На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Реферат Градиентные уравнения и уравнения в вариациях, функционалы метода наименьших квадратов. Численное решение градиентных уравнений: полиномиальные системы, метод рядов Тейлора и метод Рунге-Кутта. Числовые модели осциллирующих процессов в живой природе.

Информация:

Тип работы: Реферат. Предмет: Математика. Добавлен: 10.08.2010. Сдан: 2010. Уникальность по antiplagiat.ru: --.

Описание (план):


27
Санкт-Петербургский Государственный Университет
Реферат
Идентификация параметров осциллирующих процессов в живой природе, моделируемых дифференциальными уравнениями

Выполнила студентка 312гр.
Варламова А.А.
Проверил Токин И.Б
Санкт-Петербург
2007
Оглавление

1. Идентификация параметров в системах описываемых ОДУ
1.1 Градиентные уравнения
1.2 Уравнения в вариациях
1.3 Функционалы метода наименьших квадратов
1.4 Численное решение градиентных уравнений
1.4.1 Полиномиальные системы
1.4.2 Метод рядов Тейлора
1.4.3 Метод Рунге-Кутта
2. Модели осциллирующих процессов в живой природе
2.1 Модель Лотки
2.1.1 Осциллирующие химические реакции
2.1.2 Осцилляция популяций в системе “хищник-жертва”
2.2 Другие модели
3. Идентификация параметров модели Лотки
3.1 Дифференциальные уравнения
3.2 Постановки задачи идентификации и функционалы МНК
3.3 Как ускорить вычисления
3.4 Численный эксперимент
4. О других методах идентификации
Литература
1. Идентификация параметров в системах, описываемых ОДУ

1.1 Градиентные уравнения

Градиентные уравнения возникают в связи с задачей нахождения экстремумов функций многих аргументов. Важно, что эти аргументы сами могут зависеть от решений каких-то уравнений - численных, дифференциальных и иных. Мы будем использовать их для минимизации функций аргументов, за-висящих от решений обыкновенных дифференциальных уравнений.
Рассмотрим вещественнозначную функцию аргумента , и пусть и . Тогда величина
(1)
то есть производная функции по направлению характеризует скорость изменения при изменении в направлении вектора .
Из формулы (1) получаем:
(2)
где - градиент функции , а это дает:
(3)
(4)
(5)
Таким образом, вектор является направлением наискорейшего рос-та функции в точке , а вектор - это направление наискорейшего ее убывания в этой точке.
Градиентной кривой функции называют кривую , , касательное направление к которой в каждой точке противоположно направлению вектора градиента , то есть сов-падает с направлением наискорейшего убывания .
Это означает, что удовлетворяет дифференциальному уравнению:
(6)
или в координатной форме:
(7)
К уравнениям (6) или (7) добавляем начальные условия:
(8)
или в координатной форме:
(9)
Решение задачи Коши (6),(8) (или (7),(9)) определяет градиентную кривую проходящую через точку . Будем рассматривать это решение как век-тор-функцию аргументов и .
Зададимся теперь целью найти точку локального минимума неотрицательной функции , если она существует и достаточно близка к . Если за начальное приближение для взять , то движение вдоль градиентной кривой, проходящей через (то есть движение вдоль траектории решения ) можно считать идеальным путем к точке .
Если решение задачи (6),(8) существует при , то при любом та-ком получаем, что:
при (11)
при (12)
и мы вправе ожидать, что
(13)
Метод градиентных уравнений нахождения локального минимума функции заключается в численном интегрировании задачи Коши (6),(8) вдоль оси до достижения точки , достаточно близкой к .
1.2 Уравнения в вариациях

Рассмотрим задачу Коши:
(14)
(15)
где - параметры. В дальнейшем мы рассмотрим функционалы, зависящие от параметров через решение задачи Коши (14),(15). Тогда градиентные уравнения будут зависеть от производных по решения задачи (14),(15), и мы должны уметь их вычислять. Дифференцируя уравнения (14), (15) по получаем, что функции
(16)
удовлетворяют следующей задаче Коши:
(17)
(18)
Уравнения (17) относительно производных (16) называют уравнениями в вариациях для уравнений (14).
1.3 Функционалы метода наименьших квадратов

Мы не можем рассмотреть здесь все многообразие функционалов метода наименьших квадратов и ограничимся одним достаточно общим функционалом. Он соответствует следующей задаче: модель некоторого процесса описывается задачей Коши (14),(15) (такие модели, в частности, достаточно распространены в биологической кинетике), даны измерения
, (19)
то есть даны приближений для значений величин в моменты времени , и требуется найти параметры на основе заданного начального приближения .
В методе наименьших квадратов нахождения (идентификации) параметров рассматривают функционал
(20)
где - фиксированные весовые коэффициенты, а - значения первых компонент решения задачи (14),(15) в точке при заданных
В методе наименьших квадратов полагают, что значение , доставляющее минимум этой функции , является адекватным приближением к реальному значению параметра для принятой модели процесса.
Для того, чтобы воспользоваться методом градиентных уравнений, необходимо выписать уравнения (7) для функционала (20):
(21)
Эти градиентные уравнения надо дополнить начальными условиями:
(22)
1.4 Численное решение градиентных уравнений

Обратимся к функционалу , , определенному в п.1.3. Пря-мой способ нахождения приближенного значения точки , определенной по формуле (17) (то есть точки предполагаемого минимума функционала ), - это численное интегрирование градиентных уравнений (21) при начальных условиях (22).
Правые части уравнений (21) зависят от неизвестных через значения функций в точках при , , . При фиксированных значениях величины могут быть получены численным интегрированием уравнений (14),(17) при начальных условиях (15),(18).
Таким образом, нам надо обсудить численные методы интегрирования за-дачи Коши для обыкновенных дифференциальных уравнений. Наиболее рас-пространены пошаговые методы, которые позволяют для задачи Коши
, (23)
, (24)
отправляясь от значения , последовательно получать приближенные значения решения в точках
Числа называют шагами интегрирования, а числа ,…- узлами таблицы или сетки численного интегрирования. Совокупность узлов называют сет-кой, а величины называют значениями решения на узлах сетки. Если то говорят о равномерной сетке или об интегрировании с постоянным шагом.
Численное интегрирование градиентных уравнений, как правило, требует частой смены величины шага интегрирования. Хорошо к быстрой смене шага приспособлены явные методы Рунге-Кутта и метод рядов Тейлора.
Пошаговые методы численного интегрирования обыкновенных дифференциальных уравнений хорошо освещены в литературе по численному анализу (см., например, [2,3]).
1.4.1 Полиномиальные системы
Полиномиальной системой мы будем называть автономную систему ОДУ
, (25)
где - алгебраические полиномы по .
Какие системы ОДУ можно свести к полиномиальным и как это делается? Начнем с примера. Рассмотрим задачу Коши:
(26)
(27)
Вводя дополнительные переменные
(28)
получаем следующую квадратичную задачу Коши:
(29)
(30)
Теперь рассмотрим достаточно общий случай. Рассмотрим класс сис-тем ОДУ (23), правые части которых можно представить в виде:
(31)
где все функции , а также все функции
(32)
являются алгебраическими полиномами по .
Любая система из сводится к полиномиальной. Действительно, если в (23),(24) ввести дополнительные переменные то:
(33)
(34)
где все правые части
(35)
- алгебраические полиномы по с постоянными коэффициентами.
Уравнения кинетики, как правило, либо имеют вид (25), либо могут быть сведены к такой системе введением дополнительных переменных. Поэтому важно знать какие функции удовлетворяют полиномиальным системам, или, иначе говоря, насколько богаты содержанием модели, основанные на полиномиальных системах ОДУ.
Обсудим этот вопрос. Будем говорить, что скалярная функция скалярного аргумента удовлетворяет полиномиальной системе, если она является одной из компонент решения такой системы. Класс скалярных функций, удовлетворяющих полиномиальной системе назовем . За исключением некоторых теоретико-числовых функций (гамма-функция Эйлера, дзета-функция Римана и т.п.) остальные функции из известных математических справочников принадлежат классу .
Этот класс замкнут относительно операций (сложение, вычитание, умножение, деление, дифференцирование, интегрирование, супер-позиция). Это означает, что если функции принадлежат , то и любая их композиция, полученная при помощи конечного числа операций , также принадлежит .
1.4.2 Метод рядов Тейлора
Введем в рассмотрение оператор , сопоставляющий решению задачи Коши (23), (24) его полином Тейлора
, (36)
порядка . Радиус сходимости ряда обозначим .
Метод рядов Тейлора решения задачи Коши (23), (24) заключается в построении таблицы приближенных значений по формулам:
,
,, (37)
где - натуральные, , ,, а удовлетворяют неравенствам .
Для программной реализации метода рядов Тейлора необходимы алгоритмы нахождения коэффициентов Тейлора и автоматического выбора величины шага интегрирования.
Нахождение коэффициентов Тейлора

Рассмотрим квадратичную задачу Коши

, (38)

, (39)

где - вещественные или комплексные постоянные, а - вещественная или комплексная переменная.

Подставляя в (38) разложение Тейлора

, (40)

получаем:

(41)

Приводя подобные члены и приравнивая все коэффициенты полученного степенного ряда нулю, получаем искомые формулы:

;

, , , (42)

где , .

Аналогичные формулы легко вывести и для общего случая полиномиальной системы степени .

Оценка погрешности и выбор шага

Рассмотрим полиномиальную задачу Коши:
, (43)
, (44)
где , , , а максимальная степень полиномов (степень системы (43)) равна .
Введем обозначения:
, , (45)
и будем предполагать, что .
Теорема.
Решение задачи (43), (44) голоморфно в круге и удовлетворяет там неравенствам:
, (46)
где
, , (47)
Используя эту теорему несложно построить алгоритм автоматического выбора шага в методе рядов Тейлора по заданной пользователем границе абсолютной (или относительной) погрешности.
1.4.3 Метод Рунге-Кутта
Этим методам посвящено много работ, и они хорошо изложены в много-численных учебниках (см., например, [2,3]).
2. Модели осциллирующих процессов в живой природе
2.1 Модель Лотки

2.1.1 Осциллирующие химические реакции
В некоторых химических реакциях концентрации реагентов осциллируют в следующем смысле. Соединение каких-то начальных веществ приводит к их химическому взаимодействию, в результате чего образуются новые вещества, которые также начинают взаимодействовать с другими реагента-ми. В течении всех этих реакций концентрации и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.