На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


задача Графическое решение задачи линейного программирования. Общая постановка и решение двойственной задачи (как вспомогательной) М-методом, правила ее формирования из условий прямой задачи. Прямая задача в стандартной форме. Построение симплекс таблицы.

Информация:

Тип работы: задача. Предмет: Математика. Добавлен: 21.08.2010. Сдан: 2010. Уникальность по antiplagiat.ru: --.

Описание (план):


7
Министерство образования и науки Украины
Днепропетровский Национальный Университет
Факультет электроники, телекоммуникаций и компьютерных систем
Кафедра АСОИ
Расчётная задача №4
«Исследование операций»
г. Днепропетровск
2007г.
Задача
Записать задачу двойственную к данной, решить одну из пары задач и отыскать оптимальное решение второй
Прямая задача имеет вид:
Общая постановка двойственной задачи

Двойственная задача - это вспомогательная задача линейного программирования, она формулируется из прямой задачи.
Идея метода основана на связи между решениями прямой и двойственной задачи.
Двойственная задача формируется непосредственно из условий прямой задачи за следующими правилами:
Если прямая задача является задачей максимизации, то двойственная будет задачей минимизации;
Коэффициенты целевой функции прямой задачи С1, С2, ….,Сn становятся свободными членами ограничений двойственной задачи;
Свободные члены ограничений прямой задачи b1, b2, ….,bn становятся коэффициентами целевой функции двойственной задачи;
Матрицу ограничений двойственной задачи получают транспонированием матрицы ограничений прямой задачи;
Если прямая задача является задачей максимизации, то во всех неравенствах двойственной задачи будут стоять знаки ?, и знаки ?, если прямая задача является задачей минимизации.
Число ограничений прямой задачи равно числу переменных двойственной задачи.
Прямая задача в канонической форме
Двойственная к ней задача будет иметь вид
Двойственная задача решается симплекс-методом до достижения оптимального решения.
Решение прямой задачи
Все ограничения прямой задачи - это равенства с неотрицательными правыми частями, когда все переменные неотрицательны.
Приведем прямую задачу к стандартному виду:
Подставим значение в целевую функцию:
Таким образом, прямая задача в стандартной форме имеет следующий вид:
Строим симплекс таблицу:
Итерация №1
Базис







Решение
Оценка


0
0
0

5
-2
1
0
0
0
4
-

-1
2
0
1
0
0
4
2

1
1
0
0
-1
1
4
4
- ведущий столбец
- ведущая строка
Итерация №2
Базис
Решение
Оценка


0
0
0

4
0
1
1
0
0
8
2

1
0
0
0
2
-

0
0
-1
1
2
- ведущий столбец
- ведущая строка
Итерация №3
Базис
Решение
Оценка

0
0
0

и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.