На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Диплом Теоретические аспекты обучения старших дошкольников измерительной деятельности и развития представлений о величине. Задачи и содержание эксперимента. Диагностика измерительных умений старших дошкольников. Контрольный эксперимент и анализ его результатов.

Информация:

Тип работы: Диплом. Предмет: Педагогика. Добавлен: 18.02.2011. Сдан: 2011. Страниц: 2. Уникальность по antiplagiat.ru: --.

Описание (план):


2

Министерство образования и науки Республики Казахстан
Карагандинский Гос Университет им.акад.Е.А.Букетова
Педагогический Факультет
Кафедра теории и методики дошкольной и психолого-педагогической подготовки
Дипломная работа
Обучение старших дошкольников измерению величины предметов
Ермекбаева А.С.
Научный руководитель:
Алексеева Л.А., старший преподаватель
Караганда - 2008
Введение

Созданная система общественного дошкольного воспитания предусматривает физическое, умственное, нравственное, эстетическое, трудовое воспитание и развитие детей, в соответствии с их возрастными и индивидуальными особенностями, и подготовку к обучению в школе. Эти задачи решаются в процессе разнообразной деятельности детей: игровой, трудовой, учебной, художественной, что дает возможность осуществить их всестороннее развитие и воспитание. Заботясь о здоровье и воспитании, поддерживая бодрое, жизнерадостное настроение малыша, работники дошкольных учреждений должны стремиться сделать счастливым детство каждого ребенка.
В умственном развитии детей большое значение имеют занятия по развитию элементарных математических представлений. Педагог должен знать не только как обучать дошкольников, но и то, чему он их обучает, т.е. ему должна быть ясна математическая сущность тех представлений, которые он формирует у детей.
В детском саду дошкольники знакомятся со счетом. Математические задачи и упражнения учат детей думать, логически мыслить, расширяют их представления об окружающем.
Дети старшего дошкольного возраста проявляют спонтанный интерес к математическим категориям: количество, форма, время, пространство, которые помогают им лучше ориентироваться в вещах и ситуациях, упорядочивать и связывать их друг с другом, способствуют формированию понятий.
Детские сады и подготовительные классы учитывают этот интерес и пытаются расширить знания детей в этой области. Однако знакомство с содержанием этих понятий и формированием элементарных математических представлений не всегда систематично, и зачастую хочется желать лучшего. Концепция по дошкольному образованию, ориентиры и требования к обновлению содержания дошкольного образования очерчивают ряд достаточно серьёзных требований к познавательному развитию дошкольников, частью которого является математическое развитие. Все это обусловливает актуальность темы дипломной работы.
Объект - учебно-воспитательный процесс в дошкольных учреждениях.
Предмет - формирование представлений о величине предметов и измерении величин у старших дошкольников.
Цель - исследовать особенности формирования представлений о величине предметов и измерении величин у детей старшего дошкольного возраста.
Гипотеза исследования состояла в предположении: в процессе специально организованного обучения возможно сформировать у старших дошкольников представления о величине и обучить измерению величин, что необходимо для дальнейшего обучения в школе.
Задачи:
- изучить теоретические аспекты математического развития у старших дошкольников о величине предметов и измерения величин.
- выявить особенности формирования представлений о величине предметов и измерения величин в старшем дошкольном возрасте.
- Опираясь на результаты исследования разработать рекомендации по обучению старших дошкольников измерению величин.
Методы исследования: Анализ литературы; анализ результатов детской деятельности; констатирующий, формирующий, контрольный эксперименты.
Практическая значимость состоит в том, что были разработаны занятия по развитию представлений о величине предметов и измерении величин у детей у старшего дошкольного возраста.
Организация исследования. Исследование проводилось в детском саду «Семицветик»
В эксперименте участвовали две старшие группы, разделенные на контрольную и экспериментальную.
Апробация результатов. Результаты исследования рассматривались на заседании и предварительной защите на кафедре теории и методики дошкольной и психолого-педагогической подготовки.
Структура работы. Дипломная работа состоит из двух частей, ведения, заключения, списка литературы и приложений.

Глава I. Вопросы формирования представлений о величине у старших дошкольников в теории и практике

1.1 Теоретические аспекты обучения старших дошкольников измерительной деятельности и развитие представлений о величине


Вопрос о роли измерений в формировании первых математических представлений ставился еще в работах К.Д. Ушинского [1]. Прогрессивные представители русской методики арифметики также значительное внимание уделяли этой проблеме (Д. И. Галанин).
Первые советские методисты в области дошкольного воспитания (Е.И. Тихеева [2], Ф.Н. Блехер [3] и др.) указывали на необходимость обучения детей, начиная с дошкольного возраста, измерению общепринятыми мерами. Е.И. Тихеева [2] считала, что к разного вида измерениям следует привлекать детей уже с 5--6 лет. Их легко познакомить с метром и научить обращаться с ним. Л. В. Глаголева придерживалась примерно того же мнения, считая, что семилетние дети должны научиться измерять сантиметровой линейкой и дециметром линии, стороны квадрата, прямоугольника; метром длину и ширину класса, длину дорожки в саду или грядки на огороде, они должны уметь нарисовать в тетради линию определенной длины, отмерить доску, полоску бумаги указанного размера и др. Она знакомила детей со следующими мерами: метром, дециметром, сантиметром,-- рекомендовала учить измерять руками, шагами, чашками, стаканами, ложками и т. д. [4]
С особой остротой проблема обучения детей-дошкольников измерительной деятельности была поставлена в 60--70-е годы. Возникла идея об измерительной практике как основе формирования понятия числа у ребенка (П.Я. Гальперин, B.В. Давыдов и др.). И хотя в настоящее время обучение измерению осуществляется на базе развития представлений о числе и счетных умений, эта концепция послужила основой для разработки многих теоретических и методических вопросов. [3]
По мнению Столяр А.А [5], в детском саду измерительная деятельность носит элементарный, пропедевтический характер. Ребенок вначале учится измерять объекты условными мерками, и лишь в результате этого создаются предпосылки для овладения «настоящим» измерением.
Потребность в простейших измерениях возникает у детей в практических делах: сделать одинаковые по длине и ширине грядки, встать друг за другом по росту на занятиях гимнастикой, определить, чья постройка оказалась выше, кто на занятиях по физкультуре прыгнул дальше и т. д. Наиболее часто требуется произвести измерение для выполнения различных заданий конструктивного характера, в строительных играх, на занятиях по изобразительной деятельности и физкультуре, в быту. В повседневной жизни детского сада и в домашних условиях возникают самые разнообразные по характеру ситуации, требующие элементарных навыков измерительной деятельности. Чем лучше ребенок овладеет ими, тем результативнее и продуктивнее протекает эта деятельность. Научившись правильно измерять на специальных занятиях, дети смогут использовать эти умения в процессе ручного труда, создавая аппликации, конструируя, при разбивке грядок, клумб, дорожек и т. д. Целенаправленное формирование элементов измерительной деятельности в дошкольном возрасте закладывает основы навыков и умений, необходимых для будущей трудовой жизни.
Леушина А.М. [6] отмечает, сто наблюдая практическую и хозяйственную деятельность взрослых, дети часто сталкиваются с различными измерениями. Им в общих чертах известна работа продавца в промтоварном магазине, его действия при продаже тканей, лент, тесьмы и т. д. Дети имеют некоторое представление о том, как выбирается одежда или обувь нужного размера. Измерение объема жидких и сыпучих веществ они наблюдают, когда покупают сами или вместе с родителями разнообразные продукты в магазине. Так, постепенно складывается общее представление о значении измерительной деятельности. Этому способствуют экскурсии в магазины, которые проводятся целенаправленно, а также самостоятельные наблюдения детей. Отражая труд взрослых в сюжетно-ролевых играх «Ателье», «Магазин тканей», «Гастроном» и др., дети воспроизводят и действия измерения. Измерительная деятельность обогащает содержание детских игр.
Таким образом, практическая и игровая деятельность детей и хозяйственная деятельность взрослых -- основа для ознакомления с простейшими способами различных измерений.
Тарунбаева Т.В. [7] отмечает, что обучение измерению ведет к возникновению более полных представлений об окружающей действительности, влияет на совершенствование познавательной деятельности, способствует развитию органов чувств. Дети начинают лучше дифференцировать длину, ширину, высоту, объем, т. е. пространственные признаки предметов. Ориентировка в отдельных свойствах, умение выделять их требуются при выборе условной меры, адекватной измеряемому свойству. В измерении предметная сторона действительности предстает перед ребенком с новой, еще неизвестной для него стороны.
Уточнение детских представлений в процессе измерений связано с развитием зрительного восприятия, включением обследовательских действий, активизацией речи и мышления. Сенсорные, мыслительные и речевые процессы тесно взаимодействуют друг с другом. Овладение элементарными способами измерения совершенствует глазомер.
Простейшие измерения способствуют возникновению опосредованного подхода к некоторым явлениям действительности. Оценка величины при этом строится не на субъективных впечатлениях, а на овладении специальными способами, обеспечивающими объективность показателей. В экспериментальных условиях, используя измерение, удавалось качественно перестроить восприятие и мышление ребенка, поднять их на более высокий уровень (В. В. Давыдов, П. Я. Гальперин, Л. Ф. Обухова).[8]
По мнению Метлиной Л.С. [9] измерительная практика активизирует причинно-следственное мышление. Сочетая практическую и теоретическую деятельность, измерение стимулирует развитие наглядно-действенного, наглядно-образного и логического мышления дошкольника. Способы и результаты измерения, выделенные связи и отношения выражаются в речевой форме.
Овладение простейшими способами измерения оказывает влияние на учебную деятельность дошкольников. Они учатся осознавать цель деятельности, осваивать пути и средства ее достижения, подчиняться правилам, определяющим характер и последовательность действий, решать практические и учебные задачи в единстве, осуществлять самоконтроль в ходе измерения и т. д. У детей при этом вырабатывается точность и аккуратность.
Измерение длин и объемов позволяет уточнить и углубить целый ряд элементарных математических представлений. На основе измерения познается новая функция числа как отношения. Ребенок перестает отождествлять единицу с отдельностью.
Михайлова З.А. [10] отмечает, что измерительную деятельность предлагалось вводить в ее элементарной форме еще до того, как дети научились считать и на ее основе формировать понятие числа. Но процесс измерения требует умения подсчитывать количество мерок. Поэтому ребенок вначале учится считать, овладевает навыками этой деятельности, а уже потом вводится новая деятельность, в процессе которой используются полученные знания и навыки о числе. Такой подход обеспечивает углубление и расширение представлений детей о числе. В настоящее время вторая точка зрения получила широкое распространение, поэтому навыки измерительной деятельности формируются в основном в старшем дошкольном возрасте, когда дети научились считать и у них имеются представления о некоторых величинах.
В процессе измерения устанавливается взаимосвязь пространственных и количественных представлений. Закрепляя умение выделять длину, ширину, высоту предметов, оценивать их величину с помощью условных мерок, детей подводят к пониманию трехмерности пространства, развивают представления об объеме. Измерение может успешно использоваться для уточнения геометрических представлений.
На основе измерения З.А. Михайловой появляется возможность познакомить детей-дошкольников с некоторыми математическими связями, зависимостями и отношениями: отношением части и целого, равенства -- неравенства, свойством транзитивности отношений, простейшими видами функциональной зависимости и др. Эти математические закономерности не лежат на поверхности, их поиск и осознание требуют активной работы мысли. Современные исследователи считают, что освоение этого материала в наибольшей степени влияет как на математическое, так и на общее развитие дошкольников.[10]
Работа по измерению подготавливает ребенка к пониманию арифметических действий с числами: сложения, вычитания, умножения и деления. Упражнения, связанные с измерениями, дают возможность получить также числовые данные, которые используются при составлении и решении задач.
Обучение измерению готовит детей к усвоению не только математики, но и других учебных предметов в школе.

1.2 Особенности развития представлений о величине у старших дошкольников


Столяр А.А. [5], Метлина Л.С. [11] отмечают, что для правильной и полной характеристики любого предмета оценка величины имеет не меньшую значимость, чем оценка других его признаков. Умение выделить величину как свойство предмета и дать ей название необходимо не только для познания каждого предмета в отдельности, но и для понимания отношений между ними. Это оказывает существенное влияние на формирование у детей более полных знаний об окружающей действительности.
При этом подчеркивается, что осознание величины предметов положительно влияет на умственное развитие ребенка, так как связано с развитием способности отождествления, распознавания, сравнения, обобщения, подводит к пониманию величины как математического понятия и готовит к усвоению в школе соответствующего раздела математики. [5]
Отражение величины как пространственного признака предмета связано с восприятием -- важнейшим сенсорным процессом, который направлен на опознание и обследование объекта, раскрытие его особенностей. В этом процессе участвуют различные анализаторы: зрительный, слуховой, осязательно-двигательный, причем двигательный анализатор играет ведущую роль во взаимной их работе, обеспечивая адекватное восприятие величины предметов. Восприятие величины (как и других свойств предметов) происходит путем установления сложных систем внутрианализаторных и межанализаторных связей.[11]
По мнению Столяра А.А.[5] познание величины осуществляется, с одной стороны, на сенсорной основе, а с другой -- опосредуется мышлением и речью. Адекватное восприятие величины зависит от опыта практического оперирования предметами, развития глазомера, включения в процесс восприятия слова, участия мыслительных процессов: сравнения, анализа, синтеза и др.
Леушина А.М. [6] отмечает, что механизм восприятия величины у взрослого и ребенка общий. Однако даже у самых маленьких детей могут быть выработаны реакции на отношения между объектами по признаку величины.
Леушина А.М. [6] говорит, что для образования самых элементарных знаний о величине необходимо сформировать конкретные представления о предметах и явлениях окружающего мира. Чувственный опыт восприятия начинает складываться уже в раннем детстве в результате установления связей между зрительными, осязательными и двигательно-тактильными ощущениями от тех игрушек и предметов различных размеров, которыми оперирует малыш. Многократное восприятие объектов на разном расстоянии и в разном положении способствует развитию константности восприятия.
Ориентировка детей в величине предметов во многом определяется глазомером -- важнейшей сенсорной способностью. Еще Руссо считал нужным учить Эмиля сравнивать размеры предметов на глаз, сопоставляя высоту здания с ростом человека, высоту дерева с высотой колокольни. Развитие глазомера непосредственно связано с овладением специальными способами сравнения предметов. Вначале сравнение предметов по длине, ширине, высоте маленькими детьми производится практически путем наложения или приложения, а затем на основе измерения. Глаз как бы обобщает практические действия руки. [12]
Чаще всего дети характеризуют предметы по какой-либо одной протяженности, наиболее ярко выраженной, чем другие, а поскольку длина, как правило, является преобладающей у большинства предметов, то и выделение длины легче всего удается ребенку. Значительно большее число ошибок делают дети (в том числе и старшие) при показе ширины. Характер допускаемых ими ошибок говорит о недостаточно четкой дифференциации других измерений, так как дети показывают вместо ширины и длину, и всю верхнюю грань предмета (коробки, стола). [13]
Наиболее успешно детьми определяются в предметах конкретные измерения при непосредственном сравнении двух или более предметов. [13]
Само слово величина непонятно многим детям, так как они редко слышат его. Когда внимание детей обращается на размер предмета, воспитатели предпочитают пользоваться словами одинаковый, такой же, которые многозначны (например, одинаковый по цвету, форме, величине), поэтому их следует дополнять словом, обозначающим признак, по которому сопоставляются предметы (найди такой же по величине: длине, ширине, высоте и т. д.). [6]
Выделяя то или иное конкретное измерение, ребенок стремится показать его (проводит пальчиком по длине, разведенными руками показывает ширину и т.п.). Эти действия обследования очень важны для более дифференцированного восприятия величины предмета. [13]
Неумение дифференцированно воспринимать величину предметов существенно влияет на обозначение словом предметов различных размеров. [6]
Леушина А.М. [6] отмечает, что дети 5--6 лет знают, что для определения длины, ширины, высоты предмета его надо измерить, и называют, с помощью каких предметов это можно сделать: линейкой, метром, сантиметром. Иногда средства измерения обозначаются ими не совсем точно: «палка», «выкройка», «клееночка такая с цифрами, на ней всякие цифры нарисованы: или 20, или 30, или 70» и т. д.
Михайлова З.А. [10] отмечает, что основной недостаток этих стихийных представлений заключается в том, что дети не отличают измерительные приборы от общепринятых единиц измерения. Так, под метром они подразумевают деревянный метр, с помощью которого производится отмеривание тканей в магазине, не воспринимая метр как единицу измерения. Точно так же под словом «сантиметр» имеют в виду сантиметровую ленту, которая в быту так и называется.
Некоторые дети считают, что средства измерения, применяемые в одних условиях, не могут использоваться в других, так как имеющиеся у них знания не выходят за рамки индивидуального опыта. [14]
По мнению Столяра А.А. [5], весьма приблизительно дети описывают процесс измерения своего роста, так как не знают, чем он измеряется, хотя измерение роста неоднократно производится в детском саду. Они рассказывают о тех способах, которые обычно применяются в семьях: «нужно поставить вместе, спиной друг к другу», «мерить головами»; «можно на стенке подчеркнуть» и т. д. Дошкольники стремятся пополнить свои знания об измерениях («Мне мама покажет, как измерять, я посмотрю, когда пойду с мамой в магазин»).
В процессе повседневной жизни, вне специального обучения дети не овладевают общепринятыми способами измерения, они лишь с большей или меньшей степенью успешности пытаются копировать внешние действия взрослых, зачастую не вникая в их значение и содержание. [13]

1.3 Задачи и содержание работы по обучению старших дошкольников измерительной деятельности

В настоящее время в условиях реформы школьного образования необходим тщательный учет всех возможностей детей в овладении знаниями, совершенствование программных требований и методов обучения в детском саду. Измерительная деятельность вводится в подготовительной к школе группе. Однако опыт педагогической работы, результаты научных исследований показывают, что это содержание вполне доступно детям старшей, а отчасти и средней группы.[5]

Введение измерительной деятельности требует:

-- опыта дифференцированной оценки детьми длины, ширины, высоты, размера предмета в целом, что позволяет сосредоточить внимание ребенка на собственно измерительных действиях; [15]

-- умения координировать движение руки и глаза, что является непременным условием точности при выполнении измерений;

-- определенного уровня развития счетных умений и количественных представлений детей, благодаря чему они могут сочетать измерение и счет;

-- способности к обобщению, являющейся важным фактором осмысливания сущности измерения.

В старшем дошкольном возрасте обучение измерению подчинено задаче формирования более точного восприятия величины сравниваемых предметов с помощью условных мерок. Детей следует знакомить с правилами измерения условной меркой, научить дифференцировать объекты, средства измерения и результат, осознавая последний через количество мерок как одного из случаев функциональной зависимости, развивать умение давать словесные отчеты о выполнении задания, на этой основе углублять представления о связях и отношениях между числами, использовать навыки измерения для деления целого на части, развития глазомера.

В дальнейшем деятельность детей направляется на совершенствование измерительных умений и связанных с ними представлений, а также расширение математических знаний за счет ознакомления со стандартными мерами и способами измерения. Детям показывают значение применения общепринятых мер измерения для получения объективных показателей величины измеряемых предметов и веществ, продолжается работа по углублению представлений о функциональной зависимости между компонентами измерения (объектом, средством и результатом), подводят детей к использованию полученных знаний при составлении и решении арифметических задач.

Метлина Л.С. [9] отмечает, что в детском саду дети должны овладеть несколькими видами измерения условной меркой, которые выделяются в зависимости от особенностей объекта и мерки. К первому виду следует отнести «линейное» измерение, когда дети с помощью полосок бумаги, палочек, веревок, шагов и других условных мерок учатся измерять длину, ширину, высоту различных предметов. Второй вид -- определение объема сыпучих веществ: кружкой, стаканом, ложкой и другими емкостями вымеряют количество крупы, сахара в пакете, в мешочке, в тарелке и т. д. Наконец, третий вид -- это измерение объема жидкостей, чтобы узнать, сколько стаканов или кружек молока в бидоне, воды в графине, чаю в чайнике и т. д.

Некоторые педагоги предлагают в качестве первоначального «линейное» измерение, другие -- определение объема жидких и сыпучих веществ. Несмотря на различие объектов, сущность измерения условной меркой одна и та же во всех рассмотренных случаях. Учитывая то, что дети в практической деятельности чаще всего имеют дело с измерением длин, да и в школе измерение отрезков предшествует измерению других объектов, следует отдать предпочтение «линейному» измерению.

По мнению Леушиной А.М. [6], что для введения измерения условными мерками следует научить выделять в предметах определенные признаки (длину, высоту, ширину, объем), соизмерять объекты по этим признакам, определяя их равенство или неравенство. Следовательно, этой работе должно предшествовать формирование представлений о величине как свойстве предметов. К моменту овладения навыками измерительной деятельности у детей должны быть прочными навыка счетной деятельности.

Педагог заранее продумывает и отбирает предметы, которые будут использоваться в процессе обучения измерению. Объекты для измерения и мерки могут специально изготавливаться взрослым с привлечением детей (полоски бумаги, палочки, ленты и т. д.) или браться готовыми. Для измерения привлекаются самые разнообразные бытовые предметы: веревки, тесьма, детали строительного материала (бруски), подкрашенная вода, песок, пакеты, мешочки, миски, тарелки, стаканы, чашки, ложки, банки и т. д. Широко применяются естественные мерки: шаг, горсть, расставленные в стороны руки и т. д. Объекты для измерения ребенок может сам находить в окружающей обстановке: длина, ширина, высота стола, стула, шкафа, аквариума, количество семян, корма для рыбок, воды, необходимой для полива растений, и многие другие. Следует постепенно расширять круг предметов, вовлекаемых в процесс измерения. Это способствует более быстрому и прочному формированию навыков, переносу их в разные ситуации. [5]

В оборудование педагогического процесса при обучении измерению включаются при необходимости карандаши, ножницы, так называемые фишки-эквиваленты -- мелкие однородные предметы (кружки, квадраты, треугольники, палочки, пуговицы и т. д.), служащие для точного подсчета числа мерок.

По мнению Метлиной Л.С. [11], обучение измерению требует разнообразного оборудования для показа воспитателем способов действия и самостоятельной деятельности детей. Чем больше будет варьироваться материал и упражнения с ним, тем прочнее сформируются измерительные навыки.

Овладение детьми элементами измерительной деятельности складывается из суммы знаний, умений и навыков, формируемых в упражнениях с дидактическим материалом под руководством педагога.

Упражнениям, которые предлагаются для выполнения детям, целесообразно по возможности придавать практическую направленность: измерить полоски меркой и выбрать равные по длине и ширине для плетения ковриков; измерив ленту, разделить ее на равные части, чтобы хватило всем девочкам в группе; отмерить нужное количество воды для полива растений, корма для рыбок и т. д. Задания, предлагаемые в такой форме, будят мысль, активизируют знания, способствуют выработке гибкости навыков.

Воспитателю следует продумывать способы и приемы использования материала, а также организации работы детей для создания условий по увеличению числа упражнений с целью закрепления навыков и умений.

Такие упражнения организуются на занятиях по математике и вне их: в процессе игр, труда, занятий, по другим разделам «Программы воспитания и обучения в детском саду». [15]

Тарунтаева Т.В. [7] отмечает, что основной путь в обучении может быть охарактеризован следующим образом: вначале детям поясняют смысл и значение деятельности, которой им необходимо овладеть, показывают способы выполнения действий, сообщают сумму правил, которыми следует руководствоваться. Затем ребенок практически овладевает этими способами, получая конкретные задания по измерению различных объектов.

Введение нового вида деятельности -- измерения -- осуществляется по-разному. Можно начать эту работу с объяснения необходимости измерения в практической и хозяйственной деятельности людей. При этом важно активизировать имеющиеся у детей представления, полученные в процессе наблюдений на экскурсиях (например, за трудом продавцов в магазине). Можно создать проблемную ситуацию, поставив детей в условия, когда они сами придут к выводу о необходимости измерения (определить, можно ли повесить книжную полку в простенке между окнами; хватит ли в чайнике чаю для всех и т. д.).

По мнению Столяра А.А. [5], интерес к новой деятельности, которой предстоит овладеть, можно вызвать, сообщив детям, что в школе они будут продолжать учиться измерять. Научившись измерять, они смогут свои умения применить в различных делах.

Затем сообщается ряд правил (алгоритм), по которым протекает процесс измерения. Например, при «линейном» измерении следует:

1) начинать измерять соответствующую протяженность предмета надо с самого начала (правильно определить точку отсчета);

2) сделать отметку карандашом или мелом в том месте, на которое пришелся конец мерки;

3) перемещать мерку следует слева направо при измерении длины и снизу вверх -- при измерении ширины и высоты (по плоскости и отвесу соответственно);

4) при перемещении мерки прикладывать ее точно к отметке, обозначающей последнюю отмеренную часть;

5) перемещая мерки, надо не забывать их считать;

6) окончив измерение, сказать, что и чем измерено и каков результат.

Алгоритм измерения объемной меркой жидких и сыпучих веществ включает требования: соблюдение полноты мерки, сочетание измерения со счетом, отражение способа и результата действий в речи. [5]

Показ с объяснением приемов измерения должен быть четким, ясным, немногословным, действия воспитателя должны находиться в поле зрения ребенка. Дети получают задания в конкретной форме.

При этом воспитатель подчеркивает, что следует измерить (что сделать), как (указывает последовательность действий и требования к ним), кто с кем будет измерять (организация работы). На первых порах дети затрудняются в одновременном выполнении измерительных действий и счете мерок. Чтобы облегчить задачу, вводятся фишки-эквиваленты в виде каких-либо предметов, одинаковых по размеру и небольших по величине. Отложив мерку, ребенок одновременно откладывает фишку-эквивалент. Подсчитав их количество, дети узнают, сколько мерок получилось при измерении, и тем самым определяют величину измеряемого объекта в точных количественных показателях. Благодаря введению фишек-эквивалентов непрерывное представляется через дискретное, устанавливается взаимно однозначное соответствие между мерками и их заменителями. Этот прием позволяет ребенку осмыслить сущность измерения, его результат независимо от того, что измеряют. Особенно необходим он на первых занятиях по освоению нового вида измерения условной меркой. Постепенно необходимость в использовании фишек-эквивалентов исчезает.

Леушина А.М. [6] отмечает, что упражняя детей в каждом конкретном случае, важно подчеркнуть, что и чем измеряется, каков результат. Это поможет разграничить объект, средство и результат измерения, так как в дальнейшем дети будут устанавливать более сложные отношения между ними. Следует обращать внимание на точность формулировок ответов на вопросы: «Что ты измерял?» -- «Я измерил длину ленты (ширину стола, высоту стула и т. д.)». «Чем измерял?» -- «Меркой».-- «Какой?» -- «Веревкой». Часто дети вместо слова измерил используют не совсем точный глагол смерял, смерил. Такие неточности необходимо предупреждать и исправлять.

Результаты измерения осмысливаются благодаря вариативным вопросам: «Сколько раз уложилась мерка при измерении? Сколько получилось мерок? Какова длина стола? Сколько стаканов крупы помещается в миске? Как ты догадался, что...? Почему так получилось? Что обозначает число, которое получилось при измерении?» Наряду с числом в оценке величины предметов могут участвовать и вспомогательные средства измерения -- фишки-эквиваленты.

Определяя результат измерения, надо учить детей связывать получаемое число с названием мерки (длина стола равна четырем меркам, в тарелке две чашки крупы, в банке три стакана воды и т. д.).

По мнению Метлиной Л.С. [11], детей нужно подвести к пониманию того, что для каждого объекта подбирается мерка одного и того же рода с ним: «Какими мерками можно измерить длину комнаты? Годится ли эта мерка для измерения крупы в тарелке? Какую мерку из нескольких лучше взять, чтобы определить, сколько воды в банке?» и т. д. Обобщая детские ответы, воспитатель подчеркивает необходимость продуманного подхода к выбору мерки, которая должна соответствовать измеряемому свойству, быть удобной для работы. Используя разные мерки при измерении одного и того же объекта, самостоятельно подбирая или выбирая их из нескольких, они осознают ее условность. С этой же целью следует превращать саму мерку в объект для измерения. «Можно ли измерить саму мерку? Как это сделать и чем?» -- спрашивает воспитатель детей. Постепенно дети с помощью взрослого приходят к пониманию: мерка -- это предмет для измерения, мерки могут быть разными.

Нередко от детей требуют использования словосочетания условная мерка без понимания его смысла. Скорее всего этот термин предназначен педагогу и активное включение его в речь ребенка не обязательно. Однако некоторое пояснение можно дать в такой форме. «Длину подоконника можно измерить разными мерками. Какие вы предлагаете взять? -- спрашивает воспитатель детей. (Они отвечают, что можно использовать ленту, полоску бумаги, палочку, брусок, и договариваются о выборе одной из них для измерения.) -- Мерка, которую мы берем, будет условной меркой, потому что мы сами условились именно ею измерить длину подоконника. Каждый раз мы пользуемся условными мерками, потому что вначале договариваемся, чем будем измерять».

На начальных этапах работы условная мерка при измерении объекта должна укладываться в нем небольшое и целое число раз (2--3). Этому требованию должны отвечать все вовлекаемые в процесс измерения объекты. Затем детей следует познакомить с правилом округления результатов измерения, которое позволяет использовать более разнообразные мерки и объекты для измерения. Суть правила заключается в том, что если остаток при измерении меньше половины мерки, то он не учитывается, если больше половины, то приравнивается к целой мерке при подведении итогов, если равен половине мерки, то засчитывается как половина мерки (высота шкафа семь с половиной мерок). [11]

Михайлова З.А. [10] отмечает, что в процессе выполнения заданий необходимо исправлять, а еще лучше предупреждать ошибки, которые дети часто допускают. При «линейном» измерении:

-- неправильно устанавливается точка отсчета, измерение начинается не от самого начала (края) предмета;

-- мерка перемещается произвольно, т. е. прикладывается на каком-либо расстоянии от метки;

-- мерка непроизвольно сдвигается вправо или влево, вверх или вниз (иногда в двух направлениях одновременно), так как слабо фиксируется ее положение на плоскости;

-- дети забывают считать мерки, поэтому, выполнив измерение, не называют его результата;

-- вместо отложенных мерок подсчитываются черточки-отметки;

-- при измерении длины и ширины одного и того же предмета пропускается начальный отрезок (определенная часть предмета не относится ребенком к длине и ширине одновременно). [10]

При измерении объемными мерками жидких и сыпучих веществ:

-- нет равномерности в наполнении мерок, отсюда результаты либо преувеличены, либо уменьшены;

-- чем меньше остается измеряемого вещества, тем меньше наполняемость мерки;

-- не сочетаются счет и измерение.

По мнению Тарунтаевой Т.В. [7], отношение детей к полноте объемной мерки в значительной степени обусловлено установкой, данной до измерения; при соответствующей установке они более внимательно следят за этим. С этой же целью сыпучие вещества размещаются вначале на столе кучками, равными мерке, а подкрашенная вода разливается в одинаковые прозрачные емкости. Впоследствии, действуя объемной меркой, можно выливать или ссыпать вещества в одну посуду.

По мере накопления опыта ребенок может выполнять задания вполне самостоятельно и контроль с процесса измерения переносится на результат. Педагогу следует требовать точности, аккуратности, внимания, показывая, к чему приводит нарушение правил измерения. [11]

Корнеева Г.А, Мусейнбаева Т.А. [16] отмечают, что в процессе обучения измерению используются разные формы организации деятельности детей: коллективная и индивидуальная. Они зависят от степени сформированности измерительных навыков и умений, характера привлекаемого материала. Когда сформированы некоторые навыки, выполнение одного задания можно поручить нескольким детям: «Саша и Миша будут измерять полоской бумаги длину подоконника». Совместная деятельность приучает согласовывать действия, оказывать друг другу помощь. При выполнении измерительных работ дети могут располагаться за столом и в разных местах групповой комнаты в свободной позе.

Первоначальное обучение измерению требует 10--12 занятий. Для этой работы отводится обычно часть занятия, а остальное время посвящается реализации других требований программы развития математических представлений. Обучение новому виду измерения может осуществляться в течение всего занятия. Постепенно обучение измерительной деятельности перемещается из первой части занятия в другие, в том числе заключительную. Это можно связать с разными программными задачами развития математических представлений.

По мнению Фидлера М. [13], упражнения в измерениях могут организовываться на участке детского сада. В этих случаях предварительно продумывается, что и чем будет измеряться, а также распределение детей при выполнении практических работ.

С целью закрепления навыков можно давать домашние задания в измерении объектов. Важно, чтобы этот прием не был формальным. Воспитателю следует поинтересоваться выполнением домашнего задания.

Метлина Л.С. [11] отмечает, что собственная измерительная деятельность детей должна сочетаться с наблюдением измерительной деятельности взрослых в процессе их труда. Такие наблюдения проводятся постепенно, в течение всего процесса обучения измерению. Приобретенные на занятиях по математике знания и навыки измерения следует закреплять на занятиях по рисованию, аппликации, конструированию, в процессе труда в природе, в быту и т.д. Можно рекомендовать родителям привлекать детей к посильным измерениям в домашних условиях, предварительно познакомив их с возможностями дошкольников в этом плане.

1.4 Средства и методы обучения старшего дошкольника измерению величины


Исходя из особенностей детских представлений о величине предметов, педагогическая работа строится в определенной последовательности. [7]
Тарунтаева Т.В. [7] отмечает, что в начале формируется представление о величине как пространственном признаке предмета. Детей учат выделять данный признак наряду с другими, пользуясь специальными приемами обследования: приложением и наложением. Практически сравнивая (соизмеряя) контрастные и одинаковые по величине предметы, малыши устанавливают отношения «равенства -- неравенства». Результаты сравнения отражаются в речи с помощью прилагательных: длиннее, короче, одинаковые (равные по длине), шире, уже, одинаковые (равные по ширине), выше, ниже, одинаковые (равные по высоте), больше, меньше, одинаковые (равные по величине) и т. д. Таким образом, первоначально предусматривается лишь попарное сравнение предметов по одному признаку.
На этой основе продолжается дальнейшая работа, в процессе которой детей учат при сравнении нескольких предметов одним из них пользоваться как образцом. Практические приемы приложения и наложения применяются для составления упорядоченного (сериационного) ряда. Затем дети учатся создавать его по правилу. Располагая предметы (3--5 штук) в возрастающем или убывающем порядке по длине, ширине, высоте и другим признакам, они отражают это в речи: самая широкая, уже, еще ужа, самая узкая и др.
М. Фидлер [13] при формировании представлений о величине предметов использует специальный дидактический материал.
Положительный эффект дает применение таких приемов обследования, как показ длины, ширины и т. д., проведение пальцем по указанной протяженности, «измерение» разведенными пальцами или руками, сравнение разных признаков величины путем приложения или наложения.
Обследование дает возможность установить направление каждой конкретной протяженности, что имеет существенное значение для их различия. Дети узнают, что при показе длины рука движется слева направо, вдоль предмета, показывая ширину, рука движется поперек предмета, высота показывается снизу вверх или сверху вниз, а толщину показывают разведенными пальцами и степень разведения зависит от толщины предмета. Толщина округлых предметов показывается путем обхвата их. Показ обследуемого признака величины нужно повторять 2--3 раза, каждый раз несколько смещая линию движения, чтобы дети не соотнесли данный признак с какой-либо одной линией или стороной предмета. [6]
В процессе познания действия всегда должны сопровождаться словом, необходимо называть обследуемые признаки величины. Первоначально это делает воспитатель, а затем требует осмысленного употребления детьми слов длина, ширина, высота, толщина. [6]
Михайлова З.А. [10] отмечает, что большое значение придается обучению старших дошкольников способам сравнения: приложению и наложению. При наложении или приложении сравниваемые предметы подравнивают с одного края (лучше с левого) или ставят рядом на одну плоскость, если сравнивают по высоте.
Для упражнения детей в сравнении предметов по величине можно давать такие, например, задания:
-- из двух полосок разной длины, разложенных на столе, показать длинную или, наоборот, короткую;
-- детям предъявляются поочередно образцы разной длины; необходимо найти полоску такой же длины;
-- нужно взять самый длинный брусок из двух; показать его длину, затем показать длину короткого бруска;
-- найти длинный карандаш из двух, положить его вверху, а короткий положить под ним. [13]
Метлина Л.С. [9] отмечает, что старшие дошкольники выполняют и более сложные задания на развитие глазомера: найти на глаз предметы большего или меньшего размера, чем образец; подобрать два предмета, чтобы вместе они были равны образцу и др. Постепенно расширяют и площадь, на которой осуществляется поиск предметов нужного размера.
Упражнения в установлении транзитивности отношений порядка проводятся также с помощью игр, требующих от детей смекалки и сообразительности.
«Кто первый?» -- «Мишки (или матрешки) забыли, кто за кем стоял. Первый должен быть меньше второго, а второй меньше третьего. Какого размера первый мишка? А третий?»
«Чья коробочка?» -- «У меня три коробочки от заводных игрушек: курочки, цыпленка и утенка. Курочка больше утенка, утенок больше цыпленка. Какая коробка утенка? Поместится ли курочка в коробку утенка? А утенок в коробку цыпленка?»
«Угадайте, кто выше (ниже) ростом» -- «Петя выше Саши, а Саша выше Коли. Кто из мальчиков самого низкого роста? А самого высокого?»
При проведении игр наглядность применяется для утверждения в правильности ответа. Задания на сериацию связываются с закреплением навыков порядкового счета.
Новой задачей для воспитателя старшей группы является задача уточнения представлений детей об изменении предметов по длине, ширине, толщине, высоте при правильном отражении этого в речи («Стало длиннее», «Это больше» и т. д.). [11]
Необходимы специальные упражнения, в процессе которых деятельность, направленная на изменение величины, связывается с выяснением количественных отношений. Такие упражнения лучше всего проводить во второй части занятия -- в процессе работы с раздаточным материалом. Воспитатель организует действия по комплектованию, уравниванию по величине определенных предметов. С этой целью он учит пользоваться образцом, меркой-посредником и несколько позже условной меркой, которые выступают как средство преобразования объекта (например, из равных по длине полосок надо сделать разные, и наоборот). Для того, чтобы придать деятельности детей определенный смысл, все задания по изменению величины предметов должны иметь совершенно конкретную направленность на результат: изготовить для кукол в соответствии с их размером ленточки для бантиков, сделать лесенку или заготовки определенных размеров для ремонта книг, коробок, плетения ковриков, елочных бус и т. п.
Леушина А.М. [6] отмечает, что, действуя условной меркой, ребенок сталкивается с измеряемой величиной (объектом измерения), меркой (средством измерения) и результатом (определенным числом мерок). Эти три компонента находятся в функциональной зависимости между собой. При измерении одного и того же объекта разными по величине мерками его количественная характеристика будет различной. В этом случае зависимость между размером мерки и результатом измерения, т. е. числом таких мерок, будет обратной: чем больше сама мерка, тем меньше раз она уложится в объекте (и наоборот). При измерении двух объектов одинаковыми мерками зависимость будет прямой: число мерок будет больше в том случае, если больше по величине измеряемый объект (и наоборот), и т. д.
Следовательно, основной путь ознакомления с некоторыми проявлениями функциональной зависимости -- организация практической деятельности измерения с помощью условных мерок и наблюдение разных соотношений между величинами.
Метлина Л.С. [11] отмечает, что постепенно надо приучать ребенка давать словесный отчет о выполненном измерении, самостоятельно характеризуя объект, средство и результат, запоминая их количественные характеристики. Не менее важно наличие у детей прочных навыков измерительных действий.
Далее сравниваются объекты, средства и результаты нескольких измерений, по крайней мере двух. Основные задачи работы:
1) показать на многочисленных примерах соответствие в изменении величин;
2) научить выделять условие, при котором имеет место определенное соотношение между компонентами измерения;
3) сформировать общее представление о характере зависимости между величинами в процессе измерения.
Решить эти задачи можно, показывая детям:
а) измерение разных по величине объектов (двух или более) одинаковыми мерками, результаты разные;
б) измерение разных по. величине объектов разными мерками, результаты могут быть разные или одинаковые;
в) измерение одного и того же объекта или равных по величине разными мерками, результаты разные.
По мнению Михайловой З.А. [10], для иллюстрации этих случаев надо использовать не только «линейное» измерение, но и измерять жидкие и сыпучие вещества, тогда у детей будут формироваться обобщенные представления.
Соосмыслить зависимость между величинами помогают упражнения в игровой форме воспитатель измеряет ленту разными по длине мерками: вначале короткой, а затем длинной или составной, составленной из двух коротких. «Что изменилось, когда я измерила ленту во второй раз по сравнению с первым? А что осталось без, изменения?» -- спрашивает она ребят.
Сопоставив объекты, мерки и результаты нескольких измерений, ребенок должен отметить все изменения в предметной ситуации и найти то, что осталось без изменения. Благодаря таким упражнениям выделяются величины постоянные и переменные. [9]
Тарунтаева Т.В. [7] отмечает, что далее необходимо связать изменение одной величины с изменением другой, установить характер и направление изменения. Основной методический прием -- вопросы. Ими воспитатель пользуется, чтобы помочь осознать направление изменения в каждом конкретном случае когда мерка длиннее -- число мерок меньше, мерка короче -- число мерок больше; мерок уложилось больше -- предмет выше, меньше мерок -- предмет ниже и т. д.). Активизируют познавательную деятельность детей вопросы: «Почему?», «Почему так получилось?», «Объясни, как это получается», которые требуют самостоятельного обоснования характера зависимости между величинами.
По мнению Леушиной А.М. [6], постепенно необходимо переходить к наблюдению не только двух ситуаций измерения, но и трех и более. Это позволит детям убедиться в том, что выявленная зависимость приобретает характер общей закономерности, проявляющейся в ряде аналогичных случаев: «Всегда так бывает, когда измеряем один предмет разными мерками»; «Чем меньше мерка, тем больше их уложится при измерении одного и того же предмета»; «Чем больше предмет, тем больше мерок получится» и т. д. Такие суждения показывают, что детские представления начинают обобщаться.
На этой основе возможны действия по представлению: высказывание предположений относительно характера и направления в изменении величин вне наглядно-практической ситуации: «Что получится, если измерять один и тот же предмет разными мерками?»; «А если измерять другой меркой, числа получатся такие же, как в первый раз?»; «Какой из этих мерок вам придется измерить крупу в пакетах, чтобы число мерок оказалось равное?» и т. д.
Для закрепления, уточнения детских представлений, активизации познавательной деятельности используются разные приемы: практические задания (изготовить для плетения ковриков равные по длине полоски, пользуясь равными или разными по размеру мерками, и т. д.), чтение художественного произведения -- сказки Г. Остера «Тридцать восемь попугаев и четверть слоненка, хорошо известной по мультфильму, с последующей беседой, на которой могут быть заданы вопросы: «Почему так получилось? Прав ли удав? А чем еще можно было измерить удава?», решение устных задач, отражающих в содержании деятельность измерения (например: «Дети измеряли длину дорожки шагами. Когда измеряла Зина, у нее получилось десять шагов, когда Вова -- восемь шагов. Объясни, как это получилось: дети измеряли одну и ту же дорожку, а количество шагов получилось разное»). Разнообразные ситуации и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.