На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Реферат Проблема несоизмеримых, первый кризис в основании математики, его следствия и попытки преодоления. Зарождение и развитие понятия числа. Становление теории предела, создание теории действительного числа. Великие метематики: Вейерштрасс, Кантор, Дедекинд.

Информация:

Тип работы: Реферат. Предмет: Математика. Добавлен: 26.11.2009. Сдан: 2009. Уникальность по antiplagiat.ru: --.

Описание (план):


Зарождение и создание теории действительного числа

Содержание
1. Зарождение и развитие понятия числа
2. Проблема несоизмеримых или Первый кризис в основании математики
2.1 Следствия первого кризиса и попытки его преодоления
3. Становление теории предела
4. Создание теории действительного числа
4.1 Карл Вейерштрасс
4.2 Георг Кантор
4.3 Рихард Дедекинд
Заключение
1 Зарождение и развитие понятия числа
В основе математики лежит понятие числа, одно из самых ранних и самых абстрактных. Оно возникло как обобщение счета отдельных предметов. Счет присущ не только человеку, но и, в некоторой форме, и животным, например кошке, которая чувствует наличие при себе всех своих котят.
Наиболее ранняя форма счета носит конкретно-чувственный характер. Такой счет можно обнаружить у первобытных людей и у животных. Однако нельзя с уверенностью сказать, что только человек способен к абстрактному счету. Есть данные о способности приматов к символизации счета «Приматы способны распознавать и обобщать признак «число элементов», устанавливать соответствие между этим отвлеченным признаком и ранее нейтральными для них стимулами -- арабскими цифрами. Оперируя цифрами как символами, они способны ранжировать множества и упорядочивать их по признаку «число», а также совершать число действий, соответствующее цифре. Наконец, они способны к выполнению операций, изоморфных сложению, но этот вопрос требует более точных исследований.»[12]. Там же отмечается высокая способность к символизации и обобщении по признаку «количества» у врановых.
Переход от «чувственного счета» к абстрактному осуществляется при помощи взаимооднозначного соответствия между двумя множествами, одно из которых позже принимается как бы за эталон. Взаимооднозначное соответствие по началу носит также конкретно-чувственный характер(например, расположение элементов друг напротив друга). Таким способом пользуются даже современные люди, когда считают что-либо загибая пальцы. Считается, что именно счет на пальцах лежит в основе десятичной системы исчисления, принятой у европейских народов [10, стр. 11]. На этом этапе обобщения появляется знаковое обозначение числа. Первоначально это были зарубки на дереве, костях, узелки на веревках, количество которых совпадало со значением числа. Конкретно-чувственное происхождение чисел находит свое отражение в языке. «Вначале счет производился с помощью подручных средств:пальцев камней, еловых шишек и т.д. Следы этого сохранились в названии математических счислений: calculus, которое имеет латинское происхождение и означает: счет камешками»[11, стр. 17]. С развитием культуры и общества появляется потребность в использовании более больших чисел, так появляются разнообразные числовые системы. Современная десятичная система появилась в результате развития древних систем счисления. К системам счисления предшествующим десятичной относятся:
* Иероглифические непозиционные системы. К ней относится Римская система. В ней числа формируется из набора узловых чисел обозначенных иероглифами. Число образуется из этого набора путем дописывания справа или слева узлового числа других узловых чисел. Значения числа вычисляется по аддитивному или субстрактивному принципу.
* Алфавитные системы счисления. Здесь числа записываются при помощи букв. Чтобы отличить буквы от чисел, каждой букве приписывается отличительный признак. Буквы используемые для записи чисел берутся в группы по 9 штук. Для записи единиц десятков и сотен используются разные группы букв, что существенно осложняет ее использование.
* Позиционные недесятичные системы счисления.
Почти одновременно со счетом зарождаются математические операции сложения и вычитания(когда уменьшаемое больше вычитаемого). Позже появляется умножение, как повторное сложение. Деление появляется значительно позже, чем умножение, хотя представления о простых дробях () появляется сравнительно рано. Понятие о натуральных числах, как о бесконечном наборе чисел, возникло не сразу. Представления о неисчислимо больших числах сохранились в языке, например в русском словами «тьма», «много». Наиболее отчетливое представление о безграничном продолжении ряда натуральных чисел обнаружено у греческих математиков. В XII-VII веках до н.э. (времена Гомера) самым большим числом было мириада (1000), которое позже стала обозначать 10000. В III в до н.э. Архимед в своем труде «Исчиление песчинок» опроверг возможность построить сколь угодно большое число.
Однако даже в математике Древней Греции не было единого представления о том, что такое число. Так в школе Пифагора и Платона считали единицу не числом, а «эмбрионом числа». Стоит отметить, что мифологическое сознание древнегреческого общества еще не до конца воспринимало математические и философские абстракции. «Наименее доступны пониманию широких кругов были именно числа, эти наиболее абстрактные элементы науки того времени»[7, стр. 83]. По этим и другим причинам математика, ее методы и результаты выглядели мистически. Наиболее развитым и философски обоснованным мистическим взглядом на числа были пифагорейство и неопифагорейство. Упрощая, можно сказать, что пифагореизм в основе гармонии мира видел число, для пифагореизма все числа имели мистический смысл. Подобные взгляды можно встретить и сегодня. Однако следует признать, что проникновение в философию понятий математики чаще всего было плодотворным. В качестве примера можно привести категорию «Количество» в философии Канта и в диалектической логике, а также парадоксы теории множеств.
Хотя аксиоматически сначала строится множество натуральных чисел, потом целые числа, а потом уже рациональные, исторически рациональные числа появились раньше отрицательных чисел и нуля.
Первоначально понятие нуля возникло в качестве обозначения нулевого разряда в записи чисел. Первое достоверное использование нуля обнаружено в Индии и относится к IX веку. Однако точное происхождение цифры ноль в позиционных системах не известно. «Одни исследователи(Г. Фреуденталь) предполагают, что нуль был заимствован у греков...Другие(Дж. Нидэм), наоборот, считают, что нуль пришел в Индию с востока»[10, стр. 183]. В Индии наиболее ясно и полно исследовали вопрос о применимости к 0 арифметических операций, математиком Бхаскара даже исследовался вопрос о делении на на 0.
Также в индийской математике было наиболее отчетливое представление об отрицательных числах. «Индийские математики, начиная с Брахмагунты(VII в.н.э.), систематически пользовались отрицательными числами и трактовали положительное число как имущество, а отрицательное как долг»[10, стр. 190], хотя мы не можем утверждать, что отрицательные числа впервые появились в Индии. Было установлено, что квадрат отрицательного числа -- число положительное, также ставились вопросы о наличии квадратного корня из отрицательного числа. Действиям с отрицательными числами посвящена целая глава в произведении Бхаскары «Виджаганита».
Менее ясные представления об отрицательных числах были и у китайцев. Их появление было связано с задачами, которые сегодня называются системы линейных уравнений. «Так как все вычисления, в том числе и преобразования матрицы, производились на счетной доске, то для обозначения отрицательных чисел применялись счетные палочки другого цвета или формы, а в случае записи применялись иероглифы разных цветов»[11, стр.84]. Юшкевич высказывает предположение о том, что представление об отрицательных числах имел Диофант [10, стр. 145].
Хотя идея ввести обозначение для «ничего» возникла в математике достаточно давно, но как число нуль долгое время не воспринимался. Тем более полноправными числами не воспринимались отрицательные числа, мысль о том, что есть что-то меньше чем «ничто» многим казалась абсурдной. «...еще Кардано называет отрицательные числа «фиктивными» [10, стр. 315].
Интерпретация отрицательного числа как «долга» у индусов переняли арабы, использование отрицательных чисел встречается в работах арабского математика Абу-л-Вафы. Считается, что термин долг был заимствован математиком Средневековья Леонардо Пизанским(ок. 1170-после 1250, известен как Фибоначчи) у арабов. Кроме «долга» существовал термин «меньше, чем ничто». Зачатки геометрической интерпретации отрицательных чисел появляется в работе М. Штифеля «Полная арифметика», но только после работ Ферма и Декарта отношение к отрицательным числам кардинально изменилось. Применение отрицательных чисел и нуля сыграло важную роль в математике, позволило обобщить многие задачи, упростить некоторые вычисления и формализовать многие алгоритмы.
Как было отмечено ранее, дроби появились намного раньше чем целые числа () и даже раньше чем операция деления. Они возникли из потребности делить целое на части, а также выражать величину через ее части. Дроби вида называемые долями известны человечеству со времен зарождения математического знания. Так египтяне имели обозначения для дробей вида (единичные), а также для , однако если им встречались дроби другого вида, они раскладывали их на сумму единичных дробей. Единичные дроби использовались на ранних этапах греками и шумерами. Дроби общего вида появляются в Греции, хотя изначально не принимаются как числа. Греки впервые построили, по нашим понятиям группу положительных рациональных чисел. «Только в Греции начали оперировать с дробями вида , причем умели производить с ними все действия арифметики с тем ограничением, что вычитать можно было из большего меньшее»[10, стр. 71].
Дроби также были издавна известны в Индии, упоминания о таких дробях как относятся к середине II тысячелетия до н.э. Причем индийцы записывали их способом, напоминающий современный: числитель над знаменателем, но без разделительной черты. Также указывались правила обращения с такими объектами, аналогичные современным правилам обращения с дробями.
Несколько слов стоит сказать о происхождении десятичных дробей. Прообразом для десятичных дробей послужили шестидесятиричные дроби, используемые вавилонянами. Она напоминала современный способ записи дробей тем, что позволяла записывать целю и дробную часть однотипно, что значительно упрощало вычисления. Постепенно, возникают догадки,что это удобство не связано с какими-то особенными свойствами число 60. «Зреет мысль о том, что в основу системы таких дробей может быть положено и другое число...Понимание этой мысли можно видеть уже в учебнике арифметики середины XII в., приписываемом Иоанну Севильскому. Иордан Немораррий(XIII в.) дает даже специальное название таким систематическим дробям, аналогичным шестидесятеричным»[6, стр. 240]. Идея десятичных дробей использовалась некоторыми математиками, но до XIV века строгого их построения не было. В середине XIV в. французский математик Бонфис сделал попытку развить идею десятичного числа. Однако его работа носила эскизный характер и не была опубликована.
В первой половине XV теорию десятичного числа построил самаркандский математик Джемшид Гиясэддином ал-Каши. Он описал десятичную записи числа и описал правила обращения с десятичными дробями. Однако работы ал-Каши оставались неизвестными вплоть до середины XX века.
В Европе десятичные дроби появились благодаря инженеру Симону Стевину(1548-1620). Он объединил отдельные идеи и представления о десятичных дробях и пламенно их пропагандировал. Большой интерес матетиков вызвали периодические дроби. Они были впервые обнаружены арабским матетиком ал-Марадини в XV в. В Европе вопрос о периодических дробях был серьезно рассмотрен Валлисом в 1676 в трактате по алгебре. Вопросами периодических дробей занимались также Лейбниц, Ламберт, Эйлер, Бернулли, Гаусс и др.
2 Проблема несоизмеримых или Первый кризис в основании математики
Как видно из предыдущего исторического экскурса, твердого понимания что такое число долгое время не было. С точки зрения древних греков, числом было только натуральное число большее единицы. Несколько более прогрессивная система счисления была у вавлонян, использущих шестидесятиричные дроби. Вавилоняне знали теорему Пифагора и сталкивались с проблемой извлечения корней из чисел не имеющих точного квадрата. Однако, нет данных о том, рассматривали ли они этот вопрос теоретически. «Обладание подобной[шестидесятиричной] системой и вытекающая отсюда уверенность в числовых расчетах неизбежно приводили к «наивному» понятию действительного числа, почти совпадающему с тем, которое в наши дни можно встретить в элементарных учебниках математики (связанное с десятичной системой счисления) или у физиков и инженеров. Это понятие не поддается точному определению, но его можно выразить, сказав, что число рассматривается как определенное благодаря возможности получать его приближенные значения и вводить их в вычисления.»[2, стр. 146]. Такой же прагматический подход к иррациональным числам был распространен в Индии и Китае.
Несмотря на несовершенную систему счисления, строгость и теоретичность греческой математики способствовала развитию представлений о числе. Как уже было отмечено выше, каждое число греки видели как сумму единиц. Единица была образующей каждого числа, а все числа состояли измерялись единицей. Такой же подход был к геометрическим объектам. В основе теории соизмеримости лежала идея о том, что существует единая единица измерения всех отрезков, такая что каждый отрезок можно отождествить с натуральным числом, по количеству в нем единичных отрезков. Отсюда естественным образом следовало, что отношение двух отрезков можно было описать двумя целыми числами, или, говоря современным языком, рациональным числом. Подобные взгляды были распространены в греческой философии; так, пифагорейцы считали, что под все можно подвести число, Фалес пытался объяснить многообразие мира из единого начала.
Однако благодаря теореме Пифагора открыта иррациональность, которая была серьезным ударом учению пифагорейцев. Школой Пифагора было установлено, что отношение диагонали квадрата к его стороне не может быть рациональным числом. Доказательство этого факта имеется в «Началах» Евклида. Полагают, что это и есть пифагорейское доказательство [10, стр. 73]. Приведем его в современной трактовке[10, стр. 73].
Пусть -- диагональ квадрата, а -- его сторона. Тогда их отношение равно отношению целых чисел. Выберем такие числа, чтобы они были взаимопростыми.
Возведем эту дробь в квадрат . По теореме Пифагора , следовательно
(1)
Отсюда следует, что - четное число. Из свойств четных и нечетных чисел следует, что и четное, следовательно . Подставляя в (1), имеем
Из чего следует что, четное число, а значит и n четное, что невозможно т.к. m и n взамопростые.
Это замечательный пример того, что математики называют красивым доказательством, некоторые исследователи полагают, что это было первое в истории доказательство «от противного»[1, стр.235]. Возможно, доказательству этой теоремы предшествовали попытки найти практически общую меру этих двух величин[7, стр. 92].
Это открытие потрясло греков. «...проблема несоизмеримости получила громкую известность среди широких кругов образованных людей»[10, стр. 73]. Есть легенда о том, что Пифагор в благодарность богам принес в жертву сто быков[7, стр. 91]. Возможно было даже мнение что этот результат должен остаться тайным[1, стр.235].
Несоизмеримость не имела геометрического осмысления. Это явление назвали «алогон», не поддающееся осмыслению. Термин «иррациональность» является латинским переводом этого слова[7, стр.91]. В истории математики крушение пифагорейской арифметики называют Первым кризисом математики.
Вслед за открытием иррациональности последовало открытие иррациональности чисел , сделанное Теодором(Феодором) из Кирены. Ученик Теодора Теэтет(начало IV в. до н.э.) доказал несколько теорем и критериев несоизмеримости, в частности он предложил метод для доказательства иррациональностей вида . Теэтет классифицировал иррациональности, также он считается творцом общей теории делимости.
2.1 Следствия первого кризиса и попытки его преодоления
Открытие несоизмеримости оказало огромное влияние на греческую мысль. «Именно с открытием несоизмеримых величин в греческую математику проникло понятие бесконечности»[1, стр. 235]. Дело в том, что до открытия несоизмеримости греки находили общую меру при помощи алгоритма Евклида. Но случае несоизмеримых отрезков алгоритм переставал быть конечным. Этот факт побудил греков к рассмотрению бесконечности. Однако понятие бесконечности давалось грекам с трудом и глубоко смущало их. Трудности связанные с понятием бесконечного привели к еще большему кризису в математике и нашли отражение в знаменитых апориях Зенона Элейского. Эти апории(парадоксы) вскрывали противоречия между теми кто считал что материя и время бесконечно делимыи теми, кто считал что существуют первичные неделимые единицы. Приведем самые интересные для затронутой темы парадоксы по [10].
1. Парадокс «Дихотомия» построенный в предположении, что пространство делимо до бесконечности.
Движущееся тело никогда не достигнет конца пути, потому что сначала оно должно дойти до середины отрезка, потом до середины остатка отрезка, потом до четверти отрезка и так далее. Таким образом тело должно пройти бесконечный набор точек.
2. Парадокс «Стрела», построенный в предположении, что время пространство и время состоят из неделимых элементов.
Стрела в некоторый момент времени находится в точке в неподвижном состоянии. Так как это верно в каждый момент времени, то стрела покоится.
Несмотря на то что, в этих парадоксах отражено незнание греками понятия предела, эти парадоксы не так просты. Вопросы, поставленные Зеноном, обсуждались философами и математиками во все времена. В частности такими математикам как Гильберт и Вейль. Но для греческих математиков вопрос был в том, допустимо или не допустимо использовать бесконечность в математике. Этот вопрос в греческой математике стоял очень остро. Например, Протагор(V в. до н.э) отрицал даже все математические абстракции[10, стр. 94].
Первая концепция бесконечного, которая стала общепринятой в греческой математике, была выдвинута Анаксагором(V в. до н.э.) и развита Евдоксом Книдским. Евдоксу принадлежит метод исчерпывания, который был призван разрешить проблему несоизмеримых. Для этого он строит теорию величин аксиоматически. Величины в понимании Евдокса имеют различную природу - отрезки, числа, время, но все величины характеризуютсяДалее цитаты из «Начал» Евклида, приведенные по[10, стр.96]:
1. Транзитивностью. «Равные одному и тому же равны между собой».
2. «Если к равным прибавляются равные, то и остатки будут равны».
3. «Если от равных отнимаются равные, то и остатки будут равны».
4. Эквивалентностью. «...совмещающиеся друг с другом равны между собой».
5. Все величины одного вида упорядочены, т.е.
.
6. «...целое больше части».
7. «величины имеют отношение друг с другом, если они взятые кратно могут превзойти друг друга» (или в современной трактовке: если , то найдется такое что ).Эту аксиому Евдокс вводит, чтобы исключить бесконечно большие величины. Она известна в математике под названием аксиомы Архимеда, однако Архимед не только не был ее автором, но даже подчеркивал, что это аксиома была известна до него[2, стр. 148].
Построение этой аксиоматики было значительным шагом в сторону теории действительного числа.
На множестве величин Евдокс определил операцию отношения. Два отношения и считались равными если для любых целых чисел выполнялось одно из следующих условий:
1. и
2. и
3. и .
Аналогичным способом определялись и неравенства между отношениями. Этот оператор разбивал все величины на классы пропорциональных друг другу. Евдокс также установил транзитивность операции отношения.
Как отмечено в [2, стр. 149], введение единозначного оператора отношения для любого вида величин, подразумевало что для любой пары величин а величины найдется величина такого же вида, что и , такая что , но явно это положение не формулировалось и не рассматривалось.
Как видно из определения, каждое несоизмеримое отношение определяло два класса рациональных чисел. Существенным пробелом являлось то, что не устанавливалось обратное соответствие.
Но основе построения Евдокса возник метод исчерпывания, основанный на аксиоме Архимеда. Теперь математики не приписывали длины отрезкам, а сравнивали их с другими отрезками. «... метод исчерпывания ... позволил грекам решать задачи, ставшие впоследствии предметом исчисления бесконечно малых»[1, стр. 239].
После разгрома античной культуры, ее достижения подхватили арабы, в том числе и «Начала» Евклида в которых описаны иррациональные числа. Однако математика арабов носила больше практический, вычислительный характер. «Преобладающее место ... заняло создание разнообразных вычислительных методов и измерительных средств для нужд торговли, административного управления, землемерия, картографии, астрономии, календаря и т.д.»[11, стр. 98]. Это способствовало тому, что арабы оперировали с иррациональными числами формально не уделяя особого внимание теоретическому обоснованию иррациональных чисел. По этой причине грань между «настоящими» числами и иррациональными постепенно стиралась. Также были сведены воедино несоизмеримость геометрических отрезков и арифметическая иррациональность.
В 1077 Омар Хайям, пытаясь преодолеть проблему несоизмеримости, в своем труде «Комментарии к трудностям во введениях книги Евклида» определяет, два отношения равными, если равны все соответствующие неполные частные разложения этих дробей в непрерывные дроби. Хайям показал равносильность этого определения с античным и ввел умножение и деление отношений. В заключении своей работы Хайам приходит к необходимости обобщения понятия числа и расширения его на иррациональные числа. Идеи Хайама получили признание среди арабских математиков. Его идеи развил Ат-Туси, а в XIII в. каждое отношение с уверенностью приравнивалась к числу[11, стр. 101]. Здесь интересно отметить, что в Европе до XVI в. существовало представление о несоизмеримых.
В Средневековой Европе вопросы, связанные с бесконечностью имели большей частью схоластический и метафизический характер.
3 Становление теории предела
Строгая математическое построение понятия вещественного числа стала возможной благодаря теории предела.
Человек, получивший современное математическое образование с трудом представляет себе дифференциальное и интегральное исчисление без аппарата теории предела. Однако, исторически производная появилась раньше предела. Причины такого явления в[1] объясняются насущной потребностью естествознания в XVII веке методах дифференциального и интегрального исчисления.
В XVII идеи связанные с инфинитезимальными методами начали бурно развиваться. Здесь стоит отметить таких математиков как Декарт, Ферма, Паскаль, Торричелли, Кавальери, Роберваль, Барроу. Метод квадратур, разработанный в античности, нашел широкое применение и развитие. Исследовался вопрос касательных -- было дано определение, более общее чем античное, были построены методы отыскания касательных. Были сделаны попытки ввести производную. Было даже установлено, что задача о нахождении касательной обратна к задаче о ква и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.