефлексия (по принципу не законченного предложения).
- Сегодня я на уроке закрепил и углубил знания по …
-Сегодня я на уроке узнал …
- После сегодняшнего урока я буду относиться …

3.1.2 Лекция по теме «Белки. Нуклеиновые кислоты»

План лекции

1.
Белки.
1.1. Понятие о белках.
1.2. Состав белков. Пептидная связь.
1.3. Свойства белков. Разнообразие белков и их роли в живых организмах.
1.4. Ферменты-биокатализаторы. Механизм действия ферментов.
2. Нуклеиновые кислоты.
2.1. Дезоксирибонуклеиновая и рибонуклеиновая кислоты, их состав, свойства и функции.
2.2. Принцип комплементарности.
3. Биосинтез белка.
1. Среди биологически важных полимеров видное место занимают белки и нуклеиновые кислоты, входящие в состав живой клетки и играющие особую роль при возникновении и развитии живых организмов.
В состав белков входят 20 протеиногенных аминокислот, которые кодиpyютcя генетичеcким кодом и постоянно oбнapyживaютcя в белкax.
Главными структурными единицами белков и пептидов являются остатки аминокислот, связанные карбоксамидной пептидной связью между б-карбоксильной и б-аминогруппой.
- NH - C=O
Каждый белок характеризуется специфичной аминокислотной последовательностью.
При выяснении структуры белков необходимо установить не только число и природу остатков, но также и порядок их чередования в макромолекуле. Для решения этой задачи производят последовательное отщепление аминокислот с того или другого конца полимерной молекулы с последующей идентификацией их. В методе Эдмана, например, белок обрабатывают раствором фенилизотиоцианата в пиридине и полученный продукт присоединения -- раствором НС1 в нитрометане. При этом концевой остаток отщепляется в виде соответствующего фенилтиогидантоина без изменения остальной части макромолекулы:
Фенилтиогидантоин
Щелочной гидролиз фенилтиогидантоина приводит к образованию свободной аминокислоты, которая идентифицируется методами бумажной хроматографии:
Теоретически, повторяя этот процесс многократно, можно отщеплять поочередно все остатки первоначальной белковой молекулы, установив тем самым их взаимное расположение в макромолекуле. Практически, однако, ввиду сложности задачи она была полностью решена только для некоторых белков несложного строения, как, например, инсулин. При этом выяснилось, что в размещении остатков аминокислот по цепи макромолекулы у биологически активных белков отсутствует та регулярность, которая нередко встречается у других полимеров. В то же время у каждого вида белка наблюдается строго определенная последовательность аминокислотных звеньев.
В белковой молекуле некоторые группы, не участвующие в образовании пептидной связи, остаются свободными или используются для создания мостиков между линейными цепями. Благодаря наличию свободных ионогенных кислых или основных групп белки являются полиамфолитами.
Непосредственное образование пептидной связи из групп СООН и аминогруппы, как показывает термодинамический расчет, должно протекать с увеличением свободной энергии системы. Следовательно, синтез белка из аминокислот может произойти только в том случае, если он сопровождается другими процессами, протекающими с уменьшением свободной энергии. В клетках живых организмов такими процессами являются окисление и гликолиз (биохимический распад молекулы глюкозы на 2 молекулы пировиноградной кислоты); энергия, освобождающаяся при этом, в значительной степени концентрируется в виде пирофосфатных связей молекул аденозилтрифосфорной кислоты (АТФ):
АТФ в реакциях схематически изображается так:
Аналогичные обозначения применяются для соответствующих монофосфорной (АМФ) и дифосфорной кислот (АДФ):
Использование энергии пирофосфатных связей в простейшем случае можно представить как результат образования промежуточного смешанного ангидрида аминокислоты (АК) и АМФ, который более реакционноспособен, чем сама аминокислота:
Ads - ОРО(ОН) - ОРО(ОН) - ОРО(ОН)2 + НООС - CHR - NH2
АТФ АК
Ads - OPO(OH)OOC - CHR - NH2 + H2P2О7
смешанный ангидрид АМФ-АК
Характерной особенностью биологически активных белков является легкость, с которой они изменяются под влиянием тепла, ферментов кислот и различных органических соединений. При этом происходит денатурация белка с полной утратой его биологической активности. Денатурация меняет специфическую пространственную конформацию макромолекулы, но не сопровождается гидролизом ковалентных связей. В живых организмах эта конформация возникает в результате взаимодействия боковых ответвлений полипептидных цепей, являясь термодинамически неравновесной; во время денатурации белок переходит в равновесную денатурированную форму. При достаточно сильном воздействии ферментов, тепла и различных химических агентов может произойти расщепление макромолекулы на отдельные аминокислоты вследствие гидролиза по пептидным связям.
Молекулярный вес различных белков -- от десятка тысяч до нескольких миллионов. В состав живых организмов входит несколько видов белков. При использовании белков в качестве пищи организм перерабатывает их в другие, характерные для него белки. Благодаря наличию реакционноспособных групп в макромолекуле белок часто находится в клетках не в свободном состоянии, а в виде протеидов, т. е. комплексов с другими низкомолекулярными или высокомолекулярными веществами. К таким протеидам относятся нуклеопротеиды, хромопротеиды и др.
По химическому составу белки делятся на простые, состоящие только из аминокислотных остатков, и сложные. Сложные белки могут включать ионы металла (металлопротеины, или металлопротеиды), пигмент (хромопротеины, или хромопротеиды), нуклеиновыми кислотами (нуклепротеины), а также ковалентно связывать остаток фосфорной кислоты (фосфопротеины), углевода (гликопротеины) или НК (геномы некоторых вирусов). Состав аминокислот, образующих белки, выражается общей формулой:
,
в которых радикал может содержать различные функциональные группы (R= - SH, OH,- COOH, -NH2) и кольца. -Аминокислоты в белках ковалентно соединены между собой пептидными связями:
Белковая молекула может состоять из одной или нескольких полипептидных цепей, содержащих от 2-3 десятков до нескольких сотен аминокислотных остатков каждая.
Образование пептидных связей происходит в результате взаимодействия карбоксила одной аминокислоты с аминогруппой другой. При этом из 2 -аминокислот образуются пептиды с выделением одной молекулы воды:
Из трех аминокислот образуются трипептиды, из большого числа аминокислот - полипептиды.
Функции, выполняемые белками, распределяются примерно следующим образом.
Структурообразующие функции. Структурные белки отвечают за поддержание формы и стабильности клеток и тканей. В качестве примера структурного белка - коллаген. К структурным белкам можно отнести также гистоны, функцией которых является организация укладки ДНК в хроматине. Структурные единицы хроматина, нуклеосомы, состоят из октамерного комплекса гистонов, на который навита молекула ДНК (DNA).
Транспортные функции. Наиболее известным транспортным белком является гемоглобин эритроцитов (слева внизу), ответственный за перенос кислорода и диоксида углерода между легкими и тканями. В плазме крови содержатся множество других белков, выполняющих транспортные функции. Так, преальбумин переносит гормоны щитовидной железы -- тироксин и трииодтиронин. Ионные каналы и другие интегральные мембранные белки осуществляют транспорт ионов и метаболитов через биомембраны.
Защитные функции. Иммунная система защищает организм от возбудителей болезней и чужеродных веществ. Например, иммуноглобулин G, который на эритроцитах образует комплекс с мембранными гликолипидами.
Регуляторные функции. В биохимических сигнальных цепях белки осуществляют функции сигнальных веществ (гормонов) и гормональных рецепторов. В качестве примера здесь представлен комплекс гормона роста соматотропина с соответствующим рецептором. При этом экстрацеллюлярные домены двух молекул рецептора связывают одну молекулу гормона. Связывание с рецептором активирует цитоплазматические домены комплекса и тем самым обеспечивает дальнейшую передачу сигнала. В регуляции обмена веществ и процессов дифференцировки принимают решающее участие ДНК-ассоцированиые белки (факторы транскрипции). Особенно детально изучено строение и функции белков-активаторов катаболизма и других бактериальных факторов транскрипции.
Катализ. Среди 2000 известных белков наиболее многочисленную группу составляют ферменты. Самые низкомолекулярные из них имеют мол. массу 10-15 кДа. Белки среднего размера, как, например, приведенная на схеме алкогольдегидрогеназа, имеют мол.массу 100-200 кДа. Молекулярная масса высокомолекулярных ферментов, к которым относится глутаминсинтетаза, построенная из 12 мономеров, могут достигать 500 кДа.
Двигательные функции. Взаимодействие актина с миозином ответственно за мышечное сокращение и другие формы биологической подвижности. Гексамер миозина длиной 150 нм -- один из наиболее крупных белков. Нитевидный актин (F-актин) образуется путем полимеризации относительно небольших молекул глобулярного актина (G-актин). Процессом сокращения управляют ассоциированный с F-актином тропомиозин и другие регуляторные белки.
Запасные функции. В растениях содержатся запасные белки, являющиеся ценными пищевыми веществами. В организмах животных мышечные белки служат резервными питательными веществами, которые мобилизуются при крайней необходимости.
В настоящее время различают первичную, вторичную и третичную структуры белковой молекулы.
Первичная структура белка - его химическая структура, т.е. последовательность чередования аминокислотных остатков в полипептидной цепи данного белка.
Вторичная структура белка - форма полипептидной цепи в пространстве. Установлено, что полипептидные цепи природных белков находятся в скрученном состоянии - в виде спирали. Спиральная структура удерживается водородными связями, возникающими между группами СО и NH аминокислотных остатков соседних витков спирали. Подобная вторичная структура получила название -спирали. Водородные связи в ней направлены параллельно длинной оси спирали (-спирали чередуются с аморфными частями). Такое представление является общепризнанным. Вытянутые полипептидные цепи имеет лишь небольшое число белков, например, белок натурального шелка - фиброин, вязкая сиропообразная жидкость, затвердевающая на воздухе в прочную нерастворимую нить.
Третичная структура белка - реальная трехмерная конфигурация, которая принимает в пространстве закрученная спираль полипептидной цепи. В простейших случаях третичную структуру можно представить как спираль, которая в свою очередь свернута спиралью. У такой структуры в пространстве имеются выступы и впадины с обращенными наружу функциональными группами. Третичной структурой объясняется специфичность белковой молекулы, ее биологическая активность. Определяющими факторами образования и удержания третичной структуры белков являются связи между боковыми радикалами аминокислотных остатков (дисульфидные мостики атомов серы, солевые мостики из аминогруппы и карбоксила, водородные мостики)
Физические и химические свойства белков
Строением белков объясняются их весьма разнообразные свойства. Они имеют разную растворимость: некоторые растворяются в воде, другие - в разбавленных растворах нейтральных солей, а некоторые совсем не обладают свойством растворимости (например, белки покровных тканей). При растворении белков в воде образуется своеобразная молекулярно-дисперсная система (раствор высокомолекулярного вещества). Некоторые белки могут быть выделены в виде кристаллов (белок гемоглобина крови).
Химические свойства
1) Подобно аминокислотам, белки проявляют амфотерные свойства. При действии щелочей белок реагирует в форме аниона - соединяется с катионом щелочи, образуя соль альбуминат:
2) При действии же кислот он становится катионом, образуя синтонин:
Если в молекуле белка преобладают карбоксильные группы, то он проявляет свойства кислот, если же преобладают аминогруппы, - свойства оснований. Присутствие белка можно обнаружить рядом цветных реакций. Эти реакции свойственны составным частям белка - аминокислотам или образуемым ими группировкам.
3) Биуретовая реакция (реакция на наличие пептидных связей). Биурет образуется при нагревании мочевины с отщеплением от нее аммиака:
4) Нингидриновая реакция.
Эта реакция характерна для аминогруппы в -положении. Белки с нингидрином дают синее или фиолетовое окрашивание:
5) Ксантопротеиновая реакция.
Эта реакция характерна для бензольного ядра циклических аминокислот. При действии крепкой азотной кислоты на эти аминокислоты происходит нитрование кольца с образованием нитросоединений желтого цвета [48, 49].
2. К белковым веществам относятся ферменты, или энзимы, выполняющие в живом организме функцию катализаторов высокой селективности и при очень мягких условиях. Это избирательное действие обусловлено комплиментарностью структур реагирующего субстрата и фермента -- тем, что заряд или выступающая группа на поверхности одного из них отвечает противоположному заряду или полости у другого (принцип «ключа к замку» -- см. рис. 12). Вследствие этого молекулы фермента и субстрата настолько сближаются, что резко возрастает эффективность межмолекулярных сил, противостоящих тенденции молекулярно-кинетического движения разъединить взаимодействующие частицы, происходит специфическая адсорбция (образование фермент-субстратного комплекса). Те же силы могут играть существенную роль в самом возникновении структурного соответствия между субстратом и ферментом.
Рис. 12. Схематическое изображение фермент-субстратного комплекса, участвующего в реакции фосфорнокислого остатка АТФ с группой ОН глюкозы: 1 -- молекула АТФ; 2--молекула глюкозы; 3 -- фермент
Так как дальнейшая реакция протекает в пределах комплекса, в котором молекулы реагирующих веществ благоприятно ориентированы, резко возрастает число эффективных столкновений и, следовательно, скорость реакции. В простейшем случае гидролиза производных кислот под действием биокатализаторов, содержащих только одну активную группу (В :), роль фермента можно схематически изобразить следующим образом:
При наличии в ферменте (например, б-химотрипсин) двух групп противоположной электрохимической природы (--О- и --NH+) они могут участвовать в согласованной электрофильно-нуклеофильной атаке на субстрат, что значительно облегчит разрыв соответствующей связи и снизит энергию активации реакции («кооперативный эффект»). Вероятный механизм гидролиза сложного эфира ароматической кислоты под влиянием б-химотрипсина:
Действие ферментов очень чувствительно к конформации макромолекулы и надмолекулярной структуре его. Например, если в результате денатурации и выпрямления цепи б-химотрипсина активные группы значительно удалятся друг от друга, то «кооперативный эффект» исчезает и скорость гидролиза падает в миллион раз.
Большая активность ферментов обусловлена высоким значением предэкспонента А (эффект ориентации) в уравнении Аррениуса и низкой энергии активации («кооперативный эффект»).
3. Нуклеиновые кислоты, которые делятся на дезоксирибонуклеиновую (ДНК) и рибонуклеиновую (РНК) кислоты, были открыты в клеточном ядре (nucleus -- ядро); РНК встречается также и в других частях клетки. Обе кислоты являются линейными полимерами, молекулярная цепь которых состоит из чередующихся остатков фосфорной кислоты и нуклеозидов. Нуклеозиды построены из звеньев циклической формы D-рибозы (РНК) или D-дезоксирибозы (ДНК) и остатков различных гетероциклических оснований, способных к попарному взаимодействию с образованием водородных мостиков. У РНК такие основания - аденин (А), цитозин (Ц), гуанин (Г) и урацил, у ДНК - аденин, цитозин, гуанин и тимин (Т):
Как видно из формул, пара Г -- Ц может образовать три водородных мостика, а пара А -- Т -- только два.
Так как рибоза (дезоксирибоза) соединяется с органическими основаниями за счет аминного водорода и глюкозидного гидроксила, нуклеозиды должны быть отнесены к N-глюкозидам, где роль агликона выполняют упомянутые основания
РНК реагирует с гидроксильными группами углеводов; при гидролизе РНК наряду с рибозой и соответствующими основаниями образуется фосфорная кислота. Аналогичные результаты - при гидролизе ДНК.
Если условно обозначить основания через , то строение ДНК можно изобразить следующим образом:
или схематически
ДНК имеет молекулярный вес порядка 107 и в условиях клетки нерастворима. Существует несколько разновидностей РНК, среди которых наиболее активными в биосинтезе белка являются:
растворимая, или транспортная, РНК (т-РНК) с Мr около 25 000;
информационная РНК (и-РНК) с молекулярным весом порядка 6105-106.
ДНК является материальным носителем наследственности и входит в состав генов, из которых состоят хромосомы клетки. Макромолекулы ДНК связаны между собой попарно при помощи водородных мостиков в виде двойной спирали постоянного диаметра (рис. 13). При этом остатки гетероциклических оснований, находящиеся в боковой цепи, упакованы в середине спирали, как стопка монет. Аналогичную структуру имеет РНК.
Для обеспечения наибольшей устойчивости этой структуры необходимо, чтобы число водородных связей было максимально возможным. Это достигается тем, что соблюдается определенное соответствие в расположении остатков оснований одной спирали по отношению к остаткам другой: тиминовые группы располагаются напротив адениновых, цитозиновые напротив гуаниновых и т. д. («узнают» друг друга).
Рис. 13. Двойная спираль ДНК (по Крику и Уотсону)
Кроме того, только при выполнении этого условия будет обеспечено экспериментально доказанное постоянство суммарных размеров, боковых групп и неизменность диаметра двойной спирали на всем ее протяжении. В этой взаимной обусловленности порядка чередования звеньев в обеих цепях заключается принцип комплементарности, благодаря чему каждая цепь определяет структуру другой, являясь как бы ее репликой.
Спирализация приводит к возникновению так называемой «вторичной» структуры ДНК; при изгибании спирали появляется «третичная» структура и т. д. Возникновение изогнутой спирали, обусловлено наличием в спирали неупорядоченных гибких участков, где действие водородных связей почему-либо ослаблено. Однако двойная спираль -- там, где она сохранилась -- является достаточно жестким образованием и, следовательно, обладает небольшим числом степеней свободы. Поэтому она стремится разделиться на одиночные цепи (длина сегмента примерно в 50 раз больше, чем у гибких полимерных цепей), способные принять более вероятное состояние свернутого клубка; такой переход «спираль -- клубок» сопровождается возрастанием энтропии системы, являющимся движущей силой этого процесса, и действительно имеет место при плавлении кристаллов ДНК (около 80°С). Аналогичный процесс разрушения водородных мостиков и биспиральной структуры, но без свертывания цепей в клубок, наблюдается во время подкисления или подщелачивания растворов ДНК. При этом на каждой макромолекуле возникают одноименные заряды (в результате присоединения протонов к аминогруппам или усиления диссоциации остатков фосфорной кислоты), вызывающие взаимное отталкивание цепей.
Если двойная спираль находится в растворе, содержащем большое количество различных нуклеотидов, т. е. нуклеозидов, химически связанных с фосфорной кислотой, то в результате замены водородных связей между цепями такими же связями их с нуклеотидами произойдет сорбция последних и одновременное разделение спирали на две самостоятельные макромолекулы (рис. 14). При этом нуклеотиды отбираются так, чтобы соблюдался принцип комплементарности; во время дальнейшей поликонденсации, протекающей под влиянием ферментов, на каждой цепи ДНК вырастает другая, являющаяся ее репликой. Этот процесс редупликации (копирования) макромолекул приводит к возникновению новых «дочерних» двойных спиралей.
Рис. 14. Схема редупликации ДНК
Двойная спираль ДНК не только является матрицей воспроизведения самой себя, она также передает информацию, «записанную» в ее структуре, нуклеотидам, участвующим в синтезе РНК, тем самым предопределяет порядок их расположения в образующейся макромолекуле. Информационная РНК, на каждой цепи которой запечатлена структура молекулы определенного белка, играет ту же роль при образовании полипептидной цепи. В этом случае процесс осложняется тем, что в и-РНК имеется всего 4 нуклеотидных звена, а в белке - 20 аминокислотных. Поэтому для фиксации положения каждого аминокислотного остатка требуется не меньше трех нуклеотидных. Иначе говоря, химическое строение макромолекулы белка кодируется структурой и-РНК подобно тому, как кодируется текст с помощью азбуки Морзе.
С другой стороны, отсутствие структурного соответствия между суммарными размерами трех нуклеотидных звеньев (21 А) и величиной одного аминокислотного (3,6 А) исключает образование из них промежуточного комплекса, без которого невозможен синтез полипептидной цепи на матрице и-РНК. По мнению Крика, промежуточный комплекс все же получается, но более сложным путем, с участием т-РНК (адаптор). При этом один конец макромолекулы т-РНК избирательно образует лабильную связь с остатком определенной аминокислоты («узнает» ее) за счет реакции АМФ -- АК с группой ОН рибозы:
а второй присоединяет триплет нуклеотидов (кодон), который комплиментарен трем нуклеотидам, находящимся на этом конце т-РНК. В соответствии с адапторной гипотезой Крика, в синтезе белка участвует 20 специфических т-РНК (по одной на каждую аминокислоту). Решающую роль в выборе аминокислоты играет селективный фермент, обладающий сродством к боковой группе (R) этой кислоты и к ее адаптеру.
Образовавшиеся АК -- т-РНК затем диффундируют к рибосомам, которые ориентируют их относительно одноцепочной и-РНК таким образом, чтобы обеспечить точное «считывание» генетического кода, т. е. строго определенную последовательность остатков аминокислот. В дальнейшем расщепляется богатая энергией связь АК -- т-РНК с возникновением энергетически бедной пептидной связи:
H2N--CHR'--СОО--т-РНК' + Н2N--CHR"--COO--т-РНК" >
> H2N--CHR'--CO--NH--CHR"--COO--РНК" + т-РНК'
Рис. 15. Схематическое изображение этапов биосинтеза белка: 1 -- и-РНК; 2 -- рибосома; 3--т-РНК; 4 -- комплекс т-РНК -- аминокислота
4. На рис. 15 в схематическом виде изображен один из этапов роста полипептидной цепи [69, 70]. В результате присоединения новых АК -- т-РНК и движения рибосом (точнее, полирибосом) по цепи и-РНК образуется белковая макромолекула, которая затем отделяется от матрицы и-РНК.
Биосинтез белка сопровождается уменьшением свободной энергии, несмотря на то, что F образования пептидной связи из самих аминокислот больше нуля; объясняется это тем, что пирофосфатная связь АТФ поставляет недостающую энергию смешанному ангидриду и комплексу АК -- т-РНК, являющимся как бы активированными предшественниками синтеза белка.
Можно осуществить синтез полипептидов, сходных по химическому строению с белками, в лабораторных условиях; для этого сначала отщепляют воду от двух молекул аминокислот, предварительно «защищая» аминогруппу одной из них и карбоксильную группу другой:
где Х - защитная группа, например n-NO2-C6H4-S- , а Y+ -- протонизированный триэтиламин, HN+(C2H5)3.
Аналогично из дипептида синтезируют трипептид, из него -- тетрапептид и т. д., получая в конечном итоге полипептиды со строго определенным чередованием аминокислотных остатков. Во всех этих реакциях дегидратирующим агентом обычно служат диимиды:
C6H11--N=C=N--С6Н11 + Н2О > С6Н11NHCONHC6H11

Принципиально новым подходом к этому вопросу является твердофазный пептидный синтез, где растущая цепь все время химически связана со стороны группы СООН с таким трехмерным полимером, как хлорметилированный сополимер стирола и дивинилбензола, подвергнутый еще нитрованию (полимер обозначен через П):
(здесь А1 А2, . . ., Аn -- остатки различных аминокислот).
Вследствие нерастворимости прикрепленного к сетчатому полимеру полипептида упрощается его очистка, повышается выход (при обычном методе синтеза инсулина, состоящего из 221 стадии, суммарный выход ничтожно мал; новый метод дает выход до 68%) и практически исключается рацемизация. Новый метод может быть автоматизирован, и с некоторыми изменениями он пригоден для синтеза полисахаридов и полинуклеотидов.
При воспроизведении ДНК возможно появление «ошибочных» звеньев, например вследствие перехода остатка тимина в енольную форму:
Т.к. новая форма в отличие от исходной способна образовывать три водородные связи вместо двух, «дочерняя» двойная спираль будет содержать «неправильные» пары. Этот эффект может быть вызван радиоактивным облучением или замещением аминогруппы органического основания на группу ОН: R--NH2 + HO--NO > R--OH + N2 + H2O.
Даже незначительные «повреждения» в макромолекуле ДНК имеют большое значение, так как они носят наследственный характер и могут передаваться от ДНК к РНК и от РНК к аминокислотам. В результате изменится не только весь ход биосинтеза в клетке, но также свойства, ферментативная активность и сама природа образующихся белков [54-56,69, 70].

3.1.3 Урок по теме «Нуклеиновые кислоты»

Задачи урока:

Познавательные. Сформировать знания о нуклеиновых кислотах (НК) как макромолекулах, о свойствах и функциях НК, их роли в процессах жизнедеятельности; обобщить знания, получаемые учащимися на уроках химии и биологии по теме «Нуклеиновые кислоты».

Развивающие. Развивать умения анализировать теоретический материал, развивать познавательный интерес учащихся на основе межпредметных связей и научить применять знания в различных областях.

Воспитательные. Формировать научное мировоззрение, представление о роли естественных наук в современном обществе, целостную картину мира.

Оборудование: таблицы, схемы и рисунки, иллюстрирующие строение и механизм действия ферментов, схема классификации ферментов, схема строения нуклеотида, модель строения ДНК.

Основные понятия: Нуклеиновые кислоты - непериодические полимеры. Строение нуклеотида. Образование полинуклеотидов. Образование двухцепочечной молекулы ДНК. Принцип комплементарности.

I. Проверка знаний

Устная проверка знаний по вопросам

1. Белки, их строение.
2. Свойства белков.
3. Структуры белков.
4. Ферменты и их значение в процессах жизнедеятельности.
2. Строение ферментов и причина их высокой специфичности.
3. Отличия ферментов от небиологических катализаторов.
4. Механизм действия ферментов.
5. Классификация ферментов.
II. Изучение нового материала
1. Нуклеиновые кислоты, их содержание в клетке, размеры молекул и молекулярная масса
Нуклеиновые кислоты - природные высокомолекулярные органические соединения, полинуклеотиды, обеспечивающие хранение и передачу наследственной (генетической) информации в живых организмах.
Эти органические соединения были открыты в 1869 г. швейцарским врачом И.Ф. Мишером в клетках, богатых ядерным материалом (лейкоцитах, сперматозоидах лосося). Нуклеиновые кислоты (НК) являются составной частью клеточных ядер, поэтому они и получили такое название (от лат. nucleus - ядро). Помимо ядра нуклеиновые кислоты встречаются также в цитоплазме, центриолях, митохондриях, хлоропластах.
В природе существуют НК двух типов: дезоксирибонуклеиновые (ДНК) и рибонуклеиновые (РНК). Они различаются по составу, строению и функциям. ДНК имеет двухцепочечную молекулу, а РНК - одноцепочечную. Содержание нуклеиновых кислот в живом веществе - от 1 до 2%.
Нуклеиновые кислоты - биополимеры, достигающие огромных размеров. Длина их молекул равна сотням тысяч нанометров (1 нм = 10-9 м), это в тысячи раз больше длины белковых молекул. Особенно велика молекула ДНК. Молекулярная масса нуклеиновых кислот достигает десятков миллионов и миллиардов (105-109). Например, масса ДНК кишечной палочки равна 2,5x109, а в ядре половой клетки человека (гаплоидный набор хромосом) длина молекул ДНК составляет 102 см.
2. НК - непериодические полимеры. Типы нуклеотид и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.