На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Контрольная Определение вероятности появления события в каждом из независимых испытаний. Случайные величины, заданные функцией распределения (интегральной функцией), нахождение дифференциальной функции (плотности вероятности), математического ожидания и дисперсии.

Информация:

Тип работы: Контрольная. Предмет: Математика. Добавлен: 26.07.2010. Сдан: 2010. Уникальность по antiplagiat.ru: --.

Описание (план):


6
Контрольная работа по дисциплине:
Теория вероятностей и математическая статистика
Законы распределения случайных величин. Доверительный интервал
Задача 1

Вероятность появления события в каждом из независимых испытаний равна 0,8. Найти вероятность того, что в 100 испытаниях событие появится не менее 70 и не более 80 раз.
Решение:
,
где - функция Лапласа, значения которой находятся из таблиц.
;
.
Здесь: .
.
Ответ: 0,49.
Задача 2

Среднее число вызовов, поступающих на АТС на 1 минуту, равно двум. Найти вероятность того, что за 4 минуты поступит: а) 3 вызова; б) не менее 3-х вызовов; в) менее 3-х вызовов. Предполагается, что поток вызовов - простейший.
а) Вероятность события «за 4 минуты поступило 3 вызова равна:
,
где
- среднее число вызовов в минуту; ;
t - время, за которое может поступить 3 вызова; t=4 мин.;
k - число возможных вызовов за время t; k=3.
.
- находим из таблицы значений функции распределения Пуассона для k=3 и a==8.
в) События «поступило менее 3-х вызовов» и «поступило не менее 3-х вызовов» являются противоположными. Поэтому найдем сначала вероятность первого события:
.
Здесь: вероятности находятся из таблиц распределения Пуассона соответственно для значений k=0, k=1, k=2 и для a==8.
б) Данное событие является п и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.