Здесь можно найти образцы любых учебных материалов, т.е. получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ и рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Курсовик История возникновения и развития геометрических величин. Роль и место величин в процессе обучения. Методика изучения длин, величин углов, площадей и объемов фигур в курсе геометрии средней школы. Разработка тестов и заданий для самостоятельной работы.

Информация:

Тип работы: Курсовик. Предмет: Педагогика. Добавлен: 25.11.2010. Сдан: 2010. Страниц: 2. Уникальность по antiplagiat.ru: --.

Описание (план):


36
Министерство общего и профессионально образования
Южный Федеральный Университет
Ростовский педагогический институт
Кафедра геометрии и методики преподавания математики
Курсовая работа на тему:
Методика изучения геометрических величин в курсе геометрии средней школы
Выполнила
студентка 62 группы.
ф-та «Математика»
Бурова И.В.
2010 г
Оглавление

    Введение
    1 Теоретические основы изучения геометрических величин в средней школе
    1.1 История возникновения и развития геометрических величин
    1.2 О роли и месте величин, их измерений в процессе обучения
    2 Методика изучения геометрических величин в курсе геометрии средней школы
    2.1 Методика изучения длин в курсе геометрии средней школы
    2.2 Методика изучения величин углов в курсе геометрии средней школы
    2.3 Методика изучения площадей фигур в курсе геометрии средней школы
    2.4 Методика изучения объемов фигур в курсе геометрии средней школы
    Заключение
    Список используемой литературы
    Приложение 1 Аксиомы теории величин
    Приложение 2 Тест для учащихся 8 класса по теме «Площади фигур»
    Приложение 3 Самостоятельная работа для учащихся 7 класса на тему «Измерение отрезков»
Введение

На современном этапе развития общеобразовательной школы главные её задачи состоят в том, чтобы дать учащимся глубокие знания основных наук, совершенствовать их диалектико-материалистическое мировоззрение, развивать творческие способности и трудовые навыки, прививать желание и умение самостоятельно приобретать и углублять свои знания. Решение этих задач требует всемерной активности их учебной деятельности, осмысленного изучения материала.
Представления учащихся о взаимосвязи математики и окружающего мира достигается сочетанием теоретического и современных прикладных аспектов школьного курса математики. Этому способствует и тот факт, что в программе и учебных пособиях отражены внутрипредметные и межпредметные связи . На уроках математики, как правило, готовится весь аппарат, необходимый для изучения смежных предметов на достаточно высоком уровне. Большой интерес представляют те понятия, которые находят применение в нескольких школьных предметах. Одним из таких понятий является понятие величины.
Величина -- одно из основных математических понятий. Изучение в курсе математики средней школы величин и их измерений имеет большое значение в плане развития школьников. Это обусловлено тем, что через понятие величины описываются реальные свойства предметов и явлений, происходит познание окружающей действительности; знакомство с зависимостями между величинами помогает создать у детей целостные представления об окружающем мире; изучение процесса измерения величин способствует приобретению практических умений и навыков необходимых человеку в его повседневной деятельности.
Объект исследования: процесс изучения геометрических величин в курсе геометрии средней школы.
Предмет исследования: методика изучения геометрических величин в курсе геометрии средней школы.
Цель курсовой работы заключается в описании методики изучения геометрических величин в курсе геометрии средней школы.
Задачи:
1. Рассмотреть историю развития геометрических величин.
2. Охарактеризовать понятие геометрической величины.
3. Установить роль и место величин, их измерений в процессе
обучения.
4. Описать методику изучения геометрических величин в курсе геометрии средней школы.
Данная курсовая работа состоит из введения, двух глав, заключения, списка используемой литературы и трех приложений.
В первой главе рассматриваются теоретические основы изучения геометрических величин в курсе геометрии средней школы, а именно, история возникновения и развития геометрических величин, роль и место величин, их измерений в процессе изучения. Во второй главе описывается методика изучения геометрических величин в курсе геометрии средней школы.
1 Теоретические основы изучения геометрических величин в средней школе

1.1 История возникновения и развития геометрических величин

Величина -- одно из основных математических понятий, смысл которого с развитием математики подвергался ряду обобщений.
Задатки геометрических знаний, связанных с измерением площадей, теряются в глубине тысячелетий.
Еще 4--5 тыс. лет назад вавилоняне умели определять площадь прямоугольника и трапеции в квадратных единицах. Квадрат издавна служил эталоном при измерении площадей благодаря многим своим замечательным свойствам: равные стороны, равные и прямые углы, симметричность и общее совершенство формы. Квадраты легко строить, ими можно заполнить плоскость без пробелов (в Древнем Китае мерой площади был прямоугольник).
Древние египтяне 4000 лет назад пользовались почти теми же приемами, что и мы, для измерения площади прямоугольника, треугольника и трапеции: основание треугольника делилось пополам и умножалось на высоту; для трапеции же сумма параллельных сторон делилась пополам и умножалась на высоту. Для вычисления площади S четырехугольника со сторонами а, b, с, d (рис. 1) применялась формула
т. е. умножались полусуммы противоположных сторон. Эта формула верна только для прямоугольника. С ее помощью можно вычислить приближенно площадь таких четырехугольников, у которых углы близки к прямым.
Для определения площади S равнобедренного тpeyгольника АВС, в котором |АВ| = |АС| , египтяне пользовались приближенной формулой:
Совершаемая при этом ошибка тем меньше, чем меньше разность между стороной и высотой треугольника, иными словами, чем ближе вершина В С) к основанию D высоты из А. Вот почему приближенная формула применима лишь для треугольников с сравнительно малым углом при вершине.
Понятие угла на протяжении веков не оставалось без изменений, оно обобщалось и расширялось под влиянием запросов практики и науки. Градусная система измерения углов, в которой за единицу принят угол, равный части угла, соответствующего полному обороту одной стороны угла около его вершины, восходит к III - II тысячелетиям до н. э., к периоду возникновения шестидесятеричной системы счисления в вавилонской математике.
Шестидесятеричное градусное измерение, как и шестидесятеричные дроби, проникло далеко за пределы ассиро-вавилонского царства и получило широкое распространение в странах Азии, Северной Африки и Западной Европы. Они применялись, в частности, в астрономии и связанной с ней тригонометрии.
Гиппарх, Птолемей и другие древнегреческие астрономы употребляли таблицы, в которых давались величины хорд, соответствующих данным дугам. Хорды (как и дуги) измерялись градусами, минутами и секундами, при этом один градус составлял обычно шестидесятую часть радиуса. Индийцы заимствовали через греков вавилонское градусное измерение дуг, но вместо хорд они измеряли линии синусов и косинусов. Градусным измерением пользовались и ученые стран Ближнего и Среднего Востока, внесшие большой вклад в развитие тригонометрии.
Выдающийся немецкий математик и астроном XV в. Региомонтан отступил от шестидесятеричного деления радиуса и за единицу измерения линии синуса принял одну десятимиллионную часть радиуса, что позволило выражать синусы целыми числами, а не шестидесятеричными дробями. Аналогично поступали и многие последовавшие за ним европейские математики.
Во время буржуазной революции конца XVIII в. во Франции была введена наряду с метрической системой мер и центезимальная (сотенная) система измерения углов, в которой прямой угол делился на 100 градусов, градус- на 100 минут, минута - на 100 секунд. Эта система применяется и поныне в некоторых геодезических измерения, но всеобщего употребления пока не получила.
В связи с возникновением и развитием теории пределов и математического анализа с целью придать многим формулам возможно более простой вид в тригонометрии ввели радианное измерение дуг и углов. Термин «радиан» происходит от латинского radius -- радиус.
Объемы зерновых амбаров и других сооружений в виде кубов, призм и цилиндров египтяне и вавилоняне, китайцы и индийцы вычисляли путем умножения площади основания на высоту. Однако древнему Востоку были известны в основном только отдельные правила, найденные опытным путем, которыми пользовались для нахождения объемов и площадей фигур. В более позднее время, когда геометрия сформировалась как наука, был найден общий подход к вычислению объемов многогранников.
Среди замечательных греческих ученых V--IV вв. до н. э., которые разрабатывали теорию объемов, были Демокрит из Абдеры и Евдокс Книдский.
Евклид не применяет термина «объем». Для него термин «куб», например, означает и объем куба. В XI книге «Начал» изложены среди других и теоремы, следующего содержания.
1. Параллелепипеды с одинаковыми высотами и равновеликими основаниями равновелики.
2. Отношение объемов двух параллелепипедов с равными высотами равно отношению площадей их оснований.
3. В равновеликих параллелепипедах площади оснований обратно пропорциональны высотам.
Теоремы Евклида относятся только к сравнению объемов, так как непосредственное вычисление объемов тел Евклид, вероятно, считал делом практических руководств по геометрии. В произведениях прикладного характера Герона Александрийского имеются правила для вычислений объема куба, призмы, параллелепипеда и других пространственных фигур.
1.2 О роли и месте величин, их измерений в процессе обучения
Длина, площадь, масса, время, объём - это величины. О возрастании роли величин в познании природы говорит тот факт, что они проникают и являются составной частью таких традиционно "нематематизированных" наук, как биология, психология, педагогика, социология и др. Но для математики и физики понятие величины является наиболее характерным.
Без величин изучение природы ограничивалось бы лишь наблюдениями и оставалось на описательном уровне. Именно количественные модели различных объектов, явлений наиболее описательны. Характерным общим понятием для всех моделей является понятие "величина".
Каждый объект имеет много различных свойств, которые отражены в соответствующих величинах.
Свойство объекта
Соответствующая величина
инертность
масса
пространственная протяженность
длина
препятствие прохождению электрического тока
сопротивление
Величины не существуют сами по себе, как некие субстанции, оторванные от материальных объектов и их свойств. С другой стороны, величины в некоторой степени идеализируют свойства объектов и явлений. В процессе абстракции всегда происходит огрубление действительности, отвлечение от ряда обстоятельств. Поэтому величины - это не сама реальность, а лишь ее отображение. Но практика показывает, что величины верно отражают свойства окружающей действительности. В самой природе нет сил, скоростей, импульсов и т.д.; величины используются в ходе познания для описания явлений природы.
Различают несколько видов величин: скалярные, векторные, тензорные. В школьном обучении нашли широкое применение скалярные и векторные величины.
Величины позволяют перейти от описательного к количественному изучению свойств объектов, т.е. математизировать знания о природе.
По словам С. Богданова [4], понятие величины является основополагающим не только в отдельных науках, но и в реальной, повседневной жизни. Поэтому понятие должно иметь единое содержание как в школьных учебниках, так и в реальной практике. Но силу того, что понятие величины является первичным, четкого, строго определения оно не имеет, поэтому трактуется по-разному. В школе оно вводится, как правило, описательно, на примерах величин, известных ученикам из практики, окружающей действительности.
Анализ учебной и научной литературы о величинах позволяет выделить два аспекта величин:
1. величина позволяет перейти от качественного описательного к количественному изучению свойств объекта, то есть математизировать знания об объекте;
2. в количественном описании величина представляется не только числом, но и единицей измерения.
К трактовке понятия величины существует несколько подходов.
I. Геометрические величины могут трактоваться как действительные числа, которые характеризуют геометрическую фигуру с точки зрения ее размеров - длин отрезков, величин углов, площади и объема.
Величины, которые вполне определяются одним численным значением, называются скалярными величинами. Такими, к примеру, являются длина, площадь, объём, масса и другие.
Важно заметить, что для характеристики значения одних величин достаточно числа (н-р, площадь, объем), а значение других величин характеризуется еще и направлением (н-р, скорость).
Геометрические величины, изучаемые в школе, являются скалярными аддитивными величинами. Каждая из них может быть определена аксиоматически, что сделано практически во всех школьных учебниках геометрии:
1. формулируется неотрицательность (иногда - положительность) величин;
2. показывается равенство соответствующих величин для равных геометрических фигур;
3. формулируется свойство аддитивности.
Таким образом, с помощью 1)-3) определяется сама величина, а не ее значения. Для нахождения числовых значений геометрических величин требуется введение еще одной аксиомы:
4)существует единица измерения (отрезок длиной 1, квадрат площадью 1, куб объема 1, угол, величина которого 1).
II. С точки зрения теории множеств, все геометрические величины являются примерами одного из основных определяемых аксиоматически общематематических понятий - меры множества. Пусть дано некоторое семейство множеств А, В, С, …, являющихся подмножествами некоторого универсального множества У. Говорят, что на этом семействе множеств определена мера, если каждому из них поставлено в соответствие некоторое действительное число m(A), удовлетворяющее аксиомам:
1)m(A)?0, m(A) = 0 тогда и только тогда, когда А - пустое множество;
2)среди данных множеств существует такое множество Е, что m(E) = 1;
3)равные множества имеют равные меры: (А=В) следует, что (m(A) = m(B));
4)мера двух непересекающихся множеств А и В равна сумме мер данных множеств m(A)+m(B);
5)если m(A) = m(B), а m(В) = m(С), то m(A) = m(С).
Легко проверить конкретный смысл этого определения для понятий длины отрезка, величины угла, площади фигуры, объема тела.
Величины тесно связаны с понятием измерения. Измерения являются одним из путей познания природы человеком, объединяющим теорию с практической деятельностью человека. Роль и значение измерений в процессе развития естественных и технических наук непрерывно возрастает, так как растет число и качество различных измерений величин.
Существует два основных способа измерения геометрических величин:
· непосредственное;
· косвенное.
Непосредственное измерение - сравнение данной величины с выбранной единицей измерения - основано на 1-й и 2-й аксиомах меры , соответствует первоначальному наглядному представлению, например, о длине отрезка как числе, показывающему, сколько раз единица длины или ее часть укладывается (содержится) в этом отрезке, и состоит в выполнении следующих шагов:
1.Выбрать единицу измерения (это можно сделать на основе 2-й аксиомы).
2.Сравнить данное множество с единицей измерения; число (на основе 1-й аксиомы), показывающее, сколько раз единица измерения содержится в данном множестве, есть его мера (длина отрезка, величина угла, площадь фигуры, объем тела).
Таким образом, в результате измерения величины находят некоторое число х которое называют числовым значением данной величины а при единице измерения е:
а = х · е, где х - число. Следовательно, величина задается с помощью чисел и единиц измерения. Например, 7 кг = 7·1кг, 12 см =12·1 см, 15ч =15·1ч.
Кроме того, определив умножение величин можно обосновать процесс перехода от одной единицы величины к другой.
3.Можно убедиться, что полученное таким образом число удовлетворяет аксиомам 3-5 и дает возможность выполнять сравнение, сложение, вычитание, умножение и деление на число измеряемых множеств и их мер.
Говоря о геометрических величинах, следует четко различать саму геометрическую фигуру, величину, и числовое значение этой величины. Например:
Геометрическая фигура
Величина
Значение величины
Отрезок АВ:
А В
Длина отрезка АВ: АВ = 4 см
Числовое значение длины отрезка АВ:
4
Отличие длины отрезка от числового значения длины в том, что первое остается неизменным, а второе зависит от выбранной единицы измерения. [11]
Для практической реализации непосредственного измерения единица измерения наносится на материальные носители и получаются измерительные приборы: масштабная линейка, транспортир, палетка и др.
Заметим, что способ непосредственного измерения не всегда удобен (например, для измерения площади палеткой) и даже не всегда осуществим (например, для измерения объема). Поэтому используют косвенное измерение геометрических величин, которое состоит в том, что непосредственно измеряются только величины тех элементов геометрических фигур - отрезков, углов, для которых это сделать легко и практически удобно, а площадь и объем затем вычисляются на основе аксиом меры с помощью специально установленной зависимости между всеми геометрическими величинами данной фигуры.
Ниже рассматриваются методы установления такой зависимости, называемые методами косвенного измерения геометрических величин.
1)Метод равновеликости равносоставленных фигур, используемый для определения геометрических величин многоугольников и многогранников, основан на 3-й и 4-й аксиомах (конкретизируемых как свойства площадей и объемов) и следующей из них теореме: равносоставленные фигуры равновелики (две фигуры называются равновеликими, если их площади или объемы равны; две фигуры называются равносоставленными, если каждую из них можно разбить на соответственно равные части). Для многоугольников, в частности, справедлива и обратная теорема: равновеликие многоугольники всегда равносоставлены.
Примерами применения этого метода являются доказательства формул площади параллелограмма (преобразованного в прямоугольник), трапеции (достроенного до треугольника), формул объема призмы; геометрическая иллюстрация законов действий над числами и формул тождественных преобразований (последние, в частности могут быть использованы для вывода формулы площади прямоугольника на основе известной формулы площади квадрата).
2) Метод предельного перехода основан на определении геометрических величин некоторых фигур, которые не могут быть определены и измерены непосредственно (длина окружности или дуги) или составлены из многоугольников (площадь круга) или многогранников (площади боковой поверхности и объемы круглых тел) как предела последовательности соответствующих значений геометрических величин, вписанных в данную фигуру или описанных около нее фигур при неограниченном увеличении числа определяющих их элементов (например, сторон многоугольников).
Впервые этот метод применяется для определения длины окружности и формулы ее вычисления. Рассуждения выстраиваются следующим образом: так как единицей измерения длины (единичный отрезок) не совмещается с дугой окружности, можно вначале измерить длину окружности приближенно, например, как периметр вписанного (или описанного) в нее многоугольника. Чтобы увеличить точность приближенного вычисления, увеличивают (например, удвоением) число сторон многоугольника и вычисляют его периметр; теоретически этот процесс можно продолжить бесконечно. Таким образом, получается бесконечная последовательность длин периметров, вписанных в окружность многоугольников Р1, Р2, Р3,…,Рп , которая при п>? возрастает и ограничена сверху (например, периметром любого описанного многоугольника) и, следовательно, по теореме К. Вейерштрасса имеет предел. Этот предел называется длиной окружности и его вычисление приводит к формуле C=2?r. Аналогичные рассуждения можно провести для определения и вывода формулы площади круга, боковой поверхности и объема цилиндра, конуса, усеченного конуса.
3) Метод интегрального исчисления для вычисления площадей фигур, ограниченных сверху и снизу графиками непрерывных неотрицательных функций и объемов круглых тел основан на теоремах математического анализа о вычислении площади криволинейной трапеции и объема тела вращения по формулам и .
Примером непосредственного применения метода интегрального исчисления является вывод формулы для вычисления объема пирамиды в 11 классе.
Одна и та же фигура может иметь несколько разных формул для вычисления ее площади (объема) для разных частных случаев (так, например, известно около десятка формул площади треугольника). На формулах вычисления площадей и объемов геометрических фигур основан метод площадей (и объемов) для вычисления длин отрезков или величин углов.
Суть метода площадей (объемов):
1)запишите две или более формул площади (объема) данной фигуры, в одной из них известны все элементы, а в другую входит неизвестный элемент (элементы);
2)составьте уравнение (систему уравнений) на основе того, что эти формулы выражают одну и ту же величину;
3)решите полученное уравнение (систему уравнений) и найдите искомые элементы.
Разновидности метода площадей (объемов):
· одна фигура заменяется другой, которая ей равновелика и более удобна для решения задачи;
· отношение отрезков заменяется отношением площадей треугольников с общей вершиной (если они известны), основаниями которых являются рассматриваемые отрезки.
Данный метод и его разновидности используются и для доказательства свойств геометрических фигур (например, таким методом доказывается свойство биссектрисы угла). Как и при использовании этого метода, так и других, используют дополнительные построения и общие методы доказательства теорем.
В процессе обучения геометрии, можно выделить некоторые конкретные направления использования измерений.
Понятие величины в математике возникло в результате абстрагирования от качественных особенностей свойств реальных объектов, чтобы выделить только количественные отношения. Еще в глубокой древности в процессе измерений было найдено множество эмпирических фактов об общих свойствах величин, которые являются отражением свойств в реальном мире.
Иногда считают, что понятие величины не является специальным математическим понятием, так как в конечном итоге, как правило, обращаются с числовыми значениями величин или просто числами. Однако, как указывал академик А.Н. Колмогоров, "...более радикальным и правильным решением представляется вполне традиционный путь, восходящий к Евклиду: общие свойства скалярных величин предпосылаются систематическому курсу геометрии. "[4]
Понятие величины не потеряло своего значения в математике и в настоящее время; оно имеет ясно выраженную прикладную направленность. Так, Н.Я. Виленкин замечает: "Понятие величины является основным, когда речь идет о приложениях математики"[4]. Современная математика, давая общее представление о величине, отличает это понятие от понятия числа.
Между различными свойствами объектов и явлений окружающей действительности существуют определенные связи, часть из которых отражается в зависимостях между соответствующими величинами.
Изучение зависимостей между величинами позволяет учащимся видеть не только качественные связи различных сторон объективной реальности, т.е. на описательном уровне, но и оценивать их количественно.
Связи величин, их взаимозависимость выражаются с помощью формул. Истолкование формул в физике отличается от их истолкования в математике.
Математическая формула выражает в основном вид зависимости между символами, входящими в нее. Сами символы могут не содержать конкретного смысла. В физической формуле отражены связи между величинами реального мира.
В процессе изучения различных величин учащиеся должны знать не только их числовые характеристики, но и те свойства объектов, которые характеризуются данными величинами.
Известно, что не каждое свойство объектов, явлений можно измерять. Примерами могут служить многие понятия в психологии, педагогике, биологии, экономике (воля, смелость, вкус и т. д.). Иногда такие понятия также называют величинами, но в отличие от привычных - величинами латентными. Сравнение таких величин возможно лишь на некоторой интуитивной основе. Если говорят, что этот человек более волевой, чем другой, то о степени качества "воля" судят только через систему поступков, поведение человека. В этих случаях говорят об условных значениях величии или об условных мерах. Оценивать такие величины числами представляется искусственным.
Сложение, вычитание и другие арифметические действия с латентными величинами производить нельзя, так как не может быть установлено взаимно-однозначное соответствие между их множеством и множеством действительных чисел.
На примере использования величин в науках учащиеся знакомятся с одним из путей математизации знаний, с той ролью, которую играют и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.