На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Реферат Статистические связи (корреляции) между педагогическими факторами. Определение величины и характера корреляции. Причинные и следственные коррелирующие факторы. Ранговая корреляция Спирмена, значения ее коэффициентов. Непараметрические критерии различия.

Информация:

Тип работы: Реферат. Предмет: Педагогика. Добавлен: 12.11.2009. Сдан: 2009. Страниц: 2. Уникальность по antiplagiat.ru: --.

Описание (план):


21
Министерство образования и науки Украины
Открытый международный университет развития человека “Украина"
Горловский филиал
Кафедра физической реабилитации
РЕФЕРАТ
по дисциплине:
Методы исследований в физической культуре и спорте,
физической реабилитации
ТЕМА:
Корреляция и непараметрические критерии различия в педагогических исследованиях "

Выполнил:
студент 2-го курса группы ФР-06
дневного отделения
факультета “Физическая реабилитация"
Орёл Олег Альбертович
2008
План
    Корреляция
      Непараметрические критерии различия
      Список литературы

Корреляция

В любом педагогическом процессе составляющие его факторы находятся в тесной взаимосвязи. Умение изменить один фактор так, чтобы получить соответствующее изменение другого, сделает педагогический процесс более целенаправленным. В науке различают две формы взаимосвязи.

Функциональная связь отражает четкую однозначную зависимость, при которой изменение какого-либо одного фактора неизбежно приводит к однозначному изменению другого. Подобные связи характерны для "точных" наук. В педагогике они, если и наблюдаются, то в самых общих вариантах и в пределах каких-то условных границ. Установление функциональных связей между педагогическими факторами - дело интересное, но чрезвычайно проблематичное.

Более реальным является установление так называемых статистических связей, или корреляций.

Корреляция позволяет находить статистически достоверные количественные меры связи в тех случаях, когда какому-либо одному фактору соответствует не одно, а несколько значений какого-либо другого фактора, причем варьирующих в каких-то пределах. Связь в этом случае будет выражаться в средних значениях, полученных на целом ряде изменений.

Практическая значимость определения величины и характера корреляции заключается в том, что с ее помощью можно установить функциональное сходство или различие между физическими упражнениями, например общеподготовительными и соревновательными. Однако, применяя корреляцию, следует помнить, что, во-первых, наличие статистической связи отнюдь не означает автоматического выявления и причинных связей, поэтому использовать корреляционный анализ для понимания причинных факторов надо осторожно; во-вторых, нельзя механически применять корреляцию там, где по природе своей педагогические факторы не обладают зависимостью.

Коррелирующие факторы подразделяются на причинные, т.е. те, которые видоизменяются первыми, вызывают изменения других факторов, и следственные, т.е. те, которые видоизменяются под влиянием причинных факторов. Причем следственные факторы могут принимать ряд значений в определенных границах. Различают корреляции нескольких направлений:

прямая положительная корреляция, при которой увеличение причинного фактора вызывает увеличение следственного фактора; например, увеличение силы мышц-разгибателей ног положительно сказывается на росте результатов в прыжках в высоту с разбега (В.М. Дьячков, Г.И. Черняев, 1965).

прямая отрицательная корреляция, при которой уменьшение причинного фактора вызывает уменьшение следственного фактора; например, уменьшение нагрузки приводит к понижению частоты сердечных сокращений;

обратная положительная корреляция при которой уменьшение причинного фактора вызывает увеличение следственного фактора; например, уменьшение длины дистанции приводит к увеличению скорости бега;

обратная отрицательная корреляция, при которой увеличение причинного фактора вызывает уменьшение следственного фактора; например, увеличение силы мышц под влиянием занятий тяжелой атлетикой может привести к ухудшению результатов в беге на длинные дистанции (М.И. Майсурадзе, 1962).

Математическое значение корреляции выражается ее коэффициентом от - 1 (максимальной отрицательной связи) до +1 (максимальной положительной связи) десятичными дробями с точностью до второго знака после запятой.

Количественную меру связи принято различать по нескольким уровням:

слабая связь - при коэффициенте корреляции до 0,30,средняя связь - при коэффициенте корреляции от 0,31 до 0,69,сильная связь - при коэффициенте корреляции от 0,70 до 0,99.

Коэффициент корреляции равный 1 свидетельствует о наличии функциональной связи. Если изменение одного фактора не влияет на величину другого, то связь отсутствует, т.е. данные факторы между собой нейтральны.

Ранговая корреляция Спирмена (корреляция рангов) является одним из наиболее простых способов установления меры связи между факторами. Само название метода указывает на то, что связь определяется между рангами, т.е. рядами полученных количественных значений, ранжированных в убывающем или возрастающем порядке. Следует иметь в виду, что, во-первых, ранговую корреляцию не рекомендуется проводить, если связанных пар меньше четырех и больше двадцати; во-вторых, ранговая корреляция позволяет устанавливать связь и в том случае, если значения носят, так сказать, полуколичественный характер, т.е., не имея числовых выражений, отражают четкий порядок следования этих величин; в-третьих, ранговую корреляцию целесообразно применять в тех случаях, когда достаточно получить лишь приблизительную информацию.

Чтобы рассчитать коэффициент ранговой корреляции, необходимо:

расположить количественные значения причинного фактора в убывающем (возрастающем) порядке; например, для установления влияния уровня физической работоспособности лыжников (причинный фактор), выявленного при помощи дозированной нагрузки на велоэргометре, на результат в гонке на 15 км (следственный фактор) уровень физической работоспособности ранжировался (Г.И. Мызан, 1974) в убывающем порядке (колонка "А");

параллельно первому ряду записать соответствующие значения следственного фактора, в данном случае - результат в гонке на 15 км (колонка "Б"); порядок значений этого фактора будет подчинен порядку значений причинного фактора, а поэтому может не подчиняться принципу возрастания или убывания;

ФР170, кГм/мин/кг
Результат гонки, мин
Ранги
Разность рангов
Квадрат разности рангов
ФР170
результат
А
Б
а
б
d = а - б
d 2
24,8
63
1
2
-1
1
24,2
61
2
1
+1
1
24,0
72
3
5
-2
4
20,4
71
4
4
0
0
20,1
70
5
3
+2
4
19,0
82
6
10
-4
16
17,5
77
7
7
0
0
17,2
75
8
6
+2
4
16,8
79
9
8
+1
1
16,3
81
10
9
+1
1
n = 10
обозначить цифрами порядковые места значений причинного фактора (колонка "а"); естественно, что раз значения этого фактора расположены в убывающем порядке, то цифры порядковых мест будут расположены в возрастающем порядке; если количественные показатели того или иного фактора оказываются одинаковыми, то их порядковые места обозначаются тем числом, которое составляет среднюю арифметическую величину их порядковых мест;
обозначить цифрами порядковые места значений следственного фактора (колонка "б");
подсчитать число коррелируемых парных значений (n); в данном примере их 10;
вычислить разность рангов (d = а - б) с сохранением соответствующего знака; в данном примере: 1 - 2 = - 1 и т.д.;
вычислить квадрат разности рангов (d2); в данном примере: - 12 = 1 и т.д.;
вычислить сумму квадратов разности рангов (d2); в данном примере она равна 32;
вычислить коэффициент корреляции рангов с по формуле:
произвести оценку вычисленного коэффициента, т.е. установить, во-первых, существует ли статистически достоверное различие между полученным значением коэффициента и нулем; во-вторых, проявятся ли выявленные связи (или их отсутствие), если коэффициент корреляции будет рассчитываться по тем же самым признакам, но на других группах исследуемых или на тех же самых группах, но в других условиях; значимость коэффициента корреляции рангов определяется двумя путями:
а) путем сравнения с принятыми уровнями меры количественной связи; в данном примере величина коэффициента корреляции, равная 0,807, говорит о сильной мере количественной связи;
Критические значения коэффициентов корреляции рангов Спирмена (с)
Число
коррелируемых
пар, n
Уровень
значимости, P
0,05
0,01
4
1,000
-
5
0,900
1,000
6
0,329
0,943
7
0,714
0,893
8
0,643
0,833
9
0,600
0,783
10
0,564
0,746
12
0,506
0,712
14
0,456
0,645
16
0,452
0,601
18
0,399
0,564
20
0,377
0,534
22
0,359
0,508
24
0,343
0,485
26
0,329
0,465
28
0,317
0,448
30
0,306
0,432
б) по таблице достоверности коэффициента корреляции; определенный коэффициент, равный 0,807, может быть признан значимым в том случае, если его величина будет превышать табличное значение для 10 парных наблюдений; по таблице для 10 пар уровень значимости (Р) равен 0,564 или 0,746, следовательно: 0,564<0,807>0,746 т.е. коэффициент превышает Р - = 0,01 и может считаться значимым с вероятностью ошибки менее 0,01.
сделать методический вывод, т.е. выяснить внутренний высчитанного коэффициента корреляции; в приведенном примере можно убежденно говорить, что среди прочих условий на результат в лыжной гонке оказывает влияние уровень физической работоспособности спортсмена.
Коэффициент корреляции r обладает более высокой степенью точности количественной характеристики связи между факторами.
Расчет коэффициента r производится по формуле:
где А и Б - коррелируемые ряды вариант dА и dБ - отклонения вариант от средних значений этих рядов (разность между каждым значением варианты ряда и средней арифметической величиной данного ряда). Точность вычисления по формуле должна быть достаточно высокой, не менее двух знаков после запятой.
Последовательность вычисления коэффициента r показана на примере результатов исследования, использованных для демонстрации расчета коэффициента ранговой корреляции.
Составить таблицу для первичных числовых операций, для чего в первых двух колонках расположить показатели уровня физической работоспособности (ФР170) и показатели спортивного результата в гонке на 15 км; ранжирование показателей не обязательно.
ФР170, кГм/мин/кг
Результат гонки, мин
dА
dБ
d Б2
d А2
dА dБ
А
Б
24,8
63
+4,8
-10
23,04
100
-48,0
20,1
70
+0,1
-3
0,01
9
-0,3
20,4
71
+0,4
-2
0,16
4
-0,8
24,0
72
+4,0
-1
16,00
1
-4,0
17,5
77
-2,5
+4
6,25
16
-10,0
16,8
79
-3,2
+6
10,24
36
-19,2
19,0
82
-1,0
+9
1,00
81
-9,0
17,2
75
-2,8
+2
7,84
4
-5,6
24,2
61
+4,2
-12
17,64
144
-48,4
16,3
81
-3,7
+8
16,69
64
-29,6
Вычислить средние арифметические величины для уровня физической работоспособности и результата гонки:
Найти отклонения показателей рядов "А" и "Б" от своих средних арифметических величин (dА и dБ). Например: для уровня ФР170 в 24,8 кГм/мин/кГ отклонения от среднего значения будут равны: 24,8 - 20,0 = + 4,8; для спортивного результата в 63 мин.: 63 - 73 = - 10 и т.д.
Вычислить квадраты найденных отклонений (dА2 и dБ2). Получим: + 4,82 = 23,04; - 102 = 100.
Найти суммы квадратов отклонений:
Определить произведения отклонений (dА и dБ). Получим: (+ 4,8) * ( - 10) = - 48.
Найти сумму произведений отклонений: dА dБ = 174,9 175.
Подставить найденное значение в формулу:
Определить достоверность высчитанного коэффициента корреляции.
Установлено, что если парных факторов меньше 100, то оценку достоверности целесообразно производить по таблице критических значений коэффициента корреляции.
Критические значения коэффициента корреляции r

Число
коррелируемых пар, п
Уровень значимости, Р
Число
коррелируемых
пар, п
Уровень значимости, Р
0,05
0,01
0,05
0,01
3
0,977
0,99988
19
456
575
4
950
990
20
444
561
5
878
959
21
433
549
6
811
917
22
423
537
7
754
874
25
396
505
8
707
834
30
361
463
9
666
798
35
332
435
10
632
765
40
310
407
11
602
735
45
292
384
12
576
708
50
277
364
13
553
684
60
253
353
14
532
661
70
234
308
15
514
641
80
219
288
16
497
623
90
206
272
17
482
606
100
196
258
18
468
590
Коэффициент корреляции признается статистически значимым с вероятностью ошибки <0,05, если r > r 05, и с вероятностью ошибки <0,01, если r > r01.
Табличные значения даны для двух уровней значимости: Р = 0,05 и Р = 0,01. Полученный коэффициент корреляции может считаться достоверным лишь в том случае, если его числовое значение превышает табличное значение хотя бы при уровне значимости Р = 0,05 для данного числа парных факторов. В приведенном примере для 10 парных факторов табличные значения составляют: Р05 + = 0,623, Р01 = 0,765. Высчитанный коэффициент равен 0,837, т.е. он больше табличного значения при Р = 0,01.
Если парных факторов больше 100, оценку достоверности коэффициента целесообразно рассчитывать по формуле средней ошибки коэффициента корреляции (mr):

Принято считать, что достоверным коэффициент корреляции может быть признан только тогда, когда он превышает свою ошибку в 3 и более раза. В некоторых случаях формула может быть использована для оценки достоверности и при небольшом числе парных факторов, В данном примере:
Полученный коэффициент корреляции превышает свою ошибку более чем в 8 раз.
Сделать методический вывод. Выявлена отрицательная корреляция: наиболее высоким показателям физической работоспособности соответствуют наименьшие показатели времени прохождения дистанции. Значит, чем более высоким уровнем физической работоспособности обладает спортсмен, тем лучше время (при прочих равных условиях) он может показать на дистанции.
Если на одном и том же материале высчитаны коэффициенты корреляции с и r, то необходимо провести сопоставление их значений по методу моментов Пирсона. Делается это следующим образом: определяется разница между абсолютными значениями двух коэффициентов без учета их знака.
0,837 - 0,807 = 0,030.
По В.Ю. Урбаху (1964) считается, что полученная разница не должна превышать 3%. В приведенном примере она составляет 0,025%, а поэтому находится в пределах нормы.
Коэффициент регрессии позволяет установить количественную меру изменения следственного фактора при изменении причинного фактора на одну единицу. В отличие от показателей корреляции - величин относительных, измеряющих тесноту связи между признаками в долях единицы, показатели регрессии - величины абсолютные: они характеризуют зависимость между переме и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.