На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Курсовик Рассмотрение способов формирования умения преобразовывать арифметические задачи на уроках математики в начальной школе, принципы их критериальной оценки. Практическая разработка и апробирование методики обучения третьеклассников по составлению задач.

Информация:

Тип работы: Курсовик. Предмет: Педагогика. Добавлен: 11.11.2010. Сдан: 2010. Страниц: 3. Уникальность по antiplagiat.ru: --.

Описание (план):


    СОДЕРЖАНИЕ
    ВВЕДЕНИЕ
    ГЛАВА 1. ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ФОРМИРОВАНИЯ УМЕНИЙ МЛАДШИХ ШКОЛЬНИКОВ СОСТОВЛЯТЬ АРИФМЕТИЧЕСКИЕ ЗАДАЧИ
      1.1 Способы обучения составлению арифметических задач на уроках математики в начальной школе
      1.2 Методы обучения составлению арифметических задач
      1.3 Критериальная характеристика определения уровня сформированности умений составлять арифметические задачи
      Выводы по 1 главе
    ГЛАВА 2. ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ УМЕНИЙ СОСТАВЛЯТЬ АРИФМЕТИЧЕСКИЕ ЗАДАЧИ
      2.1 Диагностика уровня развития способностей составлять арифметические задачи
      2.2 Формирование умений третьеклассников составлять арифметические задачи
      2.3 Оценка эффективности работы по обучению составления арифметических задач
      Выводы по 2 главе
    ВЫВОДЫ
    СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ
    ПРИЛОЖЕНИЯ
ВВЕДЕНИЕ
В курсе математики начальной школы задачи занимают большое место. Они необходимы для того, чтобы сформировать у учащихся важные для обыденной жизни умения, связанные с решением то и дело возникающих проблемных ситуаций. Но чтобы решить проблему, нужно понять ее суть и сформулировать словесно. Поэтому очень важно научить школьников формулировать задачу. Опыт многих учителей показывает, что эта проблема трудно разрешима. В школе большое внимание уделяется решению готовых задач, но практически не ведется работа по их составлению и преобразованию. Необходимо отметить, что составлению и преобразованию задач уделяется некоторое место в процессе обучения математике. Но каждая задача связана с другими задачами, которые можно из нее получить, например, аналогичные задачи, обратные задачи, задачи, в которых изменен вопрос или условие и т. д. Вот этой связи и не понимают ученики.
Анализ литературы (М.А. Бантова [1], М.И. Моро [6], С.Е. Царева [17], Л.М.Фридман [12] и др.) показывает, что работа над задачей состоит из нескольких этапов. Каждый этап требует своего методического решения. Многие авторы (С.Е. Царева [17], Л.М.Фридман [12], П.Б.Эрдниев [22], М.А. Бантова [1]) обращают особое внимание на последний этап - работе с задачей после её решения. Часто предлагается использовать такой приём работы, как составление и преобразование задачи. Многие авторы (Н.Б.Истомина [4], М.И. Моро [6] С.Е.Царева [17]) считают, что в процессе составления задач ученики начинают осознавать не только задачную ситуацию, не только связи между величинами, но и сам процесс решения задачи. В процессе составления задачи учащийся овладевает общими учебными умениями, необходимыми при решении задач. При составлении задач у ученика развивается логическое мышление, воображение, фантазия, формируется познавательный интерес к математике, развивается его творческий потенциал. Несмотря на то, что важность обсуждаемой проблемы отмечается всеми авторами, конкретной методики обучения составлению задач, связанных с данной задачей не удалось найти.
Объектом исследования процесс формирования умений учащихся третьих классов составлять арифметические задачи.
Предметом исследования методы формирования умений учащихся составлять арифметические задачи.
Целью исследования является выявление оптимальных методов формирования умений учащихся третьих классов составления арифметических задач.
Гипотеза: процесс формирования умений учащихся третьих классов составлять арифметические задачи будет эффективным при реализации оптимальных методах обучения.
Задачи исследования:
1. На основе анализа психолого-педагогической и методической литературы определить способы и методы обучения младших школьников составлению арифметических задач.
2. Определить критерии сформированности у младших школьников умений составлять арифметические задачи.
3. Определить начальный уровень сформированности умений третьеклассников составлять задачи.
4. Апробировать методы формирования умений третьеклассников составлять задачи.
5. Дать оценку эффективности работы по обучению третьеклассников составлению арифметических задач.
В исследовании использовались исследовательские методы: изучение и анализ психологической, педагогической, методической литературы по теме исследования (теоретический анализ и синтез); наблюдение за деятельностью учеников при составлении и решении задач; беседы с учителями и учениками.

ГЛАВА 1. ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ФОРМИРОВАНИЯ УМЕНИЙ МЛАДШИХ ШКОЛЬНИКОВ СОСТОВЛЯТЬ АРИФМЕТИЧЕСКИЕ ЗАДАЧИ

1.1 Способы обучения составлению арифметических задач на уроках математики в начальной школе


Математика проникает почти во все области деятельности человека, что положительно сказалось на темпе роста научно-технического прогресса. В связи с этим стало жизненно необходимым усовершенствовать математическую подготовку подрастающего поколения.
В начальном обучении, отмечает И.А. Зимняя [3], математике велика роль арифметических задач. Решая задачи, учащиеся приобретают новые математические знания, готовятся к практической деятельности. Задачи способствуют развитию их логического мышления. Большое значение имеет решение задач и в воспитании личности учащегося. Поэтому важно, чтобы учитель имел глубокие представления о текстовой задаче, о ее структуре, умел решать такие задачи различными способами. Существуют простые и составные задачи. Задачи, которые решаются в одно действие называются простыми задачи, решающиеся в два и более - составные.
Процесс решения задачи - это переход от условия задачи к ответу на ее вопрос. Первые представления о процессе решения задач создаются у учащихся в первом классе. Ко второму классу, пишет М. А. Бантова [1], они уже знают, что решение любой арифметической задачи состоит из следующих этапов работы:
1. Усвоение содержания текста.
Цель: научить понимать ситуацию в целом; установить смысл каждого слова, словосочетания, предложения; приучиться читать задачу; выделить структурные элементы; установить взаимосвязь между искомым и данными;
2. Поиск решения задач.
Цель: научить ученика задавать самому себе систему вопросов (от вопроса к условию, от условия к вопросу и др.), после ответа на которые он сможет найти решение; составить план решения;
3.Оформление решения.
Цель: записать решение так, чтобы оно было понятно читающему;
4.Проверка решения.
Цель: убедиться в правильности найденного решения.
5. Работа с решенной задачей.
Цель: организовать деятельность ученика так, чтобы он осознал свое продвижение от незнания к знанию;
Этапы работы над задачей М.А. Бантова [1]:
1. Ознакомление с содержанием задачи.
Цель: прочитать задачу; представить жизненную ситуацию, отраженную в задаче;
2. Поиск решения задачи.
Цель: выделить величины, входящие в задачу, данные и искомые числа; установить связи между данными и искомым; выбрать соответствующие арифметические действия.
3. Выполнение решения задачи.
Цель: записать решение.
4. Проверка решения задачи.
Цель: установить правильно оно или ошибочно.
Различные подходы к выделению этапов работы над задачей имеют много общего. Во-первых, каждый этап решения есть сложное умственное действие, входящее в состав еще более сложного - решения задачи. Во-вторых, работа над задачей начинается и у М.А.Бантовой [1], и у С.Е. Царевой [17], с прочтения, понимания задачи и выделения ее структурных элементов, т.к. именно невнимательно прочитанная задача, отсутствие анализа ее текста становятся причиной ошибок в процессе решения задач.
Поэтому при работе с задачей важно уделить как можно больше внимания 1 этапу решения задачи - усвоению содержания ее текста.
Главная цель ученика на 1 этапе - понять задачу. Методисты предлагают разные приемы работы на этом этапе. Царева С.Е. [17]. предлагают следующие приемы первичного анализа:
1. Представление жизненной ситуации, описанной в задаче, мысленное участие в ней. (Можно предложить учащимся после чтения задачи нарисовать словесную картинку).
2. Разбиение текста на смысловые части и выбор необходимой для поиска решения. (Можно предложить учащимся определить, правильно ли выделены части и повторить текст задач по частям).
3. Переформулировка текста задачи; замена описания данной в ней ситуации другой, сохраняющей все отношении и зависимости, но более точно их выражающие.
Анализ текста задачи неразрывно связан с этапом поиска решения.
Анализ задачи проводится до тех пор, пока не возникнет идея о плане решения, который позволяет рассуждать: от вопроса к данным и от данных к вопросу.
Для поиска решения М. В. Богданович [2] предлагает использовать краткую запись.
В краткой записи задачи отображаются объекты, числовые данные и связи между ними. Таким образом, краткая запись фиксирует в удобообразной форме величины, числа данные и искомые, а также некоторые слова, показывающие, о чём говорится в задаче: "было", "положим", "стало" и т.п., и слова, обозначающие отношения: "больше", "меньше", "одинаковая" и т.п.
Краткая запись условия задачи помогает устранить типичные ошибки, не дает возможности поверхностного прочтения текста задачи и возможности упустить соотношения между данными.
Краткая запись задачи только в первое время несколько трудна учащимся, но учитель постоянно им помогает наводящими вопросами: Какие слова нужны для краткой записи? Какие числа надо вписать в краткое условие? Какие обозначения будем использовать?
Для того, чтобы помочь ученикам, учитель пользуется наглядностью: предметной, а затем абстрактным вариантом, а также использует краткую запись, которая подразделяется на предметную и схематическую.
Предметная краткая запись - это использование предметов для изображения ситуации, описанной в задаче. Предметная иллюстрация помогает создать яркое представление той жизненной ситуации, которая описывается в задаче. Для иллюстрации задачи используются либо предметы, либо рисунки предметов, о которых идет речь в задаче: с их помощью иллюстрируется конкретное содержание задачи.
Иллюстрация, как отмечает Н. Б. Истомина [4] только тогда поможет ученикам найти решение, когда её выполняют сами дети, поскольку только в этом случае они будут анализировать задачу сами.
Дети могут установить связи между данными и искомым и выбрать соответствующее арифметическое действие только с помощью учителя. В этом случае учитель проводит специальную беседу, которая называется разбором задачи.
Рассуждение можно строить двумя способами: идти от вопроса задачи к числовым данным или же от числовых данных идти к вопросу.
Чаще следует использовать первый способ рассуждения, так как при этом ученик должен иметь в виду не одно выделенное действие, а все решение в целом. При использовании второго способа разбора учитель прямо подводит их к выбору каждого действия. Кроме того, такое рассуждение может привести к выбору "лишних действий".
Разбор составной задачи заканчивается составлением плана решения - это объяснение того, что узнаем, выполнив то или иное действие, и указание по порядку арифметических действий.
Третий этап, по мнению М. И. Моро [6] деятельности учащихся по решению задачи - оформление решения. Ученики справляются с этим этапом достаточно хорошо. Если при разборе задачи и поиске решения использовался чертеж, то ошибок в записи решения бывает очень мало.
При решении некоторых видов задач необходима проверка решения. Л. Г.Петерсон [8], выделяет следующие виды проверок:
1. Прикидка ответа.
Применение этого способа проверки заключается в следующем: до решения или после него устанавливают, какое число получится в результате, большее или меньшее, чем данное в условии.
2. Решение задачи другим способом.
Этот способ проверки интересен тем, что является одним из средств повышения интереса к математике.
Л. Н. Скаткин [10] считает, что применение метода поиска нового способа решения - средство развития познавательного интереса, умения отстаивать свою точку зрения.
3. Установление соответствия между числами полученными и данными.
Обосновать правильность решения задачи можно с помощью арифметических действий и логических рассуждений о том, что, если считать полученный результат верным, то все отношения и зависимости между данными и искомыми задачи будут выполнены.
4. Составление и решение обратной задачи.
Составление обратной задачи и ее решение иногда является единственным способом проверки.
Этот вид проверки делает прочными знания об обратных связях.
Заключительным этапом в работе над задачей является работа после решения задачи. Р.Н. Шикова [19], описывает виды дополнительной работы над уже решенной задачей. На практике можно увидеть эффективность этих видов работы. К сожалению, пользоваться этими видами работы приходится мало, так как не разработана методика работы на этом этапе.
Многие авторы и методисты уделяют много внимания последнему этапу: работе с задачей после ее решения. В методической литературе даются разные виды такой работы, но вот как научить детей составлять задачи не говориться.
Решение задач по математике вызывает затруднения у многих учащихся. Одним из способов преодоления данной проблемы, является обучение учащихся составлению задач.
М. Н. Скаткин писал: "Самостоятельная работа учащихся по составлению задач, выполняемая ими по заданиям различного характера и разной степени трудности, содействуют закреплению умений решать задачи, формированию математических понятий, развитию мышления и укреплению связи обучения математике с жизнью" [10, 76] .
Б.П.Эрдниев [22] рассматривает составление задач учащимися, как один из основных путей развития творческого мышления учащихся на занятиях по математике.
"Сам факт создания новой задачи, - пишет С.Кожухов, - это, несомненно, акт творчества, который является мощным стимулом развития познавательной активности учащихся" [5, 5].
Увидеть проблему и сформулировать ее в вопросе бывает иногда труднее, чем ее решить.
Для составления задачи, по мнению Н. А Матвеевой [7] учащемуся необходимо иметь основание, определенную установку на ее составление.
Возможные установки для составления сюжетных задач:
- задача должна быть по какому-то разделу или теме курса математики, в ней должен быть сюжет определенного вида (на работу, движение и т.д.), она должна быть простой или сложной;
- задача должна содержать определенный объект, данные задачи должны быть числами определенного вида, она должна содержать вопрос или соотношения определенного вида;
- задача должна иметь определенное решение или же она не должна иметь решений, или решений задачи должно быть бесконечно много;
- задача должна быть аналогична решенной, обратной.
Учитель, приобщая учеников к самостоятельному составлению задач предварительно должен провести большую работу по подготовке школьников к новому виду деятельности.
Упражнения по составлению и преобразованию задач, отмечает П. М. Эрдниев [22], являются чрезвычайно эффективными для обобщения способа их решения:
- Организация работы с готовыми задачами: ученики наблюдают и фиксируют определенные особенности построения и языка задачи, сравнивают задачи по их существенным и несущественным элементам, знакомятся с задачами, имеющими неопределенное и переопределенное решение.
- Организация работы по преобразованию готовых задач: здесь за основу берется текст готовой задачи, изменяются либо несущественные элементы (композиция задачи, слово или группа слов, сюжет, числовые данные), либо существенные (характер одной-двух зависимостей условия, некоторые действия решения).
- Составление элементов задач, когда ученики дополняют текст задачи недостающими элементами так, чтобы задача имела определенное решение.
- Составление простых задач, когда зависимость величин в составленной задаче выражается графически, таблицей, уравнением. Такая работа поможет в дальнейшем перейти к составлению сложных задач, когда существенное значение имеет расчленение этого процесса на отдельные этапы.
Виды упражнений по составлению и преобразованию задач, по мнению П. М. Эрдниева [7]:
1. Постановка вопроса к данному условию задачи или изменение данного вопроса. Такие упражнения помогают обобщению знаний о связях между данными и искомым, так как при этом дети устанавливают, что можно узнать по определенным данным.
2. Составление условия задачи по данному вопросу. При выполнении таких упражнений учащиеся устанавливают, какие данные надо иметь, чтобы найти искомое, а это так же приводит к обобщению знаний связей между данными и искомым.
3. Подбор числовых данных.
4. Составление задач по аналогии. Аналогичными называются задачи, имеющие одинаковую математическую структуру. Аналогичные задачи надо составлять после решения данной готовой задачи, предлагая при этом, когда возможно, изменять не только сюжет и числа, но и величины.
5. Составление обратных задач. Упражнения в составлении и решении обратных задач помогают усвоению связей между данными и искомым.
6. Составление задач по их иллюстрациям. Они помогают детям увидеть задачу в данной конкретной ситуации.
7. Составление задач по данному решению. Предлагая составить задачу, надо сначала проанализировать данное решение задачи. В отдельных случаях целесообразно подсказать детям сюжет или же назвать величины
Анализ учебников 2 и 3 классов по разным программам представленный в таблице 1.1, показывает, что во всех рассмотренных программах количество заданий по составлению задач минимальное. Поэтому учителям необходимо использовать дополнительные задания, вести работу над задачей после ее решения.
Таблица 1.1 Анализ учебников по составлению арифметических задач
Автор программы
2 класс
3 класс
Количество задач
Количество заданий по составлению задач
Количество задач
Количество заданий по составлению задач
М.И. Моро,
296
16
311
5
М. В. Богданович
196
2
224
5
Л. Петерсон
350
19
151
0
Таким образом, способами обучения составлению задач являются: постановка вопроса к данному условию задачи или изменение данного вопроса; составление условия задачи по данному вопросу; подбор числовых данных; составление задач по аналогии; составление обратных задач; составление задач по их иллюстрациям; составление задач по данному решению.

1.2 Методы обучения составлению арифметических задач

Анализ литературы показывает, что последнее время уделяется внимание работе над решенной задачей. И. В. Шорниковой [21] предлагаются следующие виды работ:

1. Введение в условие задачи новых данных;

2. Изменение вопроса без изменения условия;

3. Изменение условия без изменения вопроса;

4. Изменение условия и вопроса;

5. Сравнение содержания и решения данной задачи с содержанием и решением другой задачи;

6. Исследование решения (Сколько способов решения имеет задача? При каких условиях она не имела бы решения? Возможны ли другие методы решения?).

7. Обоснование правильности решения (проверка решения задачи составлением обратной задачи).

Некоторые из перечисленных видов работ предусматривают умение детей составлять задачи, другими словами формулировать некоторый новый текст.

Составлять задачи, по мнению Г. Г. Шмыревой [20] можно двух видов: связанные с решенной и не связанные с решенной.

К задачам, не связанным с решенной, относятся задачи, составленные по выражению или по краткой записи.

К задачам, связанным с решенной задачей, относятся задачи обратные данной, аналогичные задачи, преобразованные задачи.

Упражнения по составлению задач является чрезвычайно эффективными для обобщения способа их решения.

Методисты включают в работу по составлению задач следующие виды упражнений:

1. Изменение поставленного к условию задачи вопроса.

2. Изменение условия задачи без изменения поставленного вопроса.

3. Изменение условия и вопроса задачи.

4. Преобразование данных задач в задачи родственных им видов, т.е. в "задачи, в которых величины связаны одинаковой зависимостью. Так, родственными будут задачи на нахождение четвертого пропорционального, на пропорциональное деление и на нахождение неизвестных по двум разностям, так как в них величины связаны пропорциональной зависимостью. Можно одну задачу преобразовать в другую родственного вида путем выполнения арифметических действий над числовыми значениями величин. В результате такого преобразования и сравнения способов решения задач родственных видов приведем детей к обобщению способов решения этих задач".

5. Составление аналогичных задач, т.е. составление задач, имеющих одинаковую математическую структуру, не изменяя связь между данными и искомым. Аналогичные задачи надо составлять после решения данной готовой задачи, предлагая при этом, когда возможно, изменять не только сюжет и числа, но и величины.

6. Составление обратных задач, т.е. составление задач, в которых "при тех же условиях одно из данных первой задачи служит искомым во второй и искомое первой входит в число данных второй". При составлении обратных задач связи между числовыми данными не должны изменяться.

В 3 классе, отмечает М. В. Богданович [3], вводятся новые виды простых и составных задач. В методике работы по решению каждой из них просматриваются, как и ранее, определенные этапы. Сначала идет подготовка к введению задач нового вида, которая сводится к выполнению специальных упражнений, предусмотренных в учебнике или составленные учителем. Далее идет ознакомление с решением задач нового вида: под руководством учителя, с большей или меньшей долей самостоятельности, ученики решают задачу или несколько задач. В дальнейшем ведется работа по совершенствованию умения решать задачи рассмотренного вида. Как правило, на этом этапе ученики решают задачи самостоятельно устно или с записью решения, при этом используют различные формы записи: отдельными действиями с пояснением в утвердительной или вопросительной форме, а также без пояснений, в виде выражения.

К новым видам простых задач относятся задачи на увеличение (уменьшение) данного числа или значения величины на несколько единиц или в несколько раз, сформулированные в косвенной форме; задачи на вычисление времени; задачи, с помощью которых раскрывается связь между величинами: скоростью, временем и расстоянием.

Задачи на увеличение (уменьшение) числа на несколько единиц, сформулированные в косвенной форме, легко преобразовать в задачи, сформулированные в прямой форме, используя знание отношения: если первое число больше (меньше) второго на несколько единиц, то второе число меньше (больше) первого на столько же единиц. При ознакомлении с решением задач, сформулированных в косвенной форме, можно сначала решить задачу, сформулированную в прямой форме, а от нее перейти к задаче того же вида, сформулированной в косвенной форме.

Аналогично вводятся задачи на увеличение и уменьшение числа в несколько раз, сформулированные в косвенной форме. При этом надо предусмотреть их сравнение с соответствующими задачами на увеличение и уменьшения числа на несколько единиц.

Задачи на вычисление времени трех видов (нахождение продолжительности события, его начала и конца) рассматривались и ранее, но их решение выполнялось подсчетом минут, часов, дней (суток) по циферблату часов или календарю. Здесь же при решении таких задач выполняются арифметические действия - сложение или вычитание. Циферблат или календарь также можно использовать как для решения, так и для проверки решения.

В 3 классе, отмечает М. В. Богданович [3], вводятся также составные задачи новой математической структуры: задачи на пропорциональное деление разных видов, задачи на нахождение неизвестных по двум разностям разных видов, задачи на встречное движение и движение в противоположных направлениях, задачи на совместную работу.

Задачи на пропорциональное деление вводятся по-разному: можно предложить для решения готовую задачу, а можно сначала составить ее, преобразовав задачу на нахождение четвертого пропорционального. В том и другом случае успех решения задач на пропорциональное деление будет определяться твердым умением решать задачи на нахождение четвертого пропорционального, поэтому в качестве подготовки надо предусмотреть решение задач соответствующего вида на нахождение четвертого пропорционального. Именно поэтому предпочтительней второй из названных вариантов введения задач на пропорциональное деление.

При ознакомлении с решением задачи на непропорциональное деление, отмечает Н. Б. Истомина [4], можно сначала решить готовые задачи, а позднее выполнить преобразование задачи на нахождение четвертого пропорционального в задачу на пропорциональное деление и после их решения сравнить как сами задачи, так и их решения.

Полезны, по словам С. Кожухова [5] упражнения на составление задач учащимися с последующим решением их, а также упражнения по преобразованию задач. Это, прежде всего, составление задач, аналогичных решенной. Так, после решения задачи с величинами: ценой, количеством и стоимостью - предложить составить и решить похожую задачу с теми же величинами или с другими, например скоростью, временем и расстоянием. Это составление задач по их решению, записанному как в виде отдельных действий, так и в виде выражения, это составление и решение задач по их краткой схематической записи.

Ученики называют величины, подбирают и называют соответствующие числовые данные, формулируют вопрос и решают составленную задачу. Такую схематическую запись можно выполнить на листе бумаги, причем название величин можно записать на карточках и вставить их в верхнюю графу (цена, количество, стоимость; масса одного предмета, число предметов, общая масса и др.). Можно предлагать для составления задач краткую запись с числовыми данными или рисунок. Позднее, после рассмотрения задач на пропорциональное деление второго вида и задач на нахождение неизвестных по двум разностям можно выполнить упражнения на преобразование задачи одного вида в другой, а после их решения выполнить сравнение самих задач и решений этих задач.

7. Сделаем вывод, что составление задач - один из методов обучения младших школьников решению задач. Наряду с решением готовых задач часто требуют от учеников самостоятельно подобрать пример для иллюстрации теоретических положений, самостоятельно составить задачу на тот или иной вид зависимостей между величинами. Поэтому учителю, для того, чтобы добиться положительных результатов в работе с учениками над арифметической задачей, необходимо правильно руководить данным процессом и требовать от школьников самостоятельности в составлении задач. Методами формирования умения составлять задачи являются: изменение поставленного к условию задачи вопроса, изменение условия задачи без изменения поставленного вопроса, изменение условия и вопроса задачи, преобразование данных задач, составление обратных задач, составление аналогичных задач.

1.3 Критериальная характеристика определения уровня сформированности умений составлять арифметические задачи

Критерии и показатели оценивания сформированности умений у третьеклассников составлять арифметические задачи были определены, исходя из содержания программы обучения математики в начальных классах.

В современной педагогике в качестве показателей обученности определяют уровни усвоения знаний и умений, состояние видов активной деятельности ученика, обеспечивающих усвоение знаний.

Оценивание деятельности ребенка ведется учителем с первых дней обучения. Главным требованием его организации в эти дни является опора на успех. Учитель начинает с оценивания готовности детей к уроку, соблюдения ими правил школьной жизни, проявления навыков культурного общения и поведения. Учитель обязательно подчеркивает, что надо хорошо готовиться к уроку, поясняя при этом, что значит "хорошо готов к уроку". Уже на второй неделе обучения сфера оценочной деятельности учителя расширяется. Кроме успехов в учебном труде маленьких учеников, оцениванию уже подлежат правильность, аккуратность, старательность при выполнении работы, соответствие результатов труда образцу. Необходимо каждый раз вводить четкие критерии оценивания: что значит аккуратно, правильно и т. д.

И только на третьем этапе оценочной деятельности, после усвоения детьми критериев правильности и соответствия требованиям, учитель может вводить фиксацию трудностей ребенка.

Таким образом, приоритетными остаются опора на успехи ребенка и акцент на положительных сторонах в его учебной деятельности.

Фиксация трудностей предполагает, прежде всего, показ перспектив: что именно и как ребенку нужно сделать. Фиксируя трудности, учитель вселяет в ребенка уверенность в том, что у него все обязательно получится, и максимально помогает ему в этом. Успешность оценивания определяется его систематичностью. Важно, чтобы оценен был каждый вид деятельности на каждом ее этапе. Традиционно учитель оценивает итоги деятельности ребенка (ответил на вопрос, решил задачу, выделил орфограмму и т. п.). Системность же оценивания предполагает оценку не только результата, но и принятия инструкции (правильно ли понял, что делать), планирования (правильно ли выделил последовательность действий), хода выполнения.

Критерии оценивания составления арифметических задач определяются следующими умениями:

1. Умение находить правильное решение задачи;

2. Умение преобразовывать задачи

3. Умение оценивать новое условие

4. Умение составлять обратную задачу

5. Умение составлять свою задачу

6. Умение решать свою задачу

Наиболее важным условием организации эффективной оценки достижений младшего школьника, а также формирования контрольно-оценочной самостоятельности является эффективный выбор форм и способов оценивания.

Самым простым вариантом оценивания являются оценочные суждения, построенные на основе критериев балльной отметки.

Так, оценивая работу ученика, учитель фиксирует уровень выполнения требований:

- справился с заданием отлично, не допустил ни одной ошибки; изложил материал логично, полно; использовал дополнительный материал;

- справился с заданием самостоятельно, хорошо; полно и логично ответил на вопрос;

- знает порядок выполнения; проявил заинтересованность. Однако не заметил ошибки, не успел их исправить; в следующий раз надо поискать более удобный способ решения и т. д.

По мнению И. В. Шорниковой [21], целесообразно строить оценочные суждения, опираясь на памятку (алгоритм):

? выделить, что должен делать ребенок;

? найти и подчеркнуть, что у него получилось;

? похвалить его за это;

? найти, что не получилось; определи, на что можно опереться, чтобы получилось;

? сформулировать: что еще нужно сделать, чтобы получилось; что ребенок уже умеет (найди этому подтверждение); чему надо научиться, что (кто) ему в этом поможет.

М. В. Богданович [2] выделяет несколько последовательных уровней усвоения:

I уровень - репродуктивное узнавание (ученический).

Уровень усвоения новой информации, который позволяет учащемуся при повторном ее восприятии отличать правильное ее использование от неправильного. Характеризуется алгоритмичностью деятельности или деятельностью по узнаванию. На этом уровне ученик не может понять и поставить самостоятельно цель, а значит, и осуществить все этапы познавательной деятельности. Он действует под влиянием учителя в соответствии с уже знакомым (заученным) алгоритмом действий.

II уровень- репродуктивное алгоритмическое действие (типовой).

Уровень усвоения информации (деятельности), при котором учащийся способен самостоятельно воспроизводить информацию, применять ее в разнообразных типовых случаях, не требующих создания никакой новой информации (например, типовые задачи). Характеризуется репродуктивной алгоритмической деятельностью. Это шаг вперед, по сравнению с первым уровнем в отношении мотивации, целеполагания (принимается, предложенная учителем, цель), наблюдается общее понимание. Однако действия по-прежнему строятся по известному алгоритму.

III уровень - продуктивное эвристическое действие (эвристический).

Уровень усвоения информации, при котором учащийся способен самостоятельно воспроизводить и преобразовывать усвоенную информацию для обсуждения известных объектов изучения и продуцирования субъективно новой информации о них, для применения усвоенной информации в разнообразных нетиповых случаях, требующих создания новых методов действия.

Характерна продуктивная деятельность, создается новая ориентировочная основа действий, в отличие от предложенного алгоритма. Этот уровень обусловлен достаточно высокой мотивацией учебной деятельности и осознанным принятием цели. Наблюдается не просто понимание, а поиск существенных сторон явления. Учащиеся добывают субъективно новую информацию.

IV уровень - продуктивное творческое действие (творческий).

Уровень усвоения информации об объектах деятельности, при котором учащийся способен использовать ее для получения объективно новой информации в процессе нахождения и обсуждения новых свойств известных объектов; нахождения и исследования новых методов деятельности с объектами; нахождения новых объектов, свойств и качеств.

Характеризуется продуктивным действием творческого типа, в результате которого создается объективно новая ориентировочная основа действий, самостоятельно ставится цель деятельности, разрабатываются новые правила и т.д.

Выводы по 1 главе

Составление задач - один из методов обучения младших школьников решению задач. Составление арифметических содействуют закреплению умений решать задачи, формированию математических понятий.

Способами обучения составлению задач являются: постановка вопроса к данному условию задачи или изменение данного вопроса; составление условия задачи по данному вопросу; подбор числовых данных; составление задач по аналогии; составление обратных задач; составление задач по их иллюстрациям; составление задач по данному решению.

Методами формирования умения составлять задачи являются: изменение поставленного к условию задачи вопроса, изменение условия задачи без изменения поставленного вопроса, изменение условия и вопроса задачи, преобразование данных задач, составление обратных задач, составление аналогичных задач.

Критериями оценивания уровня сформированности умений у младших школьников составлять арифметические задачи оценивается по критериям: Умение находить правильное решение задачи; умение проверять правильность решения, умение преобразовывать задачи, умение оценивать новое условие, умение составлять обратную задачу, умение составлять свою задачу, умение решать свою задачу.

ГЛАВА 2. ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ УМЕНИЙ СОСТАВЛЯТЬ АРИФМЕТИЧЕСКИЕ ЗАДАЧИ

2.1 Диагностика уровня развития способностей составлять арифметические задачи

Исследовав методическую литературу, прочитав труды авторов, было установлено то, что все методисты включают работу по составлению задач в этап работы над задачей после ее решения, но ни один методист не освещает вопрос о методике обучения составлению задач. Это привело решению, попробовать разработать методику обучения преобразованию задач и реализовать ее на уроках математики в начальной школе.

Исследование проводилось на базе 3 "а" и 3 "в" класса общеобразовательной школы №1 села Угловое Бахчисарайского района АР "Крым". В исследовании принимали участие 18 учеников с каждого класса.

Цель исследования: апробировать на практике разработанную нами методику обучения преобразованию задач. Поскольку было выяснено, что составление задач - один из способов обучения решению задач, то в работе был проведен анализ умения детьми решать арифметические задачи и составлять их.

Задачи:

1. Выяснить с помощью срезовой контрольной работы уровень умения решать и составлять задачи каждого ученика;

2. Разработать и провести ряд уроков с целью обучения детей составлению задач;

3. Выяснить с помощью срезовой контрольной работы уровень умения решать и составлять задачи каждого ученика;

4. Сделать выводы по проделанной работе и полученным результатам.

Перед проведением эксперимента в классах провели серию контрольных работ с целью выявления уровня умения решать задачи и умения составлять задачи.

Контрольная работа №1.

Первая контрольная работа состояла из 3 заданий, каждое из которых включало задачу, соответствующую одному из типов заданий. Её цель: выявить уровень умения учащихся решать задачи.

План контрольной работы представлен в приложении А.

Задачи оценивались по следующим критериям:

- умение решать и составлять задачи на вычисление времени.

- умение составлять задачи на отношение больше в…меньше в…

- умение решать и составлять задачи на произведение.

Распределение заданий для исследования различных критериев уровней сформированности умений составлять арифметические задачи третьеклассниками представлены в таблице №2.1.

Таблица №2.1 Распределение заданий для исследования различных критериев уровней развития умений составлять арифметические задачи

Критерии
Показатели
Задания
Умение находить правильное решение задачи
Самостоятельность решения задачи, выделение составной части задачи, нахождение верного решения.
№ 1 (а),2(а),3 (а)
Умение преобразовывать задачи
Самостоятельность при приобразовании задач, правильное выделение и изменение составных частей задачи.
№ 1 (б)
Умение оценивать новое условие
Ориентировка в условиях новой задачи, выделение замененного элемента задачи
№ 1 (б),2(б),3 (б)
Умение составлять обратную задачу
Самостоятельность проверки правильности решения задачи, умение составлять и решать обратную задачу
№2 (б)
Умение составлять свою задачу
Умение составлять свою задачу, по зад и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.