На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


учебное пособие Поняття вектора, абсолютна величина й напрям вектора, наочн малюнки та завдання для самостйного виршення. Рвнсть векторв. Розвязування вправ. Поняття координати вектора, знайомство з знаходженням координати вектора через координати пари чисел.

Информация:

Тип работы: учебное пособие. Предмет: Педагогика. Добавлен: 30.10.2009. Сдан: 2009. Страниц: 2. Уникальность по antiplagiat.ru: --.

Описание (план):


1
37
ЗМІСТ
Урок - 1. Поняття про вектори. Абсолютна величина вектора і напрям
Урок - 2. Рівність векторів. Розв'язування вправ
Урок - 3. Координати вектора
Урок - 4. Розв'язування вправ. Самостійна робота
Урок - 5. Додавання векторів
Урок - 6. Додавання векторів (продовження)
Урок - 7. Додавання векторів (продовження)
Список використаної літератури

УРОК - 1 Тема уроку. ПОНЯТТЯ ПРО ВЕКТОР. АБСОЛЮТНА ВЕЛИЧИНА ВЕКТОРА І НАПРЯМ

Мета уроку. Увести поняття вектора, абсолютна величина й напрям вектора, а також розв'язати вправи.

Тип уроку. Урок засвоєння нових знань.

Навчальні посібники і ТЗН. 1)кодоскоп; 2)кодопозитиви; 2)діапроек- тор; 4) фрагменти з діафільму ” Вектор ”.

ХІД УРОКУ

І. Повторення вивченого матеріалу (фронтальне опитування на кодоскопі).

1). Які відображення площини на себе називається рухом (перемі- щенням)? Перерахувати відомі вам види переміщення.

[симетрія відносно точки, симетрія відносно прямої, поворот, паралельне перенесення].

2). Дати означення напряму на площині.

[Наочно паралельне перенесення означають як перетворення, при якому точки зміщуються в одному і тому самому напряму на одну і ту саму відстань, або точки зміщуються вздовж паралельних прямих ( або прямих які збігаються) на одну й ту саму відстань].

3). Яке відображення площини на себе називається паралельним пере- несенням?

4). Яке відображення площини на себе називається паралельним пере- несенням?

[Паралельне перенесення задається формулами:

x'=x+a, y'=y+b ].

5). Скільки різних паралельних перенесень задають дві різні точки? [A(x1;y1), B(x2;y2) переходять при паралельному перенесенні у точки A'(x1+a;y1+b), B'(x2+a;y2+b)].

Розв'язати задачу на тотожне відображення.

Дано відрізок AB. Побудувати образ цього відрізка

а) При паралельному перенесенні, який переводить точку A у точку В.

AB]. [AB AB].

б) При повороті на 0o навколо вибраної поза відрізком AB точки. [AB

в) Чи являється довільне переміщення тотожнім відображенням, якщо відомо,що воно переводить точку А в точку В, а також В в точку В, тобто АВ АВ? [Ні, бо при будь-якому розміщенні осі симетрії з віссю AB на площині знайдуться точки, які не переходять самі в себе, а тотожне відображення є перетворення всієї площини на себе, яка будь-яку точку площини відображає на себе].

Паралельне перенесення задано формулами x=x+2, y=y+3. Знайдіть координати точок N' і M', в які переходять точки N(1;2), M(2;1) при паралельному перенесенні. Побудувати точки N і N ', M і M'; кожну пару точок з'єднайте відрізком.

Демонструю на кодоскопу мал. 1, який складається з кодоплівок: система координат, із двох пар точок N і N', M і M'. Одержаний малюнок показує, що при даному паралельному перенесенні точки змістилися за паралельними прямими на однакову відстань. Пропоную учням цю властивість довести, тобто, що чотирикутник NN'M'M - паралелограм. Для доведення вправи необхідно згадати з учнями означення й властивість паралелограма, формули координат середини відрізка.

Пропоную учням знайти середину відрізка NM' і N'M і переконатися, що ці точки співпадають. Учні роблять висновок, що діагоналі чотирикутника NN'M'M перетинаються і в точці перетину діляться навпіл, це означає, що NN'M'M - паралелограм. Таким чином доведено, точки N і M змістили на одну і ту ж відстань.

Потім я доводжу це твердження в загальному вигляді ( тобто для будь-якого паралельного перенесення і довільних точок N і M ), показую на кодоскопі мал. 1.

Алгоритм доведення демонструю на кодоскопі.

Нехай O1 - середина відрізка NM', а O2 - середина відрізка N'M. Знайти координати точок і.

Для O1:

x = (x1+x2+a)/2, y = (y1+ y2 b)/2;

для O2 :

x = (x1+a+x2)/2, y = (y1 +y2+b)/2.

Точки О12 - співпадають (одна і та ж точка).

Отже, діагональ чотирикутника N'NM'M перетинаються і точкою перетину є точка О (середина ); звідки слідує, що чотирикутник NN'M'M - паралелограм (мал. 2), тобто NN' || MM' і NN'=MM'.

y

N(x1+a;y1+b)

5

M(x2+a;y2+b)

o

2 N

M 0 1 2 3 4 x

Мал. 2

Звертаю увагу учням на те, що ми довели наступне:
а) NM=N'M', тобто, що паралельне перенесення зберігає відстань між точками, а це означає - рух;
б) пряма переходить у паралельну пряму.
Пригадати з учнями теорему 9.4 (про існування і єдиності паралельного перенесення).
Підвести підсумок фронтального опитування й оголосити оцінки.
ІІ. Вивчення нового матеріалу.
Звертаю увагу учням на те, що ми повторили паралельне перенесення, яке тепер буде називатися по новому - вектор.
Після таких міркувань переходимо до означення вектора, яке подано у підручнику (п. 91).
Вектором називається напрямлений відрізок (за підручником мал. 215 демонструю на кодоскопу).
B
a
A
мал. 3 (за підручником мал. 211)
Звертаю увагу на те, що учні вже зустрічалися із вектором у курсі фізики при вивченні величин, які характеризуються числом і напрямом (такі, як сила, швидкість і т. д.).
На мал. 3 напрям вектора визначається його початком і кінцем (стрілка). Для позначення вектора використовуються малі букви латинського алфавіту a, b, c
Можна також позначати вектор, вказавши його початок і кінець великими буквами латинського алфавіту. При такому способі позначення
вектора на перше місце ставлять його початок (перша буква), а кінцем є друга буква. Зверху над буквою (буквами) ставлять риску (стрілку). Повідомляю, що вектор на мал. 3 позначають так: a і AB.
B C
A D
Мал. 4
На кодоскопу демонструю наступні завдання:
1. Виписати всі вектори, зображені на мал. 4.
2. Дано точки A,B,C,D (мал. 5):
а) зобразити вектори, DA, BA,DB,BC;
B
C
A D
Мал. 5
б) накреслити вектор, початок якого співпадає із
початком вектора DB, а кінець - з кінцем вектора DC.
Після розв'язування цих вправ увожу поняття однаково напрямлених векторів. Показую на кодоскопу мал. 6 і пояснюю учням, яке паралельне перенесення суміщається, а) пів прямі AB і DE; б) пів прямі AB і BC.
A B C
D E
Мал. 6
[а) паралельне перенесення, переводить точку в точку A у точку B; б) паралельне перенесення, переводить точку А в точку В ].
Звертаю увагу учням на те, що згідно означенню однаково напрямленні пів прямі лежать або на паралельних прямих, або на одній і тій же прямій.
B C
A N D
Мал. 7
На кодоскопу демонструю мал. 7 і умову завдання:” ABCD - трапеція. Пояснити, чому пів прямі BC і AD однаково напрямлені ” [Пів прямі BC і AD лежать на паралельних прямих ВС і AD по одну сторону від січної AB].
Увожу означення протилежно напрямленні пів прямі. Демонструю мал. 8 на кодоскопу.
Пояснити, чому пів прямі BC і DA протилежно напрямлені.[Пів прямі BC і DA лежать на паралельних прямих по одну сторону від січної AB ].
Звертаю увагу на те, що протилежно напрямленні пів прямі (подібно до однаково напрямлених ) лежать або на паралельних прямих, або на одній й тій же прямій.
K M N
F E
Мал. 8
Означення однаково напрямлених векторів показую на прикладах. За допомогою кодоскопу демонструю мал. 7 і умову завдання.
Дано трапецію ABCD (мал. 7):
а) Знайти всі можливі пари одинаково напрямлених векторів.
б) Чи являються ВА CD однаково напрямленні? (Відповідь поясніть)
Ввожу поняття протилежно ( ) напрямленні вектори :”CB і AD (мал. 7) називаються протилежно напрямленими, якщо пів прямі CB і AD протилежно напрямлені”. Після цього демонструю задаю ще одне запитання:
”Вкажіть які-небудь пари протилежно напрямлених векторів”.
[Наприклад, BC і DA, AD і NA, BC і CB].
Підсумок. Вектори CB AD називаються однаково напрямленими, якщо однаково напрямлені й пів прямі CB і AD. Вектори CB AD називаються протилежно напрямленими, якщо протилежно напрямлені й пів прямі CB і AD.
Для введення поняття абсолютної величини (модуля) пропоную учням такі вправи.
Нехай ABCD - квадрат із стороною рівною 3.
Чому дорівнюють абсолютні величини (модулі) векторів AB, BA, AC ?
Підсумовую разом з учнями: ” Абсолютною (або модулем) вектора називається довжина відрізка, що зображає вектор. Абсолютна величина вектора а позначається | a | ”.
Далі знайомлю учнів із нульовим вектором, тобто, коли початок вектора збігається з кінцем. Показую як позначається нульовий вектор і учні записують це позначення в зошиті ( 0 ). А також зауважую, що про напрям нульового вектора не говорять і абсолютна величина нульового вектора дорівнює нулю. Операції над нульовими векторами відіграють ту саму роль, що й число нуль в операціях числа.
ІІІ. Тренувальні вправи (на кодопозитиві, напівсні ).
Вектори AB і DC однаково ( ) чи протилежно ( ) напрямленні
Два вектори AB і DC рівні. Порівняйте їхні абсолютні величини й напрям.
Вектори AB і CB рівні за абсолютною величиною. Чи рівні ці вектори?
IV. Підсумок уроку.
Пригадую з учнями як позначається вектор.
2) Звертаю увагу на поняття одинакові ( ) і протилежно ( ) напрямленні вектори і ,що такі вектори називаються колінеарними.
3) Учні пригадують, що вектор має довжину, тобто нове поняття, абсолютна величина вектора.
4) Ще раз пригадую учням, про нульовий вектор і операції над ним. На кінець звертаю увагу, що вектор і операції над ним використовуються у фізиці.
IV. Домашнє завдання. § 10 (п. 91); №1; за. 1 - 4.
B C
O
A D
Мал. 9
Додаткове завдання.
1) Довести, що для справедливості рівності AB = CD необхідної і достатньо, щоб середина відрізка AD збігалася із серединою відрізка BC.
2) Позначте на мал.9 вектори AB,CB,OA, OC, BD, AD, DC, OB . Записати співнапрямлені і протилежно напрямлені вектори.
УРОК - 2. Тема уроку. РІВНІСТЬ ВЕКТОРІВ. РОЗВ'ЯЗУВАННЯ ВПРАВ
Мета уроку. Ознайомлення учнів із поняттям рівні вектори і закріпити на прикладах.
Тип уроку. Урок засвоєння нових знань; застосування знань і формування вмінь.
Знання, вміння, навички. Знати формулювання рівності векторів, уміти відкладати від довільної точки вектор, який дорівнює даному.
Наочні посібники і ТЗН. 1) Кодоскоп; 2) кодопозитиви із зразками алгоритму розв'язку вправ.
ХІД УРОКУ
І. Фронтальне опитування.
В - 1 [ В - 2]
1) Вектором називається ... 1) Абсолютною величиною вектора називається
а) напрямлений відрізок; а) довжина відрізка;
б) відрізок певної довжини; б) довжина вектора;
в) стрілка з напрямом; в) довжина променя;
г) промінь. г) довжина відрізка, що зображає вектор. (1 бал)
2) Які вектори спів напрямлені: 2) Які вектори протилежно напрямлені:
M A N
K B L
Мал. 10
а)BK і BL; б) NA і AN; а) LB і BK; б) NA NM. в) MN і AN; г) KM і NL; в) MK і LN; г) NM і LK. (2бали)
3) Вектор AB=3. Яка довжина вектора 3) Вектор NK=5. Яка довжина
MN, коли вектор AB= MN? вектора DC, коли NK= DC?
а) MN=6; б) MN=3; в) MN=0;г) MN=5. а) AB=5;б)AB=3;в)AB=10; г)AB=0. (3 бали)
4) Нехай ABCD- квадрат O-точка перетину діагоналей, |AC|= 6см. нього Д ABC із стороною 8 см
4) DE-середня лінія
Чому дорівнює |OA|?
B C
O
A D
а) |OA|= 6см ; редина BC). Знайти |AD|.
B
D E
AC
б) |OA|=3см; а)|AD|=3см;
в) |OA|=6см; б)|AD|=6см;
г) |OA|=3см. в)|AD|=4см;
г)|AD|=8см. (3бали)
5) Паралельне перенесення задається формулами x'=x+2[x'=x+3], y'=y-1
[y'=y-2]. У які точки при цьому паралельному перенесенні переходить
початок і кінець вектора AB [MN], що мають відповідні координати (1;2) і (2;3) [ (2;4) і (1;3) ].
а) (2;3) і (4;2); б) (1;3) і (2;4); а) (5;1) і (4;0); б) (5;2) і (4;1);

в) (-3;1) і (4;-2); г) (2;1) і (-4;2). в) (-5;-2) і (-4;-1); г) (4;1) і (2;5). (3 бали)

Після цього демонструю на екран правильні відповіді. Учні виставляють оцінки за бальною системою, яка демонструється на екран (або таблицю). Звертається увага на 4-те завдання, до якого ми ще повернемося в наступних уроках.

ІІ. Вивчення нового матеріалу.

Пропоную учням порівняти вектори (4-те завдання із тестів фронтального опитування) BC і AD, AO і OC. Назвати пару векторів, які однаково напрямлені і рівні за абсолютною величиною. Учні знаходять правильну відповідь, пропонують свої версії означення рівності векторів. Після цього ввожу означення рівних векторі:

Два вектори називаються рівними, якщо вони суміщаються паралельним перенесенням.

1

D

C B

A

2

Показую на екрані мал. 213 (за підручником) і за допомогою двох кодоплівок (плівка-1, плівка-2) демонструю динаміку паралельного перенесення. З екрана учні бачать, що існує паралельне перенесення, яке переводить початок (С) і кінець (D) одного вектора відповідно у початок (А) і кінець (В) другого вектора.

Підсумовую необхідну і достатню умову рівності векторів: ”рівні вектори однаково напрямлені й рівні між за абсолютною величиною”.

Повертаючись до екрану звертаю увагу учням, що вектори AB і CD -одинаково напрямлені і рівні за абсолютною величиною. Паралельне перенесення, яке переводить точку C у точку A, суміщає (учні дивляться на екран) роблять висновок: AB = CD (відрізки) і тому точка D збігається з точкою B, тобто паралельне перенесення переводить вектор CD у вектор AB. Отже, вектори AB і CD рівні, що й треба було довести.

ІІІ. Закріплення матеріалу (демонструю на кодоскопі).

Вектори AB і DC однаково напрямлені й мають рівну абсолютну величину. Чи рівні ці вектори?

Два вектори AB = BC. Порівняйте їхні абсолютні величини і напрям.

Дано паралелограм ABCD. Які векторні рівності можна скласти, використовуючи малюнок 11?

5. OA, OB, OC - радіуси одного кола. Що можна сказати про вектори OA, OB, OC?

6. Розглянути розв'язок (за підручником мал. 214) задачі.

Після ознайомлення учнів із розв'язком задачі 2 і з можливістю й однозначністю відкладання від будь-якої точки площини вектора, що дорівнює даному(за підручником с. 142), пропоную розв'язати таку задачу: Дано вектор АВ і точку D. Побудувати точку С так, щоб вектор DC= АВ

Скільки розв'язків має задача?

В
а
А С
аґ
О
План побудови записую на кодоплівці. Учні коментують і записують цей план у зошиті, а також виконують побудову:
1) будуємо пів пряму з початком у точці D, паралельно пів прямій АВ (за допомогою косинця й лінійки);
2) на цій пів прямій будуємо точку С, яку одержимо суміщенням з точкою В (існує паралельне перенесення, при якому початок вектора АВ переходить у точку D, а кінець точки В точку С).
Таким чином від точки D площини відкладаємо один і тільки один вектор aґ, що дорівнює a.
IV. Підсумок уроку.
Звертаю увагу учнів на необхідну й достатню умову рівності векторів, а також на те, що рівність векторів істотно відрізняється від рівності відрізків (учні самі роблять висновок).
V. Завдання додому. §10 (п. 92); №3; зап.5 - 7.
Додаткова вправа.
1) ABCD - квадрат, О - точка перетину його діагоналей. Чи рівні вектори?
AB і CD, AD і OC, AO і OB, BO і OD?
УРОК - 3. Тема уроку. КООРДИНАТИ ВЕКТОРА
Мета уроку. Сформулювати поняття координати вектора, ознайомити із знаходженням координати вектора через координати пари чисел (координата кінців вектора).
Тип уроку. Урок засвоєння нових знань.
Наочні посібники і ТЗН. 1) кодоскоп; 2) кодопозитиви.
Знання, вміння, навички. Знати, що таке координати вектора; формулювання прямої і оберненої теореми про рівність векторів; вміти знаходити координати вектора за його початку і кінця; обчислювати абсолютну величину за його координатами; набути навичок при виконанні вправ на обчислення рівності векторів і їх, координат.
ХІД УРОКУ
І. Повторення вивченого матеріалу.
Перевірку домашнього завдання проводжу за допомогою кодоскопу. На екран демонструю алгоритм розв'язку вправи № 3 (§10) і додаткову вправу (квадрат).
До даних вправ задаю запитання 5 - 7 (за підручником). Один учень розповідає доведення запитання 6, а інший за допомогою кодоскопу розповідає доведення запитання 7.
Після цього активним учням виголошую оцінки (бали).
ІІ. Вивчення нового матеріалу.
Демонструю на екран мал. 12 (з коментуванням).
y
y1 B(x2;y2)
y1 A(x1;y1)
O x1 x2 x
Мал. 12
Задаю запитання:
Назвати координати точок А і В.
Показати на екрані АВ вісі абсцис і ординат.
Записати довжини проекцій на осі Ox і Oy.
Пояснюю, що числа a1 = x2 - x1 і a2 = y2 - y1 є довжини проекцій вектора на осі координат і тим самим ми знайшли координати вектора.
Корисно сформулювати правило знаходження вектора:
” Щоб знайти координати вектора, потрібно з координат його кінця відняти відповідні координати його початку ”.
Підсумовую: координати векторів (OA,OC) із початком в точці O(0;0) співпадають з координатами, їх кінців.
Пропоную учням обчислити координати кінця (початку) вектора за його координатами й координатами його початку (кінця):
Знайти координати кінця вектора (2;5), початок якого в точці: а) (2;3); б) (-1;5), в) (0;0).
Знайти координати початку вектора (5;-3), кінець якого в точці:
а) (-3;1), б) (0;0), в) (5;-3).
Для усних обчислень використовую таблицю (на кодопозитиві).
A1
A2
A1A2 = a
x1
y1
x2
y2
a1
a2
2.
3
4
8
2
5
2. Формулу для обчислення абсолютної величини вектора за його координатами виводжу під час розв'язування вправ (учні по черзі на дошці записують розв'язок):
1) Дано точки А(3;1) і В(5;3). Знайдіть абсолютну величину вектора АВ.
2) Вектор а має початком точку А(x1;y1) ,а кінцем точку B(x2;y2).Знайдіть абсолютну величину вектора а.
Розв'язування.
| a | = | AB | = = .
Пропоную учням обчислити модулі векторів, заданих: а) координатами;
б) початку й кінця (самостійно на кодопозитиві).
3. Для доведення теореми про рівні вектори користуюся мал.13 і розпо відаю сам процес доведення.
y A2(x2; y2)
A1(x1; y2)
A2'(x2; y2)
A1'(x1'; y1')
O x
Мал. 13
Формулюю пряму і обернену теорему:
” Рівні вектори мають рівні відповідні координати ”.
І навпаки:
”Якщо у векторів відповідні координати рівні, то вектори рівні ”.
На кодоскопу або на таблицях демонструю доведення прямої, і оберненої теореми про рівність векторів. Учні беруть участь в обговоренні доведення.
Пряма теорема: Обернена теорема:
Дано: а = аґ. Дано: x2 - x1 = x2ґ - x1ґ, (1)
Довести: x2 - x1 = x2ґ - x1ґ, y2 - y1 = y2ґ - y1ґ. (2)
y2 - y1 = y2ґ - y1ґ. Довести: а = а'.
Доведення. Нехай паралельне пере- Доведення. Знайдеться паралельне, яке перенесення водить точку А1

Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.