На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Реферат Выделение этапов введения в курс математики понятия производной (раскрытие физического и геометрического смысла). Определение методической схемы изучения достаточных признаков возрастания и убывания функции, их доказательство с помощью формулы Лагранжа.

Информация:

Тип работы: Реферат. Предмет: Педагогика. Добавлен: 07.03.2010. Сдан: 2010. Страниц: 2. Уникальность по antiplagiat.ru: --.

Описание (план):


Министерство образования Республики Беларусь
Учреждение образования
"Гомельский государственный университет им. Ф. Скорины"
Математический факультет
Кафедра МПМ
Методика введения понятия производной функции
Реферат
Исполнитель:
Студентка группы М-33 Бондорчук А.Ю.
Научный руководитель:
Канд. физ-мат. наук, доцент Лебедева М.Т.
Гомель 2007
Содержание
Введение
1. Образовательные цели изучения производной функции
2. Различные подходы к введению понятия производной функции в курсе средней школы
3. Методическая схема изучения производной
4. Изучение приложения производной в курсе школьной математики
Заключение
Литература

Введение

Цель изучения курса алгебры и начала анализа в 10-11 в.в. систематическое изучение функций как важнейшего математического объекта средствами алгебры и математического анализа, раскрытие политехнического и прикладного значения общих методов математики, связанных с исследованием функций, подготовки необходимого апорта для изучения геометрии и физики.
Курс характеризуется содержательным раскрытием понятий, утверждений и методов, относящихся к началом анализа, выявлением их практической значимости. При изучении вопросов анализа широко используются наглядные соображения: уровень строгости изложения определяется с учётом общеобразовательной направленности изучения начал анализа и согласуется с уровнем строгости приложений изучаемого материала в смежных дисциплинах.

1. Образовательные цели изучения производной функции

При изучении темы "Производная" проявляются известные трудности, связанные с осуществлением предельных переходов. Важно поэтому придать изложению возможно более наглядный и конкретный характер.

Включённые в курс сведения о пределах имеют вспомогательный характер, они не обходимы для вывода формул производных. Основное внимание должно быть уделено не формальному применению теорем о пределах, а сознательному проведению предельных переходов для приближённого вычисления значений конкретных функций и их приращений. Многочлены невысоких степеней и их частных -наиболее простой объект для иллюстрации идеи предельного перехода.

Определению производной функции как предела разностного отношения предшествует рассмотрению особенностей поведения графиков гладких функций, приводящее к понятию касательной. Производная функции появляется сначала как тангенс угла наклона касательной к оси абсцисс. Тем самым с понятием производной на первом этапе связывается наглядный образ - касательная. Предельные переходы появляются как средство вычисления производной.

При изучении применения производной существенная роль отводится наглядным представлениям о производной. Опора на геометрический и механический смысл делают интуитивно ясными критерии возрастания и убывания функций, признаки максимума минимума.

Решение тестовых задач физического, геометрического и практического содержания с применением производной позволяет учащимся ознакомиться со всеми этапами решения прикладных задач: составление математической модели (перевод задачи на язык функций), решение полученной задачи средствами математического анализа, и наконец, интерпретация полученного решения в терминах исходной задачи.

2. Различные подходы к введению понятия производной функции в курсе средней школы

Различные подходы к введению производной определяются логической связью этого понятия с более общим понятием предела функции в точке.

Логический подход при введении производной в качестве базисного понятия использует определение предела функции в точке. Так в учебных программах по математике 1968 года, используя этот подход, определяли это понятие: 1) исходя из арифметического толкования предела функции (определение по Коши или на языке абсолютной погрешности):

2) исходя из операции предела функции в точке через окрестности (топологическое): a- предельная точка множества E, т.е.

В действующих школьных программах по математике при введении производной функции используют исторический подход, т.е. первоначально формируются понятия производной, и только затем, как обобщение, понятие предела функции. При таком подходе большое внимание уделяется практическим аспектам изучения производной.

3. Методическая схема изучения производной

I. Привести подводящую задачу, раскрывающую физический смысл понятия производной: свободное падение тела, которое не является равномерным. Охарактеризуем скорость падения в каждый данный момент времени t , т.е. введём понятие мгновенной скорости свободного падения тела. Известно, что средняя скорость определяется отношением , причём чем меньше значение , тем менее "заметно" изменение средней скорости падения. При , отношение стремится к значению мгновенной скорости. Таким образом мгновенная скорость характеризует скорость изменения пути в момент времени t.

В общем случае, с любым реальным процессом может быть связана задача:

Пусть -параметр данного процесса, зависимости от x ; найти скорость изменения параметра в момент, когда . Решение задачи сводится к нахождению отношения приращения параметра , соответствующую приращению .

II. Сформулировать определение понятия производной.

Так как в определении отсутствует понятие предела, то первоначально следует сформировать у учащихся понятие приращения как изменения и аргумента и функции.

Например:

После рассмотрения геометрического смысла производной вводим определение:

Производной функции в точке называется число, к которому стремится разностное отношение:

Полезен небольшой анализ формулировки определения, позволяющий чётче выделить признаки данного понятия: 1) число, 2) к которому стремится разностное отношение

3) при

Закреплению определения производной способствует вопрос: "Как найти производную функции в точке ?", ответ на который может быть дан в форме алгоритма: 1) значению придаём приращение ; 2) находим приращение функции в точке ; 3) составляем разностное соотношение; 4) находим число (если такое число существует), к которому стремится при

III и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.