На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Диплом Методика изучения вероятностно-статистической (стохастической) линии в курсе математики основной школы. Анализ восприятия материала учащимися: степень заинтересованности; уровень доступности; трудности при изучении этого материала; качество усвоения.

Информация:

Тип работы: Диплом. Предмет: Педагогика. Добавлен: 28.05.2008. Сдан: 2008. Страниц: 2. Уникальность по antiplagiat.ru: --.

Описание (план):


6
Содержание.

Введение
Глава 1
1.1 Обзор научной, методической и научно-популярной литературы по теме
исследования
1.2 Анализ учебников и учебных пособий
1.3 Основные принципы построения методики изучения стохастической линии в курсе математики основной школы
Введение

В настоящее время теория вероятностей завоевала очень серьезное место в науке и прикладной деятельности. Её идеи, методы и результаты не только используются, но и буквально пронизывают все естественные и технические науки, экономику, планирование, организацию производства, связи, а также такие далекие, казалось бы, от математики науки, как лингвистику и археологию. Сейчас без достаточно развитых представлений о случайных событиях и их вероятностях, без хорошего представления о том, что явления и процессы, с которыми мы имеем дело, подчиняются сложным законам теории вероятностей, невозможна продуктивная деятельность людей ни в одной сфере жизни общества.
В нашу жизнь властно вошли выборы и референдумы, банковские кредиты и страховые полисы, таблицы занятости и диаграммы социологических опросов. Общество все глубже начинает изучать себя и стремиться сделать прогнозы о себе самом и о явлениях природы, которые требуют представлений о вероятности.
Мы должны научить жить наших детей в вероятностной ситуации, а это, значит, извлекать, анализировать и обрабатывать информацию, принимать обоснованные решения в разнообразных ситуациях со случайными исходами. Именно ориентация на формирование личности, способной жить и работать в сложном, постоянно меняющемся мире, с неизбежностью требует развития вероятностно-статистического мышления у подрастающего поколения, а значит, эта задача должна быть решена уже в школьном курсе математики.
Как известно, современная концепция школьного математического образования ориентирована, прежде всего, на учет индивидуальности ребенка, его интересов и склонностей. Этим определяются критерии отбора содержания, разработка и внедрение новых методик, изменения в требованиях к математической подготовке учащихся. И с этой точки зрения, когда речь идет о формировании личности с помощью математики, необходимость развития у всех школьников вероятностной интуиции и статистического мышления становится насущной задачей.
Одновременно с этим само знакомство школьников с этой, очень своеобразной, областью математики, где между черным и белым существует целый спектр цветов и оттенков, возможностей и вариантов, а между однозначным "да" и "нет" существует еще "быть может", причем это "быть может" поддается строгой количественной оценке, способствует устранению укоренившегося ощущения, что происходящее на уроках математики никак не связано с окружающим миром, с повседневной жизнью. Согласно данным ученых-физиологов и психологов, а также по многочисленным наблюдениям учителей математики, в среднем звене школы заметно падение интереса к математике и связано это с тем, что у ученика зачастую создается ощущение непроницаемой стены между изучаемыми абстрактно-формальными объектами и реальным миром. Именно вероятностно-статистическая линия, или, как ее стали называть в последнее время, - стохастическая линия, изучение которой невозможно без опоры на процессы, наблюдаемые в окружающем мире, на реальный жизненный опыт ребенка, способна содействовать возвращению интереса к самому предмету "математика", пропаганде его значимости и универсальности.
Как известно, опыт преподавания в школе основ теории вероятностей в период реформы 60-70 гг. на формально-логическом уровне дал в основном негативные результаты, что привело к изъятию этого раздела из школьных программ: материал оказался сложным, плохо усваивался учащимися. К тому же неоднократно проводимые исследования знаний учащихся старших математических классов показали, сколь мало эти знания способствуют развитию вероятностной интуиции и статистического мышления.
Однако совсем недавно было вновь принято решение ввести этот материал в курс математики основной школы. Внедрение вероятностно-статистической линии в базовый школьный курс математики породило немало проблем. К его появлению оказались не готовы буквально все - от учителей математики до авторов учебников. Удивительно, но, обладая одной из наиболее известных и признанных во всем мире академических школ теории вероятностей, мы до сих пор не имеем ни общей концепции преподавания этого раздела математики в школе, ни достаточного количества учебных пособий для школьников, содержащих соответствующий материал.
Как показывает анализ учебников и учебных пособий, содержащих материал по данной теме, существуют проблемы как в вопросах изложения этого достаточно сложного материала в школьном курсе, так и в определении содержания, необходимого для успешного усвоения и понимания основ теории вероятностей и статистики и его соответствия содержанию и требованиям государственного стандарта по математике.
Таким образом, актуальность темы работы обусловлена:
· необходимостью полноценного изучения важнейших элементов теории вероятностей и математической статистики в основной школе в связи с огромной значимостью и важностью этого материала;
· «новизной» изучаемого материала, который долгое время отсутствовал в курсе математики основной школы;
· недостаточной разработанностью методики преподавания этого материала в школьном курсе математики;
· существованием проблем в вопросах изложения этого материала в различных учебных пособиях.
В связи с этим для исследования была выбрана тема «Понятие вероятности и элементы статистики в основной школе».
Проблемой исследования является поиск путей совершенствования методики изучения вероятностно-статистической линии в основной школе.
Объект исследования - процесс изучения элементов теории вероятностей и математической статистики в курсе математики основной школы.
Основные цели работы - изучить теоретические аспекты, разработать практические рекомендации по методике изучения стохастической линии в курсе математики основной школы, применить некоторые из них при изучении этого раздела школьниками, проанализировать и сделать выводы о правильности и целесообразности разработанных практических рекомендаций.
Гипотеза: изучение вероятностно-статистической линии школьниками на основе разработанной методики способствует полноценному и качественному усвоению этого достаточно сложного материала, развитию правильных представлений о данном разделе математики и умений применять полученные знания в практической жизни.
Гипотеза, проблема и цели исследования определяют следующие задачи:
· изучить и проанализировать научную, учебно-методическую и психолого-педагогическую литературу по теме исследования;
· на основе анализа литературы разработать методику изучения некоторых вопросов стохастической линии в курсе математики основной школы;
· на основе применения разработанных методических рекомендаций сделать выводы об их правильности и целесообразности;
· на основе опытного преподавания проанализировать, как воспринимается этот материал учащимися: степень заинтересованности при изучении этого материала, уровень доступности, трудности, возникающие при изучении этого материала, качество усвоения.
Для достижения целей работы, проверки гипотезы и решения поставленных задач были использованы следующие методы:
· изучение учебных пособий и методической литературы, содержащей этот материал;
· анализ психологической, педагогической и методической литературы по данной теме;
· опытное преподавание.
Основной опытно-экспериментальной базой является 9 класс средней школы № 37 города Кирова с углубленным изучением отдельных предметов.
Глава 1

1.1 Обзор научной, методической и научно-популярной
литературы по теме исследования.

Проанализируем основные научные источники по теории вероятностей и математической статистике и выявим, как отражены в них вопросы, отведенные для изучения в школьном курсе.
Число различных определений математической вероятности, предложенное теми или иными авторами научной литературы, очень велико. С другой стороны, каждое из них можно отнести к одной из 4 групп определений математической вероятности:
· определения, сводящие понятие вероятности к понятию «равновозможности» как к более примитивному понятию, - классическое определение вероятности.
· геометрическое определение вероятности.
· определения, основанные на частоте появления события в длинной серии экспериментов, - статистическое определение вероятности.
· аксиоматическое определение вероятности.
В научной литературе последовательность введения понятия вероятности различна.
Гмурман В.Е. в книге «Теория вероятностей и математическая статистика» рассматривает сначала классическое понятие вероятности, затем указывает его недостатки и вводит статистическое понятие вероятности и геометрическую вероятность. Далее он излагает теоремы сложения и умножения вероятностей и их следствия. Материал, посвященный статистике, содержит все понятия, касающиеся статистического распределения выборки, также рассматриваются понятия полигона и гистограммы частот.
Гнеденко Б.В. в книге «Курс теории вероятностей» тоже начинает введение в теорию вероятностей с классического определения. Позже, указывая его ограниченность, он вводит вначале геометрическое, а затем и статистическое определение вероятности. В более позднем издании в соавторстве с Хинчиным А.Я. в книге «Элементарное введение в теорию вероятностей» он использует только статистическое понятие вероятности.
Колмогоров А.Н., Журбенко И.Г., Прохоров А.В. в книге «Введение в теорию вероятностей» на простых примерах вводят основные понятия теории вероятностей. Первым рассматривается классическое определение вероятности, вторым - статистическое.
Пугачев В.С. в книге с тем же названием за основное определение берет статистическое определение вероятности и использует только его.
В. Феллер в книге «Введение в теорию вероятностей и ее приложения» определяет вероятность через сумму вероятностей элементарных событий и дает статистическое понятие вероятности.
Вентцель Е.С. в книге «Теория вероятностей» вначале вводит классическое определение вероятности. Далее, указывая недостаток такого толкования вероятности, вводится понятие частоты случайного события и на его основе дается статистическое определение вероятности. Также книга содержит сведения из области статистики. В частности, рассмотрены такие понятия, как статистическая совокупность, статистический (интервальный ряд), гистограмма.
Нетрудно заметить, что большинство авторов научной литературы, начинает излагать теорию вероятностей с классического определения вероятности. Я считаю, что это наиболее удобный путь введения понятия вероятности в высшей школе, так как он соответствует истории развития этого понятия и наиболее прост.
Завершая анализ научной литературы, хотелось бы отметить, что учебников для высшей школы, содержащих интересующий нас материал, существует достаточно много, но они не пригодны для среднего школьника, в силу сложности изложения темы. Поэтому главная проблема, стоящая перед учителями и авторами будущих учебников, состоит в том, что следует отобрать и сделать понятным для ученика обширный материал по теории вероятностей, которая преподается в вузе.
Обратимся теперь к методическим источникам.
Поскольку вероятностно-статистическая линия была введена в школьный курс математики не так давно, то в настоящее время существуют проблемы не только с реализацией этого материала в школьных учебниках, но и с готовностью самих учителей математики преподавать этот материал. Об этом и говорит в статье «О подготовке учителей к обучению школьников стохастике» Селютин В. Д. Автор считает, что школьников нельзя ориентировать на вузовские варианты построения курса теории вероятностей, поэтому учитель обязан владеть специфической методикой, направленной на развитие особого типа мышления и формирование особых, недетерминированных представлений у учащихся. Главным при изучении этой темы должен стать практический опыт учащихся, поэтому начинать обучение желательно с тех задач, в которых статистические сведения заданы изначально и требуется найти решение поставленной проблемы на фоне реальной ситуации.
Пример. Некий городской житель решил переехать в деревню. Сведения об урожайности (ц\га) картофеля в двух селах таковы:
Село А: 180, 50, 60, 100, 170, 60, 150, 90, 120, 70, 60, 160, 90, 170, 90, 180, 160.
Село Б: 100, 110, 120, 100, 100, 110, 100, 120, 130, 130, 100, 130, 110.
Какому из мест он отдаст предпочтение?
В условиях этой задачи критерием принятия решения должен служить разброс значений урожайности. В селе А разброс больше, чем в селе Б. В селе А размах - разность между самым наибольшим и самым наименьшим значениями урожайности равен 180-50=30, в селе Б эта разность равна 30. Средняя урожайность картофеля в первом селе немного выше, чем во втором. Но несмотря на это, в селе А климатические условия таковы, что высокоурожайные для картофеля годы сменяются низкоурожайными. Видимо, лучше выбрать несколько меньшее значение средней урожайности, но при большей её стабильности. Устойчивость урожая особенно важна для человека, ещё не имеющего опыта ведения приусадебного хозяйства.
Владение искусством стохастических рассуждений - непременное условие успешной деятельности учителя математики. Нужен взгляд на стохастику не только как на систему понятий, фактов, утверждений, а как на специфическую методологию, охватывающую вероятностные и статистические умозаключения в их взаимосвязи. Анализ тех ситуаций, где для решаемой проблемы не оказывается однозначного или определенного ответа не должен вызывать растерянности учителя. Особенность стохастических умозаключений проявляются, прежде всего, в ходе интерпретации результатов решения математической задачи, возникшей на базе статистической информации.
Выступая в качестве дирижера и помощника учащихся, учитель призван прививать им критическое отношение к статистическим выводам и обобщениям, умение правильно истолковывать статистическую информацию. В конкретных ситуациях ему предстоит показать, что определенно подобранные статистические показатели могут служить основой для получения ложных выводов о происходящих событиях в политической и экономической жизни общества. Развитие у будущих взрослых граждан критического мышления, умений понимать скрытый смысл того или иного сообщения является важнейшей задачей учителя при изучении стохастики.
Приступая к обучению школьников стохастике, учитель должен ясно представлять себе, чем обусловлена необходимость введения в школу новой содержательно-методической линии. Осознание учителем целей обучения стохастике в школе, видение их соотношений с общими целями обучения математике и места стохастике в ряду других тем, знание итоговых требований с стохастической подготовке учащихся составляют важнейший общезначимый компонент методической готовности учителя математики к реализации новой линии.
Еще одна статья этого автора «О формировании первоначальных стохастических представлений» посвящена проблемам развития вероятностно-статистического мышления на первых этапах обучения. Селютин В. Д. рассматривает трудности изучения и восприятия учащимися этого материала и ставит вопрос о том, как, с помощью каких средств можно организовать формирование первоначальных стохастических представлений у школьников. Автор предлагает стохастические игры, эксперименты со случайными исходами, статистические исследования, мысленные статистические эксперименты и моделирование и рассматривает примеры их использования.
Пример. Учащиеся проводят в классе исследование на тему «Самый популярный певец». Для чего каждый ученик класса записывает на листочке бумаги фамилию эстрадного певца (певицы), который больше ему нравится, а кто-либо один собирает все эти листочки. Листочки раскладываются по группам, и подсчитывается их количество в каждой группе. Полученные сведения оформляются в виде таблицы. А по ней естественно задать учащимся вопрос: «Можно ли судить по таблице, кто самый популярный певец?» Возможно, учащиеся ответят, что в разных странах свои популярные певцы. Тогда возникает другой вопрос: «Можно ли по этой таблице судить, кто самый популярный певец в нашей стране?» Выясняется, что и об этом по данной выборке бесспорного ответа дать нельзя. Таким образом, в сознание учащихся внедряется идея о том, что вывод, сделанный на основе опыта, должен соответствовать выборке.
В статье Бунимовича Е. А. «Вероятностно-статистическая линия в базовом курсе математики» обоснована необходимость внедрения этой линии в школьный курс математики, ее значимость и важность для современного образования. Автор пишет о результатах проведенной экспериментальной работы по изучению вероятностных представлений школьников, на основании которых можно сделать вывод о том, что даже хорошее знание и понимание других разделов математики само по себе не обеспечивает развития вероятностного мышления и не избавляет даже от тривиальных вероятностных заблуждений и предрассудков. Поэтому нужен особый подход при изучении этой темы, который, в первую очередь, будет направлен на формирование жизненно необходимых представлений о вероятности и статистике.
Федосеев В. Н. в статье «Элементы теории вероятностей для 7-8 классов средней школы» излагает фрагменты курса «Элементы теории вероятностей», в котором рассматриваются наиболее простые примеры дискретных пространств элементарных событий. В начале курса вводятся следующие понятия: испытание, единичное испытание, исходы испытаний, случайные исходы испытаний, множество исходов испытания. Примеры и задачи, используемые в курсе, касаются испытаний с небольшим числом случайных исходов. Множества исходов таких испытаний можно определить простым перебором или построить с помощью таблиц и деревьев исходов. Автор статьи соглашается с мнением известного американского математика В. Феллера о том, что изучение дискретных пространств элементарных событий позволяет без использования сложного математического аппарата ввести ученика в круг основных идей теории вероятностей и её приложений, и на этой основе пытается построить изучение курса.
Гольдфаин И. И. в статье «Элементы теории вероятностей в современном школьном курсе биологии » пишет о противоречии между задачами школьного курса теории вероятностей, решать которые научить школьников нетрудно, и вероятностными представлениями, сформировать которые у тех же школьников весьма непросто. Это противоречие обусловлено в значительной степени тем,, что изучение основ теории вероятностей начинают, как правило, с ее простейшего классического варианта, основанного на понятии равновозможных исходов. В этом и заключается принципиальный недостаток классической вероятности - определение нового понятия «вероятность» через неопределенное понятие «равновозможный исход опыта». Если ученик уже приобрел соответствующие интуитивные представления, то такое определение вполне приемлемо. Но если нужных интуитивных представлений нет, то такое определение вероятности повисает в воздухе. По существу, именно с этим связано предложение начинать изучение теории вероятностей со значительно более сложного статистического определения. Поэтому, автор считает, что учителю математики следует обратить пристальное внимание на современную школьную программу по биологии, которая содержит элементы генетики. А некоторые механизмы передачи наследственной информации, которые изучает эта наука, полностью укладываются в схему классической вероятности. Поэтому изучение биологии будет способствовать развитию и укреплению вероятностных представлений у учащихся, более глубокому и осознанному восприятию этого довольно непростого материала.
В статье Булычева В. А. «Вероятность вокруг нас и в школьном учебнике математики» рассмотрены задачи последнего раздела «Вероятность вокруг нас» учебника «Математика - 6» под редакцией Г. В. Дорофеева и И. Ф. Шарыгина. Главная особенность этих задач - их проблемность. Это не задачи-упражнения, а задачи-проблемы. Именно поэтому многие их них имеют не совсем «математические» формулировки, оставляя ученику возможность самостоятельно сделать постановку, точно описать условие и сформулировать вопрос.
Таким образом, авторы всей вышеперечисленной методической литературы признают сложность и новизну этого материала и сходятся во мнении, что процесс обучения стохастике должен быть организован таким образом, чтобы изучаемые явления и закономерности не просто усваивались и запоминались учащимися, но и способствовали формированию правильных стохастических представлений, пониманию тесных взаимосвязей между вероятностно-статистической линией и деятельностью любого человека, развитию умений применять полученные знания в повседневной жизни .
1.2 Анализ учебников и учебных пособий.
Согласно требованиям государственного стандарта по математике содержание материала, обязательного изучаемого по данной теме в курсе основной школы, должно включать:
· Понятие и примеры случайных событий;
· Понятия частоты события и вероятности;
· Равновозможные события и подсчет их вероятности;
· Представление о геометрической вероятности;
· Представление данных в виде таблиц, диаграмм, графиков;
· Средние результаты измерений;
· Понятие о статистическом выводе на основе выборки.
Согласно требованиям стандарта по математике после изучения данной темы учащиеся должны уметь:
· Находить вероятности случайных событий в простейших случаях;
· Находить частоту событий, используя собственные наблюдения и готовые статистические данные;
· Вычислять средние значения результатов измерений;
и использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
· Сравнения шансов наступления случайных событий, оценки вероятности случайного события в практических ситуациях, сопоставление модели с реальной ситуацией;
· Понимания статистических рассуждений;
· Анализа реальных числовых данных, представленных в виде диаграмм, графиков, таблиц.
Попытаемся проанализировать ныне действующие учебники и учебные пособия с позиции требований государственного стандарта по математике по данной теме.
Попытка построения полноправной вероятностно-статистической линии предпринята в рамках учебных комплектов: "Математика 5", "Математика 6" под редакцией Г.В. Дорофеева и И.Ф. Шарыгина, а также "Математика 7", "Математика 8" и "Математика 9" под редакцией Г.В. Дорофеева.
В учебнике для 5 класса представлены начальные сведения из области статистики, в частности, представление данных в виде таблиц и диаграмм. Материал выделен в отдельную главу, которая так и называется - "Таблицы и диаграммы". В этой главе авторы учат школьников извлекать и анализировать информацию, представленную на диаграмме или в виде таблицы. Задачный материал, представленный в учебнике, особым разнообразием не отличается. В основном, школьники учатся работать с готовыми таблицами и диаграммами, сравнительно немного заданий на самостоятельное составление таблиц и диаграмм по представленной информации. Также немного заданий, подчеркивающих удобство использования таблиц и диаграмм для представления разнообразной информации, что является, на мой взгляд, существенным недостатком, поскольку таблицы и диаграммы значительно структурируют информацию, помещаемую в них, делают ее более наглядной, а на это в учебнике не сделан соответствующий упор.
В 6 классе авторы снова возвращаются к этому материалу, где знакомят учащихся с уже более сложными таблицами, а также указывают на различия в применении столбчатых и круговых диаграмм. Задания более сложные по сравнению с 5 классом, но их недостаточно. Авторы вновь делают упор на работу школьников с готовыми таблицами и диаграммами, забывая о необходимости научить детей самостоятельному составлению таблиц и диаграмм.
Также в конце 6 класса школьникам предлагается начать изучение основ теории вероятностей. Этому посвящена отдельная 8 глава «Вероятность случайных событий». Школьники учатся оценивать вероятность наступления несложных случайных событий сначала на качественном уровне, а количественный подсчет вероятностей происходит позднее. В параграфе «Частота и вероятность случайного события» учащиеся знакомятся с понятиями частоты события как отношения числа наступления события к числу экспериментов, на конкретном примере показано, что же такое вероятность случайного события, прослежена её связь с частотой, введено обозначение вероятности, но пока авторы не дают строгого определения вероятности с использованием частоты события, а говорят лишь об "оценке вероятности случайного события по его частоте" на конкретном примере. Вероятности достоверных и невозможных событий авторы вводят как определения, со словами “естественно считать” без использования понятия частоты. Становиться непонятным, для чего вообще нужна частота: я считаю, дети вполне способны самостоятельно прийти к выводам о вероятности этих событий, опираясь на предыдущий материал и их определения. Аналогичным образом авторы подводят учащихся к классическому определению вероятности, показывая способ подсчета вероятности равновозможных событий на конкретном примере. Изложение материала в учебнике, в целом, логично и последовательно, но, несмотря на это, можно сделать несколько существенных замечаний.
Во-первых, в начале главы, говоря о случайных событиях, авторы не вводят обозначения для события, принятое в математике, однако в заданиях оно уже присутствует. Целесообразно, сразу после определения случайного события ввести и обозначение для него, как это всегда принято в математике при введении нового понятия.
Во-вторых, понятие равновозможных событий автор характеризует так: "Вы бросаете монету. Может выпасть "орел", а может - "решка". Возможности наступления этих событий одинаковы. Такие события называются равновозможными или равновероятными". Такое объяснение не только нельзя считать определением, но и оно вряд ли будет понятно школьникам. Равновозможность или равновероятность наступления этих событий целесообразнее попытаться объяснить следующим образом: "Вы бросаете монету. Может выпасть "орел", а может - "решка", но с математической точки зрения обе стороны монеты одинаковы, и ни одна из них не лучше и не хуже другой оставшейся, поэтому мы можем утверждать, что возможности наступления этих событий - выпадение "орла" или выпадение "решки" одинаковы, а значит события "выпадет "орел" и "выпадет "решка" равновозможны или равновероятны.
В-третьих, система задач, предлагаемых автором для закрепления и усвоения знаний, не всегда полна, поэтому учителю просто необходимо использовать дополнительную литературу для подготовки к уроку.
Учебник для 7 класса призван углублять, конкретизировать и уточнять знания по основам теории вероятностей, полученные учениками в 6 классе: дается строгое определение относительной частоты случайного события, вводится статистическое определение вероятности. Большинство заданий практической части направлены на формирование правильного понимания частоты случайного события и умений находить вероятность события по его частоте. Очень мало заданий, в которых требуется провести статистическое оценивание и прогноз, что является существенным недостатком, поскольку именно такие задания помогают развитию у школьников статистического мышления и интуиции.
В 8 классе предполагается изучение статистических характеристик ряда: моды, медианы, размаха и среднего арифметического. Задачи, предлагаемые авторами для решения, немногочисленны и не обладают практической направленностью. В большинстве своем, это задачи на нахождение статистических характеристик для имеющихся данных и на построение ряда по готовым статистическим характеристикам. Несомненно, такие задания нужны для отработки определений статистических характеристик и для их качественного и полноценного усвоения, но главный недостаток таких задач - их абсолютная бесполезность с практической точки зрения. Решая такие задачи, школьник просто оперирует с набором новых для него понятий, усваивая их и запоминая, не вдумываясь в то, что в каждом конкретном примере эти статистические характеристики несут в себе огромный практический смысл, опираясь на который, можно спрогнозировать, оценить и сделать важные выводы, полезные в этой ситуации. Поэтому задачи такого типа не должны занимать главенствующего места в учебнике.
В этом же классе изучение вероятностно-статистической линии продолжается рассмотрением классического определения вероятности и геометрической вероятности.
В учебнике для 9 класса интересующий нас материал изложен в главе «Статистические исследования». Глава «Статистические исследования» является завершающим фрагментом вероятностно-статистической линии курса. Здесь осуществляется переход от описательной статистики, которой учащиеся занимались с 5 по 8 класс, к начальному знакомству с математической статистикой. В главе рассматриваются доступные учащимся примеры комплексных статистических исследований, в ходе которых используются полученные ранее знания о случайных экспериментах, способах представления данных и статистических характеристиках, а также вводятся некоторые новые понятия, отражающие специфику данного исследования.
Для того чтобы сформировать у учащихся представление о статистическом исследовании, в учебнике рассмотрено 3 примера, близкие жизненному опыту школьников, соответствующие названиям параграфов в главе. Первый из них - исследование качества математической подготовки школьников.
В тексте отражены основные этапы этого исследования: обсуждается проблема построения репрезентативной выборки, демонстрируются приемы сбора данных и их наглядного представления, проводится анализ полученных результатов. По сути в учебнике представлен алгоритм, который используют статистики при проведении подобных исследований. Основная цель состоит в том, чтобы, опираясь на представленный образец, учащиеся при решении задач смогли воспроизвести его полностью или частично. При описании исследования используются уже известные учащимся вероятностно-статистические понятия, а также вводятся некоторые новые. Новые понятия возникают естественным путем, когда этого требует логика изложения. Это касается таких понятий, как генеральная совокупность, выборочное обследование, репрезентативная выборка, ранжирование ряда данных, полигон частот, интервальный ряд и гистограмма. Но авторы в тексте учебника не обращают внимание школьников на неоднозначность при построении интервального ряда, из-за которой при решении одной задачи могут получаться разные гистограммы, а также различные средние арифметические, что является, на мой взгляд, существенным недостатком.
Анализируя весь учебный комплект в целом, необходимо отметить соответствие содержания учебников требованиям государственного стандарта по математике. Но с методической точки зрения важно отметить некоторые недостатки данного учебного комплекта.
Во-первых, авторы рассматривают в учебниках, как того требует стандарт, все 3 определения вероятности: статистическое, классическое и геометрическое, но все определения разнесены по времени, то есть изучаются в разных классах и между ними не прослеживается никакая взаимосвязь. Не указаны недостатки и достоинства того или иного определения, области их применений, особенности каждого из определений вероятности. Изучение стохастической линии завершается статистическим материалом, но отсутствует подведение итогов изучения этой линии в основной школе, в конце обучения авторы словно забывают о вероятности вовсе. Следствием всего этого может быть неверное представление учащихся о вероятности случайного события: в каждом конкретном случае учащимся будет затруднительно выяснить, какое из понятий вероятности здесь применять и почему.
Во-вторых, задачный материал, предлагаемый в учебниках, как уже отмечалось выше, неполон и недостаточен. Задания, в основном, однотипные и для качественного усвоения учебного материала учителю просто необходимо использовать дополнительную литературу. Среди задач, представленных в учебниках, сравнительно немного задач, ценных с практической стороны, действительно служащих для формирования вероятностно-статистического мышления у учеников, иллюстрирующих тесную взаимосвязь изучаемого материала с действительностью.
Рассмотрим еще несколько учебных пособий, призванных восполнить отсутствие вероятностно - и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.