На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Диплом Использование элементов множества в обучении математике в начальных классах, опытноэкспериментальная работа по их изучению. Результаты опытно-экспериментальной работы по использованию элементов множеств при раскрытии смысла арифметических действий.

Информация:

Тип работы: Диплом. Предмет: Педагогика. Добавлен: 21.06.2010. Сдан: 2010. Страниц: 3. Уникальность по antiplagiat.ru: --.

Описание (план):



50
Операция над множествами как основа обучения арифметическим действиям над целыми неотрицательными числами
Оглавление
Введение
Глава 1.
Использование элементов множества в обучении математике в начальных классах
1.1
Число как результат количественного сравнения совокупностей предметов
1.2
Теоретико-множественный смысл понятия числа и арифметических действий над ними
1.3 Методика раскрытия конкретного арифметических действий в начальных классах
Глава 2
. Опытно-экспериментальная работа по изучению арифметических действий на теоретико-множественной основе
2.1
Из опыта работы учителей по использованию множеств в обучении математике в начальных классах
2.2 Исследование и анализ работы учителей по применению элементов множеств при изучении арифметических действий младшими школьниками
2.3
Результаты опытно-экспериментальной работы по использованию элементов множеств при раскрытии конкретного смысла арифметических действий
Заключение
Использованная л
итература
Приложение
Введение
Велико значение математики в
повседневной жизни человека. Без счета, без умения правильно складывать, вычитать, умножить и делить числа немыслимо развитие человеческого общества. Четыре арифметических действия, правила устных и письменных вычислений изучаются, начиная с начальных классов, а устный счет сейчас предлагается чуть ли не с пеленок.
В настоящее время в связи с дифференциацией процесса обучения, введением профильных образовательных систем актуальной становится проблема разработки соответствующих программ обучения. Существующие альтернативные программы и учебники по математике для начальной школы не полностью удовлетворяют потребностям не только специализированной начальной школы, но и обычной системы начального образования. Содержание этих программ во многом устарело, оно не учитывает тех, безусловно, интересных эффективных наработок в области педагогики, психологии и частных методик, которые уже вошли в практику многих учителей. В связи с этим представляется необходимой разработка усовершенствованных вариантов альтернативных программ по математике с учетом этих наработок. Сознательное обучение учащихся по любому предмету и в частности по математике, возможно тогда, когда обучение опирается на соответствующие жизненные наблюдения детей. Накопление собственного опыта происходит при непосредственном наблюдении и восприятии мира. Множество - неопределяемое, но в то же время важное понятие в математике. При изучении математики учителя начальных классов часто обращаются и используют элементы множеств. Фактически наглядное обучение должно способствовать движению мысли от жизненных наблюдений к существенности изучаемого понятия.
Если учесть, что дети мыслят формами, красками предмета и ощущениями, то использование элементов множеств просто необходимо для обучения детей в начальных классах. Еще Я.А. Коменский, И.Г. Песталоцци, К.Д. Ушинский подчеркивали чрезвычайно важную роль наглядности (именно использования элементов множества при обучении арифметическим действиям). Использование элементов множества, как счетный материал помогает достижению важнейшей цели обучения - научить детей считать.
Математика - это наука о количественных отношениях и пространственных формах действительного мира. Считается, что чем богаче представление детей о количественных и пространственных отношениях реальных предметов, тем легче им будет в дальнейшем перейти от этих представлений к математическим поняти
ям. Применение элементов множества способствует развитию логического мышления и речи детей: помогает перейти к обобщениям, которые затем применяются на практике, формируют убежденность в истинности знаний. Также его продуктивное использование в обучении всегда способствует и стимулирует активную мыслительную деятельность, развивает познавательную активность, наблюдательность; снижает утомляемость, способствует поддержке непроизвольного внимания детей. Элементы множества является исходным материалом для формирования математических понятий. Все существующие ныне альтернативные системы обучения опираются на теоретико-множественный подход при формировании понятия числа и арифметических действий на предметный счет. Предметный счет повышает интерес к знаниям, делают более легким процесс их усвоения, поддерживают внимание ребенка.
Использование элементов множества должно быть подчинено задаче постепенного перехода от конкретного к абстрактному. Предметное преподавание неизбежно приводило к индуктивным обобщениям, при которых дети обычно активны. Этот способ обучения соответствует обучению в начальных классах. Формирование умения считать, навыков решения арифметических действий у младших школьников является одной из сложнейших задач учителя. Учителю нужно совершенно отчетливо представлять себе уровень, на котором должен быть усвоен каждый из вопросов умения считать. Связи с этим представляется целесообразным конкретизировать требования, которые могут быть предъявлены к учащимся к концу изучения основных тем программы («Десяток», «Сотня», «Тысяча», «Многозначные числа»). Показать, что же именно должны знать и уметь дети, какими навыками они должны овладеть в ходе работы над темами. Исходя из всего сказанного можно сказать, что при обучении арифметическим действиям в начальных классах обязательным условием является необходимое использование элементов множества, т.е. предметного счета. Без предметного преподавания детей обучать невозможно и нельзя.
Существующие различные подходы усложняют изучение иррациональное использование элементов множества при обучении математике, в частности при формировании понятия числа и раскрытия конкретных смыслов арифметических действий. Поэтому возникает необходимость изучения систематизации данной проблемы. Отсюда вытекает актуальность нашей темы. Исходя из этого возникает проблема исследования: как используется и на каком уровне находится использование элементов множества при изучении арифметических действий.
Тема нашей дипломной работы: «Операция над множествами как основа обучения арифметическим действиям над целыми неотрицательными числами».
Целью исследования данной дипломной работы является поиск путей выявления эффективного применения элементов множества при раскрытии конкретного смысла арифметических действий над целыми неотрицательными числами.
Исходя из цели мы поставили следующие задачи исследования:
1. Раскрыть роль использования элементов множества в обучении арифметическим действиям (т. е. роль использования предметного счета).
2. Какие требования предъявляются по обучению и по использованию наглядных пособий как элементов множества при обучении арифметическим действиям над целыми неотрицательными числами.
3.
Анализировать экспериментальное исследование по проблеме выявления эффективности применения элементов множества при обучении арифметическим действиям над целыми неотрицательными числами.
Гипотеза исследования.
Мы предполагаем, что использование элементов множества при изучении арифметических действий над целыми неотрицательными числами является как необходимое средство обучения, которое повышает качество знаний у детей, помогает быстрому усвоению темы.
Объект исследования:
применение элементов множества в процессе обучения арифметическим действиям над целыми неотрицательными числами в начальных классах.
Предмет исследования: выявление эффективности использования элементов множеств в обучении арифметическим действиям над целыми неотрицательными числами в начальных классах..
Методы исследования: наблюдение, проведение экспериментальных уроков, интервьюирование, анкетирование.
Этапы исследования:
I
этап (май - август 2006 г.). Работа над темой, подготовка материалов, изучение литературы по применению операций над множествами при обучении арифметическим действиям.
II
этап (сентябрь - октябрь 2006 г.). Наблюдение, проведение экспериментальных уроков, интервьюирование.
III этап (ноябрь - декабрь 2006 г., январь - май 2007 г.). Работа над написанием диплома.
Теоретическая значимость: Определение значения использования элементов множества, полученных в процессе исследования результатов, в науке имеет большое значение. Новые знания дает совершенствовать использование элементов множества в обучении арифметическим действиям.
Практическая значимость:
изученный мною вопрос по применению элементов множества при обучении поможет мне в дальнейшей учительской работе, как правильно и разумно применять элементов множества на уроках математики.
Данная дипломная работа состоит из введения, двух глав, заключения, списка использованной литературы, приложения.
Глава 1. Использование элементов множества в обучении математике в начальных классах
1.1.
Число как результат количественного сравнения совокупностей предметов

Математика, как и все другие науки
, возникла из потребностей деятельности людей. На очень ранней ступени развития человека возникла необходимость подсчитывать количество добычи или урожая, измерять земельные участки, определять вместимость сосудов, вести счет времени. Для удовлетворения этих практических потребностей возникли примитивные способы счета и измерения, т. е. начало арифметики и геометрии.
При дальнейшем развитии общества усложня
лись практическая деятельность человека, вместе с ней росли потребности в усовершенствованных приемах счета и измерений. Первоначальный счет по пальцам и измерения при помощи размеров частей тела человека (пядь, локоть) не могли уже удовлетворять потребностям жизни. Возникла необходимость в более быстрых и более точных приемах счета и измерений. Продолжительный опыт привел человека к установлению некоторых общих правил, дающих возможность при счете конкретных предметов не прибегать в каждом отдельном случае к перечислению и перекладыванию этих предметов. Постепенно человек приобрел способность отвлечения, абстрагирования от конкретного счета. Многолетняя практика каждого народа еще в древности выработала оснавные понятия измерения - арифметики и геометрии. В дальнейшей тысячелетии практический опыт применения этих понятий, дополняя первоначальный запас сведений о способах счета и измерения, привел к новым абстракциям, к усовершенствованию приемов арифметики и геометрии. Возникают новые, более совершенные возможности познания количественных отношений предметов и явлений окружающего мира и вместе с тем возможность использования этого познания в трудовой деятельности. Человек от живого созерцания окружающего мира переходит к абстрактному мышлению о явлениях этого мира. Благодаря этим абстракциям человек вникает более глубоко закономерностям мира, получает возможность более плодотворного использования своих знаний для практической деятельности .
Возникновение понятий счета и натурального числа из практической деятельности и долгий опыт их применения создают у человека уверенность правильности выводов, полученных путем абстрактного мышления (22, 5-7).
Чтобы понять, откуда взялись натуральные числа и что они собой представляют, надо разобраться в том, что такое счет предметов.
Потребность в счете предметов возникает тогда, когда мы встречаемся с множеством ( совокупностью, группой ) предметов и нам нужно решить такие задачи:
1.
Установить количество предметов в этом множестве, т. е. найти непосредственную количественную оценку этого множества .
2. Установить определенный порядок между предметами этого множества.
Перед человеком в его практике все время возникала необходимость иметь дело с совокупностями вещей, сравнивать их численность. Он воспринимал численность совокупности вещей без счета их. О численности группы пяти вещей он говорил: “столько же, сколько пальцев на руке”, и т. д. Отвлеченных понятий чиселпять”,двадцать” у человека долго не было. Анологично этому человек, не имея отвлеченных понятий “чернота”, ”твердость”, говорил о предметах:как ворон” (черный), “как камень” (твердый). В результате очень долгого периода развития человек пришел к понятию того, что совокупности “пять пальцев”, “пять собак”, “пять домов” имеют некоторое общее свойство, которое можно выразить с помощью понятия отвлеченного числа ”пять”. Все сказанное к следующему определению числа : “каждое отдельное число, как “два“, “пять” и т. п., есть свойство совокупностей предметов, общее для всех совокупностей, предметы которых можно сопоставить по одному, и различное у таких совокупностей, для которых такое сопоставление невозможно”. Итак, согласно сказанному перед человеком в его практике возникла задача количественного сравнения совокупаностей предметов. Нам теперь кажется, что для такого сравнения надо сосчитать предметы в одной и другой совокупностях и сравнивать полученные числа. Возникает вопрос, необходимо ли было возникнуть сначала понятие числа, чтобы появилось возможность устанавливать количественные соотношения между совокупностями объектов? На этот вопрос приходится отвечать отрицательно. Ребенок, который еще не умеет считать до пяти может установить, что у него пальцев на обеих руках одинаковое количество. Он может сопоставить пальцы обеих рук и убедиться в этом. Примитивный человек из лесов Центральной Африки умел считать в крайне ограниченных пределах, скажем, только до трех, но, несмотря на это, он уверенно обменивал большое количество слоновых клыков на пачки табака, не боясь быть обманутым заморскими купцами.
Для этого он сопоставлял количество клыков с каличеством пачек табака, укладывая рядом каждый клык с пачкой табака и таким образом убеждался в равночисленности обмениваемых совокупностей предметов.
Описание такой картины счета при обмене, более близкой нам и по времени, и по месту, мы находим в художественной литературе. Так, например, советский писатель-этнограф Г. Гор записывает слова представителя маленького народа северного Сахалина: «Был у нас старик. Не знал, сколько ему лет. Решил начать счет. Год пройдет - рыбью голову в амбар положит. Опять год пройдет - опять голову и так далее» История возникновения и эволюции у человека представления о натуральном ряде охватывает данные из всех областей истории культуры - способов производства, языка, литературы, верований и т. д.
Свидетельства этн
ографов убеждают нас в том, что до сих пор существуют племена, не имеющие числительных, кроме один, два, три. Более многочисленная группа предметов у них характеризуется словами «много», «куча», «тьма». Эскимос знает и хранит в памяти не числа своих собак, а индивидуальные особенности каждой, подобно тому как ребенок, не умеющий еще считать, представлять свои куклы игрушки по их признакам. Счет, которым пользовались первобытные люди и которым иногда пользуются и сейчас, особенно дети, состоит в том, что предметы подсчитываемого множества сопоставляются, т. е. ставятся друг против друга, с предметами некоторой определенной совокупности. У большинства народов такой стандартной совокупности служили пальцы рук, а иногда пальцы ног (счёт на пальцах). Наряду с пальцевым счётом для этой цели широко использовались зарубки на дереве, узелки на верёвках, применялись некоторые предметы, например раковины, бобы и т. д. Первобытный человек мог подсчитать лишь небольшую совокупность предметов. Так, например, индийские племена в Бразилии считали только до пяти, т.е. до числа пальцев на одной руке. А все, что больше пяти, они называли много. При этом они не осознавали, что есть общего, например, между двумя зайцами, двумя лодками, двумя рыбами и т.д. вот почему для называния числа «два» или «три» использовались разные слова в зависимости от того, о каких двух или трех предметах шла речь.
Однако постепенно, на протяжении
многих веков, в процессе совершенствования счета, человек начал осознавать то общее, что имеют «три человека» и «три палки», вообще любые множества, имеющие три предмета. В результате образовались абстрактные числа «один», «два», «три», «четыре», и т. д. А вот выдающийся русский ученый-путешественник Н.Н. Миклухо-Маклай (1846-1888 гг.) описывает, как производили счет папуасы, жившие на островах Новой Гвинеи, так: «Излюбленный способ счета состоит в том, что папуас загибает один за другим пальцы руки, причем издает определенный звук, например «бе, бе, бе…». Досчитав до пяти, он говорит «ибон-бе» (рука). Затем он загибает пальцы другой руки, снова повторяет «бе,бе,...», пока не доходит до «ибон-али» (две руки), т.е. два множества по пять элементов.
Если нужно считать дальше, папуас пользуется пальцами рук и ног кого-нибудь другого». (20, 5-7). Так у Геродота-греческого историка пятого века до н.э. читаем: «Персидский царь Дарий, оставив на время похода (в южнорусские степи) греков для охраны моста, построенного им через Дунай сказал: возьмите этот ремень и начиная с того дня, как я пойду на скифов, развязывайте на нем каждый день по одному узлу; когда минует число дней, означенное узлами, и я не вернулся, плывите обратно на родину. Аналогичный прием описывает Т. Семушкин в упомянутой уже повести: «Чукче Омрытагену оставили связку пуговиц. Он их по одной снимает каждое утро. Кончится вся связка, тогда он поедет на «праздник говоренья» (конференцию). Здесь мы в том и в другом случае имеем тоже обращение к множествам объектов, породившим числовое понятие, какое повторяет учитель арифметики в начальных классах, приглашая учеников считать с помощью кубиков, палочек, пальцев. (20, 22-23).
Итак, в математике
вначале было не число, а множество. Анализ понятия множества и выяснения его подлинного значения в математике есть заслуга главным образом немецкого математика Георга Кантора (1845-1918 гг.). Созданная им теория множеств, некоторые идеи которой имелись и у предшественников Кантора и в частности были сравнительно подробно разработаны у чешского философа Бальцано (1781-1848 гг.), лежит ныне не только в основе математического анализа, но и проникает в известной мере в учебники школьной арифметики и алгебры. Современной человек уже в ранние годы жизни легко приобретает способность считать, называя числа один, два, три, четыре и т.д. Этот числовой ряд мы называем натуральным, его элементы - натуральными числами. Уже в I н. э. греческий математик Никомах говорит о натуральном, т. е. естественном ряде чисел. Термин «натуральное число» впервые употребляет римский автор Боэций (475-524 гг. н.э.). Время от времени термин этот встречается затем в рукописях XI века и позже. В современном смысле понятии «натуральное число» и последовательное употребление термина находит применение у французского просветителя Даламбера (1717-1783 гг.) в изданной им сотрудничестве с другими передовыми писателями во всеобщее употребление. Во многих языках, в том числе славянском, существуют такие грамматические формы, как единственное число, двойственное число и множественное; слово, обозначающее предмет, имеет различные окончание, в зависимости от того идет ли речь об одном, о двух или более чем о двух предметах. В некоторых языках имеется еще особая форма тройственного числа. Эти языковые формы являются пережитками той отдаленной эпохи развития, в которую человеком были освоены лишь числа один и два или один, два и три; всякая более многочисленная группа предметов характеризовалась словами «много», «тьма». В замечательном памятнике древнерусской литературы «Поучение Владимира Мономаха» написанном лет восемьсот назад, формы слов в различных падежах совпадают с современными, когда речь идет об одном или о многих предметах (формы единственного или множественного чисел). Когда же говорится о двух предметах или парных, появляется непривычная нам форма. «Конь диких своима рукама связал есмь. А лось ругама бол…»
В этом отрывке, понятном по смыслу, подчеркнутые слова имеют форму двойственного числа (речь идет о двух, о трех рогах). (4, 42-43) Исчезновение двойственного числа в русских памятниках начинается с 13 в. Наиболее освоенное число натурального ряда, граничащее с не считаемым, часто приобретало особый ореол чудесного и, по видимому, служило основанием для возникновения суеверий, связанных с различными числами, сохранившимся в языке до сих пор. Суеверия связанные с такими числами как 3,7,13,40 распространены. Как мы знаем, у нас сейчас в употреблении десятичная система счисления. Единственной причиной, заставивший большинство народов избрать десятичную систему счисления, является наличие у человека на руках десяти пальцев, которые служили удобнейшей вещественной основой счета. Десять пальцев - это то стандартное множество, с которым сравнивал первобытный человек всякое другое множество до тех пор, пока у него не образовалось в сознание новое стандартное множество, в виде абстрактного ряда натуральных чисел. Историческую роль пальцев при образование числовых понятий мы вспоминаем каждый раз, когда советуем ученику считать по пальцам. Пальцевый счет - обозначение чисел при помощи пальцев - обладал не только большой наглядностью, но и был вызван практическими потребностями. Приемы его излагались еще в учебниках XVI в., например у Рикорда (1510 -1558 гг.). Пальцевый счет был необходим в торговых местах, где сталкивались представители разных народов, не имевших общего языка. Практическая необходимость выработала общий пальцевой счет, понятный без слов, и этому счету обучали детей в школе. (7, 20 - 27)
Числа 1, 2, 3, 4, . . .
называются натуральными.
Понятие
натурального числа является одним из основных понятий в математике. Возникло оно, как и вся наука математика, из потребности практической деятельности людей. Складывалось оно постепенно в процессе решения все усложняющихся задач с начала практического , а затем и теоретического характера. Причиной, которая привела человека к созданию натуральных чисел, является необходимость сравнивать различные конечные множества между собой. В своем развитии понятие натурального числа прошло несколько этапов. В глубокой древности, чтобы сравнивать конечные множества, устанавливали или между одним из множеств и подмножеством другого множества, т.е. на этапе человек воспринимал численность множества предметов без счета их. Например, о численности группа из пяти предметов он говорил: «Столько же, сколько пальцев на руке», о множестве из двадцати предметов: «Столько же, сколько пальцев у человека». Такой метод обладал недостатком, что сравниваемые множества должны быть одновременно обозримы. В результате очень долгого периода развития человек пришел к следующему этапу создания натуральных чисел - сравнения множеств стали применять множества-посредники уже представляли собой зачатки понятия натурального числа, хотя и на этом этапе число не отделялось от сосчитываемых множеств: речь шла о пяти камешках, пяти пальцах, а не о числе вообще. Названия множеств-посредников стали использовать для определения численности множеств, которые с ними сравнивались. Так, у некоторых племен численность множества, состоящего из пяти элементов, обозначалась словом «рука», а численность множества из 20 предметов - словами «весь человек».
Только после того как человек научился оперировать множествами-посредниками, установил то общее, что существует, например, между пятью пальцами и пятью яблоками, то есть когда произошло отвлечение от природы элементов множеств-посредников, возникло представление о натуральном числе. На этом этапе при счете, например, яблок перечислялось уже не одно яблоко, два яблока и т.д., а проговаривали слова «один», «два», «три» и т.д. Это был важнейший этап в развитии понятие числа. Вот как об этом говорил крупнейший математик современности Н.Н. Лузин: «Мы должны склониться перед гением человека, созданию (не открывшего, а создавшего) понятие единицы. Возникло число, а вместе с ним возникла Математика . Идея числа - вот с чего начиналась история величайшей науки»
Со временем
люди научились не только называть числа, но и обозначать их, а также выполнять над ними действия. Многие трудности в решении этих проблем были преодолены с созданием в Древней Индии десятичной системы записи чисел и понятие нуля. Постепенно сложилось и представление о бесконечности множества натуральных чисел .
После того как понят
ие натурального числа сформулировалось числа стали самостоятельными объектами и появилась возможность изучать их как математические объекты. Наука, которая стала изучать числа и действия над ними, получила название «арифметика».
Арифметика возникла в странах Древнего Востока, Вавилоне, Китае, Индии, Египте. Накопленные в этих странах математические знания были развиты и продолжены учеными Древней Турции. В средние века большой вклад в развитие арифметики внесли математике Индии, стран арабского мира и Средней Азии, а начиная с 13 века -европейские ученые.
Термин «натуральное число»
впервые употребил римский ученый А. Боэций. В настоящее время свойства натуральных чисел, действия над ними изучаются разделом математики, носящим название «теории чисел». В 19 веке внимание ученых было обращено на построение и логическое обоснование математических теорий натурального числа, т. е. тех теорий, которые лежат в основе вычислений с натуральными числами.(4, 123 - 125)
За счетную группу, или основание системы счисления, можно применять любое число. Это положение явным образом было высказано французским математиком Б. Паскалем в 1665 году. Некоторое из систем счисления, основания которых отличны от десяти, употреблялись или предлагались в разное время. Естественным является предложение, что до того как человек принял к десятичному счислению, он пользовался при счете пальцами одной руки. Это привело его к созданию пятеричного счисления. Следы пятеричной системы счисления которой пользовались когда-то, вероятно все народы, сохранились в римской письменной нумерации. С несомненностью можно установить ясные следы пятеричного счисления у чукчей. Вот что сообщает о них уже не раз цитированный писатель Т. Семушкин, который работал ряд лет у чукчей: «Уроки арифметики чукотские дети любили не менее « разговора по бумажке» (чтения и письма). Но здесь помехой является их обычный счет пятерками, по числу пальцев на каждой руке и ноги. Взрослые чукчи таким счетом пользуются очень хорошо в пределах тысячи. Они редко ошибаются, хотя считают довольно долго. Для большого удобства они иногда снимают обувь, и счет производится на двадцати пальцах рук и ног. Пять человек составляют сотню. (20, 25-27)
Двоичная система счисления как самая прост
ая существовала, по- видимому, вначале у всех народов. При помощи черточек и пар точек в те времена записывали числа от нуля семи смысл этой таблички указал Лейбниц (1646-1716 гг.), который рекомендовал миссионерам, сообщившим ему эту запись использовать двоичную систему нумерации для обращения китайцев в христианство: христианская религия, по которой человек-нуль, ничто рядом с богом - единицей, должна быть по душе китайцам, в системе счисления которых фигурировали только знаки для 0 и 1. (11, 123-125)
Итак,
путь развития числа и счета очень сложный и для этого понадобилось несколько тысячелетий. Развитию чисел способствовало потребность числа в практической деятельности. В математике вначале было не число, а множество. В глубокой древности, чтобы считать предметы, устанавливали сравнение или между одним из множеств, или подмножеством другого множества предметов, т.е.человек воспринимал численность множества предметов без счета их. Например, о численности из пяти предметов он говорил: «Столько же, сколько пальцев на руке». Такой метод обладал недостатком: сравниваемые множества должны быть одновременно обозримы. Со временем люди нашли то общее, что существует между пятью пальцами и пятью камешками. Возникло представление о натуральном числе. Когда считали, они проговаривали «один», «два», «три», «четыре», и т. д. После того как понятие натурального числа сформировалось, числа стали самостоятельными. Затем появилась возможность изучать их как математические объекты. В настоящее время свойства натуральных чисел, действия над ними изучается разделом математики, носящим название «теория чисел».
1.2 Теоретико-множественный смысл понятия числа и арифметических действий над ними
Чтобы понять
, что такое натуральные числа, приведем такой пример. Между людьми имеются отношения, которые обозначаются словом «дружба». Каждый из вас должно быть, имеет друга или несколько друзей, и вам поэтому известно и понятно, что представляет собой это отношение. Но заметьте: имеется (существует), во-первых, отношения между людьми, называемое дружбой, во-вторых, наше (общечеловеческое) представления об этом отношении, имеется, в-третьих, слово обозначающее это отношение и наше представление о нем, и, наконец, имеется запись этого слова на каком-то языке (на русском, на немецком и т.д.). Примерно также обстоит дело с натуральными числами. Имеется свойства множеств предметов, состоящие в том, что все множества предметов можно разделить на классы, объединив в одном классе все множества, одинаковые по количеству предметов, также человечество исторически на протяжении многих веков выработало (создало) общечеловеческое (т.е. одинаковое для всех людей) представление об этих свойствах множеств предметов (подобные представления в науке называют моделями свойств). Эти представления и есть сами натуральные числа. Затем каждый народ разработал систему устной нумерации и письменной нумерации (которая принята большинством народов). (12, 5-9)
В основе устной нумерации всех наро
дов лежит идея группового счета, т.е счета предмета не по одному, а одинаковыми группами из этих предметов. Если нас в первую очередь интересует установление количества предметов в данном множестве, то указывая каким-либо образом на каждой из предметов множества, мы произносим названия натуральных чисел один, два, три и т.д. Конечно, при этом важно не пропустить ни один из предметов, и не сосчитать один и тот же предмет дважды. Если это выполнено, то, указав на последний предмет, мы называем натуральное число, которое указывает количество предметов в перечисляемом множестве. Если, например, указав на последний предмет, мы произносим «восемь», то это значит, что количество предметов в этом множестве равно 8. Значит, это множество содержит 8 элементов.
Заметим
, что в каком бы порядке мы не считали предметы множества, опыт показывает, что результат счета будет один и тот же. Если же нас интересует установление порядка между предметами данного множества, то при счете этих предметов мы используем порядковые названия натуральных чисел (первый, второй, третий и т.д.). Тем самым предметы множества мы как бы располагаем в ряд. Одновременно с этим мы устанавливаем и количество предметов в множестве. Если последний из перечисленных предметов оказался восьмым, в множестве имеется 8 элементов.
Дети должны уметь последовательно выделять признаки предметов («Что это? Для чего нужны? Какой формы? Какого размера? Какого цвета? Сколько?»). Сравнивать предметы и объединять их в группы в основе одного из выделенных признаков, в образование групп. Они выделяют признаки, общие для всей группы предметов или лишь для части предметов данной группы, т.е. выделяют подгруппы предметов по тому или иному признаку, устанавливать количественные соотношения между ними. Например: «Сколько машин? Сколько деревянных игрушек? Сколько металлических? Сколько больших игрушек? Сколько маленьких?»
В заключение можно предлагать придумать вопросы со словом
сколько, основываясь на умение выделять, признаки объектов и объединять их по общему для данной подгруппы или группы в целом признаку.
Каждый раз перед ребенком ставит вопрос: почему он так думает? Это способствует лучшему осознанию количественных отношений. Упражняясь, дети сначала устанавливают, каких предметов больше, каких меньше, а затем пересчитывают предметы и сравнивают числа либо сначала определяют количество предметов, попавших в разные подгруппы, а затем устанавливают количественные отношения между ними: «Чего больше, если треугольников 6, а кругов 5?».
Сравнивая совокупности предметов дети должны знать способы практического сопоставления их элементов: наложение, приложение, раскладывание предметов 2 совокупностей парами, использование эквивалентов для сравнения 2 совокупностей, наконец, соединение предметов 2 совокупностей стрелочками. Например, учитель рисует на доске 6 кружков, а с права - 5 овалов и спрашивает: «Каких фигур больше (меньше) и почему? Как проверить? А если не считать?» Кому-либо из детей предлагает каждый кружок соединить стрелочкой овалов . Выясняет, что 1 кружок оказался лишним, значит, их больше, чем других фигур, 1 овалов не хватила, значит, их меньше, чем кружков. «Что надо сделать, чтобы фигур стало поровну?» и т. д. Детям предлагается самим нарисовать указанное число фигур 2 видов.
В курсе математики начальных классов находит отражение теоретико-множественный подход к истолкованию сложения и вычитания целых неотрицательных чисел (натуральных и нуля), в соответствии с которым сложение целых неотрицательных чисел связано с операцией объединения попарно непересекающихся конечных множеств, вычитание - с операцией дополнения выделенного подмножества. Этот подход легко интерпретируется на уровне предметных действий, позволяя тем самым учитывать психологические особенности младших школьников.
Простейшей операцией над множествами является операция соединения (объединения) нескольких множеств в одно новое множество. Если мы имеем два множества А и В, то в результате получается новое множество С, такое, что каждый элемент с является или элементом множества n (А), или элементом множества n (В). И обратно: каждый элемент множества n (В) входят в множество n (С).

А В


С
Рис. 2.

Если
количество элементов множества n (А) равно а, а количество элементов множества n (В) равно в, то действие с помощью которого находят количество элементов в множестве n (С) - объединения множеств А и В, есть сложение чисел а и в, которое записывается так: а + в = с. При этом числа а и в называются слагаемыми, а число с - результат сложения чисел а и в называются их суммой.
Числовые равенства интерпретируются на числовом луче. Можно условно выделить три вида ситуаций, связанных с операцией объединения:
а) увеличение данного предметного множества на несколько предметов:

Рис. 3.
б) увеличение на несколько предметов множества, равночисленного данному:

Рис.4.

в) составление о
дного множества из двух данных:

Рис.5.
В процессе выполнения
предметных действий у ребенка формируется представление о сложении как о действии, которые связано с увеличением количества предметов. Другой простейшей операцией над множествами является операция вычитания (отнимания) при операции вычитания из одного множества элементов отнимают элементы другого множества. Так на рисунке 1 из множества n (С) можно отнять множество n (А) и останется множество n (В). При формировании у детей представлений о вычитании можно условно ориентироваться на следующие предметные ситуации:
а) уменьшение данного предметного множества на несколько предметов (множество предметов, которые удаляются, зачеркнуто):

Рис.6
.

б) умен
ьшение множества, равночисленного данному, на несколько предметов:

Рис.7.
в) сравнение двух предметных множеств, т. е. ответ на вопрос «На сколько предметов в одном множестве больше (меньше), и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.