На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Курсовик Роль для реалзацї навчальної й розвивальної функцй шкльної освти вивчення фзики, хмї, бологї, екологї, астрономї, фзичної географї. Хмчн рвняння, їх типи. Мжпредметн звязки при розвязуванн задач з хмї, суть математичних методв.

Информация:

Тип работы: Курсовик. Предмет: Педагогика. Добавлен: 21.04.2009. Сдан: 2009. Страниц: 2. Уникальность по antiplagiat.ru: --.

Описание (план):


34
КУРСОВА РОБОТА
Тема:

"Міжпредметні зв'язки на уроках хімії при розв'язуванні хімічних задач"
2009

ПЛАН РОБОТИ

Вступ
Розділ І.
1.1. Хімічні рівняння та їх типи
1.2. Математичні методи в аналітичній хімії
Розділ ІІ.
2.1. Міжпредметні зв'язки при розв'язуванні хімічних задач
Висновки
Список використаних джерел і літератури
Вступ

Ще в 1741 р. М.В. Ломоносов, в своєму творі «Елементи математичної хімії», писав: «якщо математики із зіставлення небагатьох ліній виводять дуже багато істин, то і для хіміків я не бачу ніякої іншої причини, внаслідок якої вони не могли б вивести більше закономірностей з такої великої кількості наявних дослідів, окрім незнання математики». Пройшло вже більше двохсот років з тих пір, як хімія перестала бути наукою, що лише описує спостереження над перетворенням речовин. Після того, як геніальний М.В. Ломоносов ввів в хімічну практику терези, знання математики стало необхідним для кожного хіміка.
Важливе значення для реалізації навчальної й розвивальної функцій шкільної освіти має навчання фізики, хімії, біології, екології, астрономії, фізичної географії, тому що у змісті цих навчальних дисциплін є відображення тих діалектичних взаємозв'язків, які об'єктивно діють у природі й пізнаються сучасними науками. У різні часові періоди різні науки роблять кожна свій специфічний внесок у розвиток мислення дитини й можуть стати тим плацдармом, на якому раніше формуються ті чи інші сторони більш високих ступенів мислення.
Хімічний аналіз буквально пронизує все наше життя. Його методами проводять скрупульозну перевірку лікарських препаратів. В сільському господарстві з його допомогою визначають кислотність ґрунтів і вміст в них живильних речовин, що дозволяє підібрати оптимальні умови обробки грунту, також оцінюють вміст білка і вологи в різних сортах зерна. Хімічному аналізу піддаються і товари широкого споживання: в зубній пасті контролюють зміст фтору, в маслах - зміст ненасичених з'єднань. В природоохоронній діяльності методи аналітичної хімії застосовують для контролю якості питної води, для визначення змісту шкідливих речовин у відходах і т.д. В судовій практиці з їх допомогою знаходять сліди пороху на руках підозрюваного, аналізують склад фарб, якими написана картина, щоб відрізнити оригінал від підробки. Методи аналізу розрізняються по ступеню складності. Так, в медицині використовуються експрес-тести на вагітність і складні методи аналізу крові на зміст цукру або холестерину, контролю рівня нейромедіаторів при дослідженні мозку in vivo і ін.
З наведених прикладів видно, що всі питання, які вирішує аналітична хімія, можна звести до наступних: що є даною речовиною, з яких компонентів воно полягає, яка їх кількість і розподіл? Щоб відповісти на ці питання, проводять найрізноманітніші хімічні реакції, застосовують широкий спектр хімічних, фізичних, фізико-хімічних, біологічних методів, розробляють нові методи аналізу і удосконалюють вже існуючі. Число методів аналітичної хімії надзвичайно велике і постійно росте.
Аналітична хімія тісно пов'язана з іншими дисциплінами: хімічний аналіз упроваджується в різні області науки, хімік-аналітик користується досягненнями інших розділів хімії, а також математики, фізики, біології і багатьох областей техніки.
Розвиток мислення учнів може здійснюватися лише в процесі активної розумової діяльності з вирішення проблем; саме при навчанні природничо-наукових дисциплін існує принципова можливість організувати продуктивну діяльність такого роду, тому що міжпредметну інтеграцію, що закладена як прийом розумової діяльності, можна розуміти також як систему синтезу й узагальнення при розв'язуванні пізнавальних задач. Розв'язування задач є характерною й водночас специфічною особливістю інтелектуальної діяльності людини.
Природничо-наукові задачі виступають як знакові моделі задачних ситуацій, об'єктами яких є матеріальні системи, явища чи процеси. Такі задачі не можуть бути розв'язаними на основі твердих алгоритмів і допускають значну невизначеність зони пошуку правила розв'язання, що пов'язано зі специфікою природничо-наукових дисциплін. Навчити учнів самостійно переносити знання з одного предмета на інший, що вимагає найвищого рівня їх узагальнення й найбільшої продуктивності й самостійності, і мають на меті навчальні задачі з фізики, хімії, біології, астрономії, тому що умова, зміст і процес розв'язування цих задач інтегрують у собі структурні елементи знань про явища і цілісні об'єкти природи, будову, загальні властивості та закони руху матерії, про склад, будову й властивості речовин.
Для хіміка важливо уміння користуватися математичним апаратом, він повинен уміти вибрати з численних методів і прийомів математики ті, які потрібні для вирішення даної інженерної задачі, і правильно скористатися ними. Але це вимагає, перш за все, знання таких методів і прийомів.
Математика все ширше упроваджується в хімічну практику - математичний аналіз стає невід'ємним засобом хімічної науки і техніки. Очевидна ефективність використання методів вищої математики в практичній діяльності і дати можливість освоїти ці методи. Зрозуміло, що ця мета може бути досягнута тільки шляхом викладання прикладів рішення конкретних задач хімічної техніки.
Розділ І
1.1 Хімічні рівняння та їх типи

Хімічне рівняння - це короткий спосіб опису хімічної реакції. Символи, що позначають речовини, які вступають в реакцію, - знаходяться в лівій частині рівняння, а позначення продуктів реакції - в правій:
- де в дужках вказаний агрегатний стан, Q - тепловий ефект реакції. Це рівняння описує хімічну реакцію між натрієм і хлором з утворенням хлориду натрію (куховарська сіль). Натрій - метал, бурхливо реагуючий з водою, хлор - отруйний газ, але, з'єднуючись один з одним, ці елементи утворюють цілком нешкідливу речовину, необхідну для життя. Це приклад реакцій приєднання.
Відомі також хімічні реакції:
- заміщення, обміну, розкладання та інші;
- реакції можуть бути оборотні, іонні, окислювально-відновні, ядерні;
- залежно від принципу класифікації реакцій: по формальній ознаці, по механізму реакцій, по термодинамічних або кінетичних параметрах і т.д.
Реакції приєднання X + У ? XY
Приклади:
Число атомів даного елемента в лівій частині рівняння рівно числу цих атомів в правій частині, іншими словами, речовина в ході хімічної реакції не виникає з нічого і не знищується. Хімічна реакція, в якій виділяється тепло, наприклад реакція (1), називається екзотермічною, а реакція, яка протікає тільки при підводі тепла ззовні, наприклад реакція (2), - ендотермічної. Майже всі хімічні реакції супроводяться виділенням або поглинанням тепла, але в рівняннях це часто не указують, якщо тільки не розглядаються термодинамічні аспекти процесу.
Реакції заміщення:


або
Приклади:
В реакції (4) металевий цинк заміщає водень в соляній кислоті. В реакції (5) мідь заміщає срібло в нітраті срібла. В реакції (6) хлор заміщає бром в броміді кальцію.
Реакції обміну (подвійного заміщення):
XY + UV ? XV + UY
Приклади:
Реакція (7) - типовий приклад кислотно-основної реакції (реакції нейтралізації), продуктами якої є сіль і вода. В реакції (8) в результаті взаємодії іона барія Ba2+, що належить нітрату барія Ba(NO3)2, з сульфат-іоном сірчаної кислоти утворюється осад сульфату барія BaSO4. В реакціях (7) і (8) реагуючі речовини обмінюються катіонами.
Реакції розкладання (розщеплювання):



Приклади:



В реакції (9) сині кристали гідратованого сульфату міді розкладаються при нагріванні, при цьому гідратна вода перетворюється на пару. Реакція (10) протікає при відносно невисокій температурі у присутності каталізатора - діоксиду марганцю. Каталізатор прискорює хімічну реакцію, залишаючись при цьому незмінним. Реакція (11) застосовується в промисловості: вапняк (карбонат кальцію CaCO3) при інтенсивному нагріванні розкладається, утворюючи негашене вапно (оксид кальцію CaO) - важливу складову частину цементу.
Оборотні реакції:

або

Стрілки в прямому і зворотному напрямах указують, що продукти реакції взаємодіють з утворенням початкових реагентів, іншими словами, реакція йде в обох напрямах. Систему, в якій протікає оборотна реакція, можна уподібнити двом водоймищам, сполученим вузькою протокою, в яких мешкають два або декілька видів риб. Риби безперешкодно перепливають з одного водоймища в іншій, так що врешті-решт кожне водоймище виявляється заселеним змішаною популяцією постійного складу. Це і є стан рівноваги.
Приклади:



Кількості початкових речовин і продуктів реакції сильно залежать від тиску, температури і концентрації реагуючих речовин.
Іонні реакції. Хімічні рівняння можна записувати з вказівкою заряду початкових речовин і продуктів реакції (+, -, 0 означають позитивний, негативний і нульовий електричні заряди відповідно; їх поміщають вгорі праворуч від символу хімічного елемента).
Члени рівняння в правій і лівій його частинах, відповідаючі групам атомів однакового складу, несучих однаковий заряд, можна скорочувати, як це прийнято в рівняннях алгебри:


Іон срібла Ag+ несе один позитивний заряд; отже, на кожний атом міді, створюючий двохзарядний позитивний іон, повинне доводитися два іони срібла, оскільки суми зарядів в лівій і правій частинах рівнянь повинні бути однаковий. Після скорочення однакових членів в обох частинах рівняння одержуємо рівняння (16), яке виражає хімічні перетворення, що відбулися в реакції. Приведені вище рівняння - це три різні способи представлення однієї і тієї ж хімічної реакції: її молекулярна форма, повна і скорочена іонні форми.
Ядерні реакції. Ядерні реакції можна віднести до хімічних лише вельми умовно, оскільки в них елемент перетворюється на ізотоп того ж елемента або інший елемент. Іноді якась частина речовини в ядерній реакції зникає, і цей процес супроводжується тим, що вивільняється величезної кількості енергії; такі процеси відбуваються при вибуху атомної бомби або в ядерному реакторі. Звичайно в рівняннях ядерних реакцій фігурують нейтрони (), протони (), електрони () ?-частицы () ?-лучи () і позитрони (). Верхній лівий індекс позначає масу частинки, а нижній лівий - її заряд. Приведемо рівняння типових ядерних реакцій:


Суми верхніх індексів в лівій і правій частинах рівняння повинні бути однаковими; те ж саме відноситься до нижніх індексів. Може показатися, що маса речовини в ході ядерних реакцій (17)-(19) не змінюється. Насправді ж унаслідок взаємодії елементарних частинок в ядрі і зміни їх маси спокою у продуктів маса може виявитися трохи менше ніж у початкових речовин. Саме із зникненням цієї незначної кількості речовини, яка перетворюється на енергію згідно рівнянню Ейнштейна Е = mc2, і зв'язана руйнівна сила ядерного вибуху. Протікаюча при цьому реакція описується рівнянням (19). В рівнянні (17) ((криптон ) випускає нейтрон з утворенням ізотопу з тим же атомним номером (36), але масою, меншою на одиницю.
Окислювально-відновні реакції. В ході окислювально-відновної реакції міняється заряд елементів (їх ступінь окислення), що і враховується при написанні рівняння. Втрата електрона називається окисленням, а придбання - відновленням.
Число відданих і набутих в ході реакції електронів повинне бути однаковим, і виходячи з цього встановлюються співвідношення між всіма учасниками реакції.
Розглянемо реакцію:

Наведемо складніший приклад - окислювально-відновну реакцію між міддю і концентрованою азотною кислотою:


В ході цієї реакції Сu0 втрачає 2 електрони, перетворюючись на іон Сu2+, а N5+ приймає 1 електрон, перетворюючись в N4+. Щоб зрівняти число відданих електронів з числом придбаних, вводимо коефіцієнт 2 перед NO2 в правій частині, а щоб число атомів азоту при цьому залишилося колишнім, умножаємо HNO3 в лівій частині на 2. Cu(NO3)2 в правій частині містить два іони ступінь окислення N в яких рівний +5. Щоб зберегти число іонів в лівій частині з тим же ступенем окислення, додаємо в лівій частині 2 молекули HNO3. Далі, щоб зрівняти 4H+, що містяться в молекулах HNO3, записуємо в правій частині 2H2O. В лівій частині маємо 3?4 = 12 іонів кисню, що містяться в кислоті. Ці 12 іонів кисню присутні і в правій частині: 2 у воді, 4 в NO2 і 6 в нітраті міді Cu(NO3)2. Аналогічним чином можна записувати будь-кого, складніші рівняння.
Застосування. Хімічні рівняння використовуються хіміками-технологами при розрахунку характеристик виробничих процесів. Так, з їх допомогою визначається кількість реагентів (сировини), необхідне для отримання даної кількості продукту.
1.2 Математичні методи в аналітичній хімії

Хімія аналітична, - це наука про методи визначення хімічного складу речовин. Рішення аналітичних задач включає декілька стадій:
Постановка задачі. Ця неістотна на перший погляд стадія насправді дуже важлива. Припустимо, потрібно визначити кількість ртуті у водоймищі. А що саме мається на увазі під словом «ртуть»? Це може бути вся ртуть, незалежно від конкретної хімічної форми, або всі органічні сполуки ртуті (наприклад, диметилртуть), або всі її неорганічні з'єднання, або вся ртуть певною мірою окислення, або ідентифікація всіх ртутних з'єднань і визначення їх кількості. Аналогічним чином йде справа і з «водоймищем». Чи слід обмежити визначення розчиненою ртуттю або розглянути зважені у воді тверді частинки, мул на дні водоймища, що мешкають у воді тварин і рослини? Потрібно врахувати і тривалість аналізу: чи достатньо одиничне визначення, або буде потрібно розрахувати середню величину з результатів декількох вимірювань, зроблених протягом одного дня, а може бути, і цілого року. Відповіді на ці питання визначать характер всього аналізу.
Вибір методу. Метод аналізу вибирають виходячи з поставленої задачі, розмірів об'єкту і зразка, змісту визначуваних речовин, наявності домішок, необхідної точності результатів і наявного устаткування; враховують також можливу тривалість і вартість аналізу. Розглянемо, наприклад, два випадки визначення свинцю. В першому - за наслідками аналізу встановлюють вартість переробки руди, яка залежить від змісту свинцю. Є великий зразок, концентрація свинцю в ньому висока, відповідь необхідна точний. В другому випадку потрібно визначити, чи забруднений свинцем метал, з якого виготовлена старовинна монета. Зміст свинцю низький, потрібна лише приблизна його оцінка, в ході аналізу сама монета не повинна постраждати. Зрозуміло, що ці випадки вимагають різного підходу. Для аналізу зразка руди можна застосувати такі методи, як гравіметрія або титрування. Для монети буде потрібно іншій, щадний (неруйнуючий) метод, наприклад флуоресценція в рентгенівському промінні.
Відбір зразка. Для різних аналітичних методів потрібні, звичайно, і різні по величині зразки - в кількості від нанограмів (1 нг = 10-9 г) до декількох грамів. Навряд чи можливо цілком проаналізувати об'єкт, який важить набагато більше, ніж вимагає вибрана для аналізу методика. В цих випадках відбирають зразок, або пробу, речовини. Ця проба повинна бути репрезентативною, тобто адекватної всьому об'єкту або тій його частині, яка представляє найбільший інтерес. В приведеному вище прикладі з ртуттю у водоймищі постановка задачі визначає і спосіб відбору проби.
Підготовка зразка до аналізу. Якщо кількісні вимірювання проводять в розчині, зразок розчиняють у відповідному розчиннику; при цьому концентрацію зразка підбирають так, щоб вона знаходилася в межах застосовності методу. Іноді доводиться виділяти визначувану речовину з суміші, оскільки багато методів аналізу неспецифічні і навіть неселективні. Специфічним називають метод, за допомогою якого визначається тільки конкретна речовина, а селективним - переважний для даної речовини метод, користуючись яким можна визначати і інші речовини. Специфічних методів дуже мало, селективних - значно більше. Наприклад, високо-селективні мас-спектрометрія і імунологічний аналіз.
Вимірювання. Щоб визначити кількість аналізованої речовини або його склад, виміряють яку-небудь його фізичну величину: кількість речовини, витраченої або утворилося в результаті хімічної реакції; швидкість реакції; інтенсивність поглинання, випуски або розсіяння світла; струм, що виникає в ході окислювально-відновних процесів; кількість тепла, що виділилося або поглиненого, і т.д. Знаючи зв'язок між результатами вимірювань і тими величинами, які цікавлять дослідника, а також порівнявши ці результати з відповідними стандартами, встановлюють кількість визначуваної речовини або його склад.
Інтерпретація результатів. Коли результати вже отримані, може виникнути ряд питань: чи вирішена поставлена задача? як проводити подальші дослідження? Не виключено, що для отримання більш точних результатів потрібно удосконалити методику аналізу.
Робочі криві. Робоча крива - це графічна залежність, що зв'язує концентрацію визначуваної речовини з тим параметром, який вимірюється в ході аналізу (оптичною густиною, інтенсивністю флуоресценції, електродним потенціалом, швидкістю реакції і т.д.). Масштаб координатних осей - лінійний або логарифмічний - вибирається залежно від конкретного експерименту. Логарифмічні осі використовують, зокрема, при зміні концентрації в широких межах. Якщо потрібні більш точні результати, переважні лінійні осі і вузькі інтервали концентрації. Для побудови робочої кривої спочатку готують стандартні зразки відомої концентрації. Потім для кожного з них виміряють той або інший параметр і відкладають його значення у вигляді крапки проти відповідної концентрації. По крапках проводять плавну криву, на яку крапки лягають найкращим чином. Для цього використовують яку-небудь відповідну математичну функцію або емпіричну залежність. Потім виміряють той же параметр для досліджуваного зразка і по робочій кривій визначають його концентрацію (мал. 1).
У кожного методу є свої робочий діапазон, чутливість, фон, поріг виявлення.
Робочий діапазон - це діапазон концентрацій, в межах якого застосовна дана методика. Лінійна ділянка кривої відповідає області концентрацій, в якій результати найбільш надійні. При близьких до граничних високих і низьких концентраціях робочі криві звичайно стають нелінійними. Це обумовлено обмеженими можливостями методів аналізу і устаткування, що використовуються. Якщо концентрація визначуваної речовини потрапляє в нелінійну область високих значень, то зразок слідує розбавити і аналіз повторити.
Мал. 1. РОБОЧА КРИВА - залежність параметра, що вимірюється, від концентрації для стандартної речовини. З її допомогою можна знайти концентрацію визначуваної речовини, відповідну даному значенню параметра.
Чутливість методу характеризується величиною зміни параметра, що виміряється, при даній зміні концентрації. Вона рівна кутовому коефіцієнту (тангенсу кута нахилу) робочої кривої. Як правило, чим вище чутливість, тим надійніше результати і тим нижче поріг виявлення.
Результат вимірювання часто включає складову, не пов'язану з визначуваною речовиною, - її називають фоном. Наявність фону може бути пов'язаний з особливостями устаткування або впливом матриці, в яку включений зразок. Щоб оцінити величину фону, проводять контрольний дослід. Для цього готують контрольний зразок, в якому немає визначуваної речовини, а є тільки всі сторонні домішки, що є в матриці, а також реагенти, що додаються в процесі аналізу. Контрольний зразок піддають тій же аналітичній процедурі, що і визначувана речовина. Значення параметра, що виміряється, для цього контрольного зразка вважають рівним фону.
Поріг виявлення - це якнайменша концентрація визначуваної речовини, при якій сигнал помітно відрізняється від фону. Величина порогу виявлення залежить від чутливості і точності методу: чим вони вище, тим нижче мінімальні визначувані концентрації. Хіміки-аналітики систематично розробляють способи вимірювання все більш низьких концентрацій. Сьогодні для багатьох методів аналізу поріг виявлення складає 10-6-10-9 М, а деякі недавно розроблені методи дозволяють виміряти пікомолярні концентрації (нижче 10-12 М), знаходити речовини в абсолютних кількостях менше 10-18 мілі (приблизно декілька сотень тисяч молекул) і навіть спостерігати окремі атоми. Одна із задач, які постійно доводиться вирішувати в аналітичній хімії, - вдосконалення методів, що дозволяє працювати зі все більш дрібними зразками. Ті методи, для яких колись були потрібні мілілітрові кількості, тепер обходяться мікролітрами, а деякі - і десятками піколітрів.
Матриця. Термін «матриця» відноситься до оточення визначуваної речовини. Це все речовини, присутні в зразку, у тому числі і визначувані, відмінні від даного. Так, хлор визначають в плазмі крові, консервованої моркви, питній або морській воді. Ці зразки розрізняються по своїх хімічних і фізичних властивостях, а отже, їх матриці теж різні. Найпростіша матриця - питна вода: вона містить відносно небагато речовин, концентрація яких до того ж невелика. Консервована морква - складна матриця, головним чином тому що в ній містяться різні органічні сполуки.

Стандарти і визначувані при аналізі речовини по можливості повинні знаходитися в однакових або порівнянних матрицях, проте отримати матриці, що калібруються, вдається дуже рідко. Щоб розв'язати цю проблему, використовують синтетичні матриці, метод внутрішнього стандарту і т.д.
Якщо матриця даного зразка володіє відносно постійними фізичними і хімічними властивостями, не залежними від того, коли і де був отриманий зразок, то її можна достатньо повно охарактеризувати і відтворити. Одна з таких матриць - морська вода. Концентрації її основних компонентів (Na, Mg, Cl...) добре відомі. Можна отримати штучну морську воду і використати її для приготування стандартних розчинів інших речовин, концентрація яких невелика (наприклад, Al, Au, Ni, Zn). Склад біологічних рідин, таких, як плазма крові або сеча, також відомий, що дозволяє створювати штучні матриці для проведення певних аналізів.
Інший метод полягає в тому, що для стандартів і досліджуваної речовини створюють матриці приблизно однакового складу. Для цього до зразка і стандартів додають велику кількість якої-небудь «інертної речовини» (для отримання розчинів однакової іонної сили до зразка і стандартів можна додати 1 М NaClO4), так що невеликі відмінності в інших компонентах матриці стають неістотними. Вплив матриці при цьому не виключається, навпаки, воно посилюється, але тепер цей вплив в досліджуваному зразку і стандарті практично однаково.
Зручний спосіб компенсації впливу матриці, а також рішення проблем, пов'язаних з втратами речовини в ході складного аналізу, - використовування внутрішнього стандарту. Метод полягає в наступному. Перш ніж визначати речовину А, до що містить його зразка додають відому кількість речовини B. Кількості А і B визначають по одній і тій же методиці. Встановивши співвідношення між знайденою і відомою кількостями и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.