На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Курсовик Образовательные функции методологии науки в школьном обучении. Система методологических знаний и умений в средней школе. Структура физического знания. Методология школьного эксперимента. Порядок и инструменты контроля знаний и умений учащихся по физике.

Информация:

Тип работы: Курсовик. Предмет: Педагогика. Добавлен: 24.02.2011. Сдан: 2011. Страниц: 2. Уникальность по antiplagiat.ru: --.

Описание (план):


43

/
1. Образовательные функции методологии науки в школьном обучении
Стремительное развитие науки и техники, проникновение научных методов во все сферы человеческой деятельности вызвали необходимость формирования творческих и познавательных способностей каждого ученика. Главным показателем эффективности обучения становится не только и не столько сумма предметных знаний, усвоенных учащимися, сколько сформированность у них умения и навыков самостоятельно приобретать новые знания в процессе учебной и дальнейшей трудовой деятельности. Неким «сухим остатком» всего обучения физике, когда будут позабыты частные факты, формулы, выводы, определения, должны остаться фундаментальные знания и умения, которые позволят человеку, независимо от рода его деятельности, разобраться в новых явлениях, тенденциях, продуктах научно-технического прогресса, успешно осуществлять наиболее эффективный подход к решению производственных проблем, занять активную жизненную позицию в современном обществе.
Одним из главных условий творческого, да и любого вообще усвоения знаний является определенная система мотивов. У различных исследователей она различна: у одних - это глубокое чувство интеллектуального наслаждения или удовлетворения, которое может вызвать сам процесс творчества, у других - чувство долга перед учениками или согражданами своей страны (патриотизм), у третьих - престиж, честолюбие и т.д.
Какова же мотивация овладения основами наук у учащихся, каковы движущие силы и источник умственного развития школьника?
Хорошо известно, что учащийся эффективно овладевает только тем, что для него интересно и актуально, что соответствует его потребностям и запросам, т.е. в процессе обучения он выступает как личность со своими собственными потребностями и интересами.
В детстве познавательные потребности проявляются более заостренно. А. Эйнштейн как-то заметил, что его «замедленное» развитие в детстве позволило ему уже взрослым ставить природе «детские» вопросы, которые обычно ускользают от взрослого человека. Стремление к объяснению вопросов, возникающих в школе или вне ее, лежит в самом существе развивающегося ребенка. Дети интуитивно стремятся к упорядоченности во внешней среде. Поэтому они получают большое удовлетворение, когда сложным для них явлениям могут дать уверенное объяснение.
Эта врожденная искорка искренней и бескорыстной любознательности при правильно организованном обучении может перерасти в устойчивый познавательный интерес. Многие исследователи отмечают и тот факт, что при мотивированном обучении наблюдается меньшая утомляемость учащихся.
К понятиям «познавательная потребность» и «познавательный интерес» примыкает и понятие «стимул». Последний является конкретным выражением мотивов, побудительной причиной действий и поступков учащегося.
Все многообразие стимулов, определяемое различием наследственных качеств, воспитанием и т.д., психологи делят на два типа, условно называемых внешними и внутренними (по отношению к процессу познания).
Внешние стимулы - это награждения и поощрения, стремление быть первым (честолюбие), ожидание будущих благ, угрозы я т.д. Сама цель не является здесь главным моментом, а зачастую превращается в свою противоположность - некоторое препятствие, которое надо преодолеть для получения ожидаемого поощрения. Трудность исполнения или недостаточность стимулирования приводят иногда к психическому напряжению, внутренним коллизиям. Нередко в школьной практике можно встретить отрицательные последствия такого стимулирования: стремление к шпаргалкам, безразличие по отношению к учебе и т.д.
Внутренние стимулы исходят из самой цели обучения: усвоение и применение знаний. Внутренним стимулом является интерес к самому процессу познания (учащиеся об этом говорят так: люблю решать задачи, делать опыты, узнавать о жизни и деятельности ученых и т.д.).
Учебные ситуации с внутренними стимулами также требуют умственного и волевого напряжения. Вместе с тем они связаны не с «борьбой с самим собой», а лишь с внешними трудностями постижения истины, поэтому не вызывают психических перегрузок и являются оптимальными с педагогической точки зрения.
Проблема формирования у учащихся устойчивых познавательных интересов не может быть успешно решена без создания позитивного эмоционального отношения учащихся к знаниям, направленного на активное их усвоение. [1]
Одним из основных требований к учебному материалу должно быть использование его аффективных свойств. Он должен вызывать у школьника определенные переживания - эмоциональные (радость, печаль, гнев, страх и т.д.), эстетические (восторг, восхищение и т.д.), этические (одобрение, брезгливость, осуждение, презрение и т.д.). Как показывают исследования психологов и педагогов, материал, вызывающий сильные положительные чувства, заучивается легче, чем безразличный и скучный.
Тот же эффект вызывают и отрицательные чувства, если они связаны с информацией, а не с самим учебным процессом. Например, вид незнакомых и громоздких формул может вызвать нежелание читать учебник. [3]
Логическое совершенство физических теорий, точность и лаконизм определений и формулировок законов, «изящные» формулы вызывают, как правило, у школьников эстетическое наслаждение учебной деятельностью, становятся надежными стимулами их познавательной активности. Наоборот, перегрузки, непонятное и громоздкое объяснение нового материала, постоянное напоминание о чувстве долга и т.д. - все это вызывает у школьников отрицательные чувства по отношению к учению.
Важным средством формирования познавательных интересов школьников, воспитания у них эмоциональности как черты личности могут стать те элементы научной биографики, которые показывают романтику научного поиска. Поэтому нужно не ограничиваться в кратких справках о творчестве ученых перечислением их заслуг в области физики, а давать эмоциональную оценку их жизни и творчества, стараться передавать учащимся то волнение, интеллектуальное удовлетворение и приподнятость, которые испытывали ученые при открытии нового для них факта, решении задачи, над которой они долго и напряженно работали. Так, рассказывая об открытии Архимедом закона плавания тел, следует обратить внимание учащихся и на ощущение радости открытия, интеллектуального экстаза, который испытал ученый (согласно красивой легенде, возбужденный Архимед выскочил из ванны и побежал сообщать о своем открытии, крича: «Эврика!» - слово, ставшее с тех пор обозначением пика творческого процесса).
Остановимся теперь на второй стороне познавательной функции методологии науки в школьном обучении.
Так как развитие познавательного интереса у школьников происходит одновременно с развитием познавательных способностей, то лучше говорить о двух взаимосвязанных сторонах единой познавательной функции: мотивационной и развивающей. Соотношению обучения и умственного развития в педагогической теории и школьной практике уделяется особое внимание. Стало общепринятым положение о том, что активное преодоление учащимися трудностей в процессе усвоения учебного материала является движущей силой умственного развития ребенка. В свою очередь, эффективность усвоения в значительной степени зависит от уровня сформированности у школьника умений и навыков интеллектуального характера.
В связи с этим возникает вопрос, насколько специальное формирование методологических и науковедческих знаний у учащихся в процессе обучения физике может создать общий навык научного подхода к решению задач, возникающих при овладении знаниями по другим школьным дисциплинам, или в более широком плане - возможно ли в процессе обучения физике сформировать так называемые обобщенные познавательные навыки, которые будут использованы учащимися в их учебной и дальнейшей трудовой деятельности. Исследования ряда психологов убедительно доказали, что в условиях правильного обучения учащийся осуществляет перенос интеллектуальных приемов, которыми он овладел.
Например, в процессе учебного физического эксперимента учащийся приобрел интеллектуальные навыки точного измерения, взвешивания, оценки погрешности эксперимента, критического подхода к результатам своего исследования и т.д., т.е. то, что составляет в целом научный подход к экспериментальной деятельности. Эффективность такого приобретения будет определяться не только тем, насколько школьник сумел использовать эти навыки в процессе учебной деятельности, но, главным образом, тем, как он будет использовать приобретенные навыки в дальнейшей трудовой деятельности, непосредственно не имеющей с физикой ничего общего. Положительный прогноз такого переноса навыков обосновывается двумя факторами: во-первых, научный подход обладает достаточной общностью и проявляется одинаковым образом во всех сферах научной и практической деятельности; во-вторых, человек, уже овладевший научным методом, под сильным эмоциональным воздействием науки может осознанно руководить самим процессом переноса нужных ему интеллектуальных. навыков па свою будущую деятельность.
Выработка у учащихся устойчивого и современного стиля мышления сделает их труд поистине творческим, высокопроизводительным, приносящим большое удовлетворение. В этом главные истоки массовости движения за повышение производительности труда в нашей стране, имеющего громадное социальное значение. Вот почему формирование у учащихся обобщенных познавательных умений и навыков, наряду с обобщением предметных знаний, должно стать одной из главных задач обучения.
Стиль мышления учащихся предполагает их познавательную активность, без которой невозможен эффективный процесс учения. Наибольшей активности в учебной деятельности можно добиться при проблемном обучении, требующем от учащихся продуктивного мышления. Схематично процесс решения учебной проблемы можно представить следующим образом. В процессе учения школьник попадает в ситуацию, когда ему необходимо ответить на заданный вопрос или решить задачу, и вместе с тем он чувствует, что не может этого сделать на основе имеющихся у него знаний - назревает «познавательный конфликт» (проблемная ситуация). Необходимость выйти из создавшейся проблемной ситуации заставляет учащегося проделать анализ, вскрыть противоречия между имеющейся информацией и искомыми результатами. Из этого анализа и вырастает постановка проблемы, которую он должен решить.
В процессе же обучения проблему, как правило, выдвигает учитель, однако учащиеся должны ее осознать и самостоятельно решить.
Познавательная деятельность учащегося достигает наивысшего уровня-творческого усвоения знаний, если он сам формулирует проблему.
Внутренний механизм решения проблемной ситуации характеризуется особыми «рычагами», приводящимися в действие в следующей последовательности: во-первых, чувство удивления, овладеваемое учеником при решении необычной для него проблемы; во-вторых, метод проб и ошибок, носящий случайный, логически необоснованный характер; в-третьих, интуиция («интеллектуальное видение», «внутреннее озарение»), которая дает возможность как бы предвидеть результат решения проблемы, и, в-четвертых, логические рассуждения, приводящие к обоснованию идеи, выдвинутой интуитивно.
Как видим, творческое усвоение знаний весьма близко научному поиску.
Многие ученые-педагоги, философы, психологи представляют учение как специфическую форму научного познания и обосновывают единство обоих процессов. Однако единство научного и учебного познания не означает их тождественности. Наличие целого ряда отличий между учебным и научным познанием не позволяет механически переносить методы науки в учебный процесс. Среди таких отличий наиболее существенными являются следующие.
Во-первых, открытие, сделанное в ходе научного исследования, получает общественно-историческую значимость и является объективно новым в науке; «открытие» же, сделанное учеником в процессе учения, является субъективно новым, т.е. новым по сравнению с тем, что ученику было известно до того, и представляет собой скачок в его собственном умственном развитии.
Во-вторых, перед ученым стоит настоящая наука со всеми ее сложностями, перед учеником - только «основы науки» - методически адаптированный курс, учитывающий цели и задачи образования, поставленные обществом в данный период времени.
В-третьих, ученый в ходе исследования «бредет» в потемках, добывая истину не на «столбовой дороге», без руководства и подсказки, совершенно самостоятельно, В учебном процессе учащийся добывает знания под руководством учителя.
В-четвертых, для ученого добытые знания становятся средством дальнейших поисков, для учащегося в большей степени усваивание результатов научного познания является самоцелью.
В-пятых, ученый имеет дело с одной наукой, точнее, какой-нибудь ее узкой областью, стремясь за счет сужения объема добиться большего проникновения в глубь проблемы. Учащийся же имеет дело со множеством наук, учебный процесс в смысле содержания неизбежно носит энциклопедический характер, охватывая все области научного знания, накопленного в процессе развития человечества.
В-шестых, научное познание закономерно, оно не считается в конечном счете с индивидуальными чертами исследователя, обучение же необходимым образом учитывает возрастные и познавательные возможности учащегося.
Таким образом, хотя оба процесса познания имеют общую гносеологическую основу, они вместе с тем отличаются в логическом, психологическом и дидактическом планах. Учитывая эти различия, необходимо так строить обучение, чтобы усвоение учащимися содержания школьного курса физики осуществлялось путем самостоятельного учения в сокращенной «квазиисследовательской» форме, воспроизводящей действительную научную ситуацию. В результате такого обучения можно сформировать у школьников умения, характерные для человека, мыслящего творчески подвергать критическому анализу существующие знания; видеть границы определенных теорий и законов; не быть слугой у «здравого смысла», не бояться выходить из рамок общепринятого; не фетишизировать авторитеты науки; соблюдать осторожность и быть самокритичным в оценке результатов собственной деятельности; не подгонять факты под готовые представления о них. [1]
1.1 Методы обучения

При практической реализации педагогической технологии особое место занимает выбор методов обучения, так как от этого в значительной степени зависит результативность применения технологии.
Существует несколько классификаций методов обучения. Наиболее широко распространена классификация по способу предъявления учебной информации.
Есть классификация основанная на степени самостоятельности ученика. Для реализации данной технологии наиболее удобна классификация, основанная на различии алгоритмов достижения цели.
Если ученик знает, из какого знания надо исходить, через какие промежуточные результаты надо пройти в изучении темы, каким образом их достичь, то его функции в обучении сводятся к запоминанию всего этого и воспроизведению в нужный момент.
Если до ученика не доводятся промежуточные результаты, но известно все остальное, то имеет место программированное обучение. Чаще всего оно реализуется с помощью компьютера.
Если же наоборот, открыты промежуточные результаты, но неизвестны пути их достижения, то ученику приходится пробовать разные пути, пользуясь множеством эвристик. Так повторяется после каждого промежуточного результата. Это стандартная схема эвристического поиска.
При проблемном методе обучения неизвестны ни промежуточные результаты, ни пути их достижения. Ученик попадает в проблемную ситуацию, так как имеет противоречие между имеющимися знаниями и необходимыми. Его поиск приобретает более сложный характер.
В модельном методе не выделяются также и начальные условия. Они отбираются самим учеником, в зависимости от его понимания задачи. Примерами реализации данного метода являются разнообразные уроки в виде вариаций деловых игр: урок-суд, урок-аукцион, урок - пресс-конференция и другие.
1.2 Система методологических знаний и умений в СШ

Для реализации на практике образовательных и воспитательных функций методологии науки необходимо разработать целостную систему формирования у учащихся методологических знаний и умений. Эти знания и умения довольно обширны, поэтому возникает проблема их отбора в учебных целях.
С точки зрения основных задач совершенствования обучения методологические знания и умения должны:
- служить сознательному усвоению физических знаний, углубленному пониманию сути изучаемых явлений и закономерностей;
- способствовать выработке правильного, научного мировоззрения;
- раскрывать характер и диалектику научного познания, вооружать учащихся общенаучными методами познания;
- способствовать преодолению узкопрактического понимания физики как науки, показывая последнюю как один из аспектов общечеловеческой культуры и основу современной техники;
- содействовать развитию любознательности, интереса к овладению знаниями, творческих способностей и физического мышления, интеллектуальных умений;
- способствовать формированию таких черт личности, как патриотизм, гуманизм, трудолюбие, стремление принести людям пользу.
Выделенный для изучения дидактический материал должен:
- быть компактным и неразрывно связанным с предметными знаниями;
- представлять интерес для учащихся, быть увлекательным, вызывая положительную мотивацию к учению.
Предлагаемая нами система методологических знаний и умений включает следующие направления, вокруг которых обобщается весь учебный материал второй ступени курса физики средней школы:
- Научный эксперимент и методы экспериментального (эмпирического) познания.
- Физическая теория и методы теоретического познания.
- Стержневые методологические идеи физики.
- Основные закономерности развития физики. [4]
1.3 Методика изучения физики

Методика изучения физики может быть представлена в виде определенной последовательности ступеней работы. Эти ступени четко структурируют каждый урок (речь идет о сдвоенных уроках в начале учебного дня, идущих каждый день в течение 3-4-х недельного периода - учебной эпохи-погружения по данному предмету). Более того, полный «цикл» изучения каждой единичной темы (понятия, явления, закона), представляющий данную последовательность методических этапов, входит в состав трех последовательных уроков. В конце первого урока происходит первый шаг изучения - эксперименты и их описание. Второй урок полностью посвящен проработке и анализу наблюдений и формулированию и уяснению новых понятий и закономерностей. И в третьем уроке, занимая совсем немного времени, происходит применение и закрепление полученных знаний. При этом темп работы над материалом довольно высок - ведь в конце второго урока ставятся новые эксперименты, которые прорабатываются на третьем. Также на втором уроке имеет место и закрепление материала, который был рассмотрен в основной части предыдущего урока.
Таким образом, каждый урок, имея стройную ритмическую организацию (последовательность методических этапов), имеет вместе с тем три слоя тематического содержания: первый (основной) - проработка наблюдений и описаний (фактического материала) и формулирование новых понятий и закономерностей; второй (он обращен в основном к предыдущей теме) - применение и закрепление знаний; третий, обращенный к будущему обсуждению, - новые явления (эксперименты, описания).
Последовательность методических этапов изучения одной темы
1. Наблюдение явлений.
2. Описание наблюдений.
3. Пауза, между наблюдением и обсуждением пролегает ночь.
4. Вспоминание описания и обсуждение, нацеленное на получение закономерности.
5. Уяснение закономерности при ответах на вопросы и решении задач.
6. Запись конспекта урока.
7. Новая пауза.
8. Закрепление изученных ранее закономерностей в процессе применения к анализу новой ситуации (явления).
Первым шагом является наблюдение явлений.
Это могут быть и наблюдения непосредственно на природе, однако, в подавляющем большинстве случаев, это - эксперимент, выполняемый в лабораторных условиях. Эксперимент может быть как демонстрационным (учитель показывает, дети наблюдают), так и лабораторным (выполняемым самими учащимися индивидуально или же в группах). Демонстрационный эксперимент имеет то преимущество, что не требует большого количества одинаковых приборов и полностью определяется заранее продуманным планом. Вместе с тем, у практических работ есть другое существенное преимущество - они в значительно большей степени задействуют активную деятельность детей, что, безусловно, положительно сказывается на интересе и личностной значимости эксперимента. К тому же, последнее развивает индивидуальные практические умения и навыки учащихся, учит их самостоятельному обращению с физическими приборами, ведению «лабораторного журнала» (записей наблюдений). Трудность проведения лабораторных работ в том, что деятельность учащихся в этом случае должна быть очень хорошо организована: они должны ясно понимать цель работы и иметь перед глазами подробный план ее выполнения. Еще до начала работы учитель должен продемонстрировать всему классу, как обращаться с приборами.
Во время наблюдения демонстрационного эксперимента в классе должна установиться тишина и внимание. Словесные комментарии к происходящему совершенно излишни. Ни учитель, ни ученики не должны при этом описывать происходящее. Тем более неуместны желания учеников уже в ходе эксперимента вслух высказывать его объяснение.
Второй шаг - описание наблюдений
Эксперимент происходит в конце урока. Однако прежде чем учащиеся уйдут на перемену, следует подробно и точно устно описать наблюдения. В этом - содержание второго этапа. Лучше всего, если это делают сами учащиеся. Все детали явления должны быть теперь осознаны. При этом сам эксперимент уже не отвлекает учащихся. Итогом описания должна стать точная мысленная картина явления. Если какие-либо детали, существенные для дальнейшего понимания явления, ускользнули от внимания учащихся, можно, обратив на них внимание класса, вновь повторить опыт. Этот этап, несмотря на кажущуюся простоту и незначительность, очень важен, так как во время наблюдения дети настолько погружаются в явления, настолько сильно находятся в этот момент вовне своими чувствами, что необходим определенный жест сознательной антипатии, возвращения к себе и воспроизведения картины явления в сознании учащихся. Без нее невозможна дальнейшая мыслительная работа над содержанием наблюдения. Это имеет большое значение, так как наша основная цель - получить такие понятия и законы, которые тесно связаны с наблюдаемым, с явлением. Конечно, при традиционном модельном подходе, когда явление отходит на второй план, играя роль всего лишь эпифеномена, т.е. подтверждения определенной модели, такая работа над содержанием восприятия является излишней.
После этого урок заканчивается и учащиеся получают домашнее задание, одним из главных пунктов которого является письменное описание наблюдений и зарисовка экспериментальной установки. Наряду с этим могут быть заданы вопросы и задачи, преимущественно качественного характера, на применение уже изученных законов.
Третий шаг - работа подсознания
Между этим уроком и следующим пролегает ночь - период времени, когда, как показывает опыт, дневные впечатления перерабатываются где-то в глубинах человеческого существа и наутро предстают порой как бы обновленными. Иногда, когда человек решает какую-либо проблему, часто именно наутро, вспомнив о ней, он одновременно находит и ее решение. Поэтому так важна пауза, пролегающая между восприятием явления и его осмыслением. Правда, она эффективна лишь в том случае, если на самом наблюдении и его описании учащиеся были сконцентрированы, если картина происходившего действительно возникла перед их сознанием. И другое условие, не менее важное, если она пробудила определенный вопрос, желание понять происходившее. Лишь тогда без непосредственного участия сознания человека, в этот период «забывания» внутри человеческого существа будет происходить интенсивная работа над содержанием наблюдавшегося.
Четвертый шаг - обсуждение явлений и поиск закономерности
Наутро картина явления вновь кратко восстанавливается: учащиеся устно по памяти воспроизводят его описание. Так как дальнейшая работа будет происходить в сфере мышления, важнее воспроизвести явление в сознании учащихся по памяти, а не по тетрадке.
Далее начинается самая сложная часть урока - поиск и формулировка закономерности, обуславливающий наблюдаемое явление. Трудность этого этапа в том, что в действительности закономерность не выводится индуктивным путем из данных наблюдения. Она - не есть простое обобщение фактического материала, который к тому же очень ограниченно доступен учащимся. Закономерность всегда содержит еще и мыслительный элемент, даже если это - так называемая «эмпирическая закономерность».
Задача учителя на этом этапе методики - не формулировать за детей эту закономерность. Она ни в коем случае не должна быть сообщена им в готовом виде. Учитель должен суметь так организовать обсуждение (например, с помощью вопросов), чтобы учащиеся смогли, отвечая на поставленные вопросы, сами найти, сформулировать закономерность. Задача учителя - формулировка вопроса, проблемы и затем организация обсуждения, помощь учащимся в сопоставлении суждений друг друга, в верном соотнесении их с данными наблюдений и экспериментов. Алгоритма здесь нет. Процесс поиска каждый раз выстраивается из тех мыслей, которые высказывают учащиеся, и каждый год каждый новый класс прокладывает свой путь.
Пятый шаг - уяснение закономерности в процессе решения задач
После того, как закономерность найдена в совместном обсуждении с классом, следует добиться того, чтобы ее уяснили все учащиеся. Ведь в обсуждении активно участвует только часть класса. Для этого, после того, как закономерность сформулирована, учитель дает детям пару устных качественных задач на ее закрепление и уяснение. Это могут быть несколько вопросов к тому, что будет наблюдаться в эксперименте при небольшом изменении некоторых условий. Т.е. закрепление и углубление понимания только что «открытого» учащимися закона происходит в задачной ситуации, близкой к исходному эксперименту.
Шестой шаг - запись конспекта урока
Затем в тетрадях записывается текст - конспект основного содержания урока. В нем обязательно должна быть сформулирована закономерность и могут быть приведены некоторые дополнительные рассуждения, сведения, интересные примеры. В средних классах учитель сам сочиняет этот текст накануне и на уроке диктует его детям (или записывает на доске). Начиная с 8-9 класса эта работа все чаще выполняется самими учащимися. В этом случае учителю приходится чаще проверять тетради, чтобы корректировать ошибки в самостоятельных формулировках закономерностей.
Последний шаг - закрепление материала
В заключение учитель предлагает классу еще несколько задач на повторение и закрепление знаний тех законов, которые были сформулированы на прошлом уроке. Лучше всего описать новую экспериментальную ситуацию, во многом отличную от наблюдавшейся на позапрошлом уроке. И к этому описанию нового явления, основывающегося на той же закономерности поставить несколько вопросов, требующих понимания этой закономерности и умения применять ее к объяснению нового явления. Эти задачи могут быть выполнены не только устно, но и письменно. Хорошо, если детям будет дана возможность немного самостоятельно поразмыслить, вникнуть в ситуацию задачи.
На этом полный цикл методических этапов изучения одной темы заканчивается и вновь ставятся эксперименты (изучается фактический материал). Однако еще по крайней мере дважды-трижды к этой теме класс будет возвращаться: в первый раз - на следующем уроке, отвечая на вопросы и решая задачу по этой теме. Во второй раз - в конце эпохи или же недели, выполняя самостоятельную или же контрольную работу. И в третий раз - на следующий год, при необходимости повторения этой темы для изучения связанного с ней нового материала. [1], [2]
Главная задача, стоящая перед педагогом, состоит в поиске путей доведения практики до уровня научно обоснованных требований, разработанных в рамках методологии и теории педагогики.
1.4 Структура физического знания

Имеется два уровня физического знания: эмпирический и теоретический
Эмпирический включает данные опыта, эмпирические понятия, законы и закономерности. изучая физические явления, формирует набор эксперимента, затем его анализирует, описывает, и на основе этого формируют законы и закономерности. Для количественной оценки физических явлений вводят числовые характеристики меры их свойств, которые называют физическими величинами. Физическая величина - это числовая характеристика свойств физических объектов, полученная путем измерения. Физический объект - тело, система, состояния этой системы или процессы которые в ней происходят.
Каждая физическая величина характеризует физический объект не только количественно, но и качественно. Физическая величина - это не сама действительность - это принятый в физике способ описания физической реальности. Каждый физический объект обладает множеством свойств, которые используют метод идеализации: выделяют существенные стороны и отбрасывают несущественные, и тогда изучают упрощенную модель (мат точка, мат маятник, абсолютно твердое тело).
Теоретический уровень включает теории, идеи и гипотезы. Физическая теория - это теоретические законы, представленные в виде математических уравнений, которые описывают данные явления.
Теоретические законы отличаются большей общностью, они включают теоретические понятия и эмпирические понятия. Теоретические понятия более отдаленные от опытных.
Физическая теория выделяет структурные части: Основание, ядро, следствие.
Основание включает эмпирический базис (набор опытных данных), идеализированный объект и физические величины. Идеализированный объект - модель материи на определенном структурном уровне. Каждая теория отличается одна от другой идеализированным объектом.
Переходным мостом от эмпирического базиса к новой теории служит идеальный объект.
Ядро физической теории составляет система общих законов выраженных в математических уравнениях, постулатах и принципах.
Система уравнений представляет собой математическую модель данного вида взаимодействия материй, в котором идеализированный объект представлен в динамике и движении.
В фундаментальные уравнения входят фундаментальные константы: с, Планка, Больцмана.
Особым видом физических законов сохранения являются законы сохранения; число их растет.
Каждой физической теории соответствует набор принципов симметрии, которые проявляют себя в неизменности физических законов при определенных преобразованиях(операциях). Например, есть непрерывные преобразования: перенос или поворот системы, как целое; дискретные преобразования: замена частиц на античастицы. Важную роль играет принцип соответствия, который означает, что новые теории асимптотически переходят в старые, если фундаментальные константы приобретают критические значения (0, 1, ).
Выводы строятся путем логической дедукции. Совокупность основных идей, принципов и гипотез создает физическую картину мира.
1.5 Методология школьного эксперимента. Мысленный эксперимент. Гипотеза. Теория
Знания о физическом научном эксперименте формируются прежде всего в процессе ознакомления школьников с историческими опытами. Чтобы оно было эффективным, требуется выполнение ряда условий. Следует знакомить учащихся с такими историческими опытами, которые в развитии физики сыграли значительную роль. Показ исторического опыта не должен изобиловать второстепенными техническими подробностями, но должен отражать его суть, основную авторскую идею. Учитель должен постоянно отмечать, обращать внимание учащихся на те упрощения, которые он сознательно вводит для показа главного в данном явлении, отделяя это главное от многих других сторон, усложняющих реальное протекание процесса. Необходимо также разъяснять, почему в действительности путь к этим «простым и легким» опытам был таким сложным и длительным, полным ошибок и заблуждений. В противном случае у школьника может создаться представление, что в науке все делается просто и «с первого раза». При проведении исторических опытов можно использовать современное оборудование, однако при этом необходимо рассказать школьникам, каким оборудованием в действительности пользовались исследователи (показать исторические рисунки, фотографии, модели и т.д.). Следует раскрывать связь данного эксперимента с научной и социальной обстановкой, сложившейся к этому времени, сформулировать задачи, которые были решены в науке в результате проведения данного эксперимента.
В научно-популярной и методической литературе исторические опыты называют по-разному: решающие, ключевые, великие, основополагающие и т.д. Особенно часто можно встретить термин «фундаментальный опыт» или «фундаментальный научный эксперимент», при этом приводится не один десяток исторических опытов. Само слово «фундаментальный» предполагает, однако, что число таких опытов не должно быть велико. Разумеется, не все изучаемые в школе исторические опыты являются действительно фундаментальными, хотя все они в определенной степени способствовали развитию физики в прошлом и настоящем.
Было бы полезно систематизировать многочисленные исторические наблюдения и опыты, входящие в курс физики средней школы (и те, которые, по нашему мнению, должны войти в будущем), по их функциональному признаку - реализации определенной задачи и значению в развитии физической науки.
Класс физических опытов:
1. Опыты, благодаря которым было положено начало новым разделам (направлениям) физики (такие опыты следует называть фундаментальными);
2. Опыты, позволившие открыть отдельные физические явления;
3. Опыты, позволившие установить свойства и закономерности открытых ранее явлений (самый распространённый класс физического эксперимента, осуществляемый ежедневно в научно-исследовательских лабораториях);
4. Опыты, с помощью которых была доказана справедливость фундаментальных теорий;
5. Опыты - «решающие эксперименты», окончательно отвернувшие или подтвердившие справедливость теоретического положения (гипотезы);
6. Опыты, в которых определяется точное значение физических величин и постоянных;
7. Опыты и исследования по созданию новых экспериментальных средств и методов, новых материалов, техническому использованию открытых явлений;
Изучение исторических опытов в соответствии с приведенной классификацией помогает избежать возникновения у учащихся ошибочного представления об одинаковом значении всех исторических опытов, дает возможность показать школьникам круг задач, которые решает физический эксперимент в науке, выбрать из большого числа опытов, относящихся к данной группе, наиболее характерные и важные для учебного процесса.
Учебный физический эксперимент, его структура и задача.
Учебный эксперимент - это воспроизведение физического явления на уроке с помощью специальных приборов в условиях наиболее доступных для его проведения. Это отражение научного метода познания.

Цели:

служит источником знания

является методом обучения

это вид наглядности.

Классификация по организационному признаку:

демонстрационные опыты (эксперименты). (обязательные в программе: опыты Кулона, Столетова (фотоэффект), опыты Герца, Максвелла, весы Камидеша)

Фронтальные лабораторные работы, опыты, наблюдения.

Физический практикум

Внеклассные опыты и наблюдения

Количественные и качественные

Экспериментальные задачи

Творческие задания.

Методический анализ эмпирического уровня познания начнем с указания на некоторые терминологические трудности. Как известно, наблюдение и эксперимент представляют собой различные методы эмпирического познания. Наблюдение - это целенаправленное восприятие явлений окружающей действительности, в ходе которого получают знания о внешних сторонах, свойствах я отношениях изучаемых объектов. Под экспериментом понимают такую практически-познавательную деятельность человека, когда последний активно вмешивается в протекание изучаемого процесса.

Что касается термина «опыт», то в науке его используют предельно широко - как всю совокупность практических взаимоотношений между человеком и материальным миром, как результат освоения действительности. В истории физики этот термин означает эксперимент или наблюдение, проведенные ученым. В методике преподавания физики термин «опыт» используют чаще других, когда речь идет о самостоятельном эксперименте или наблюдении учащегося В Процессе лабораторного практикума и фронтальных лабораторных работ или демонстрации учителя, за которой учащийся наблюдает.

Мы будем пользоваться термином «опыт» в качестве общего названия двух методов эмпирического познания: наблюдения и эксперимента при условии, что учащиеся проделывают их самостоятельно. Всю систему эмпирического уровня познания природы по традиции в методике преподавания физики называют физическим экспериментом, так что понятие «экспериментальный» и «эмпирический» являются здесь синонимами.

Необходимость формирования у школьников глубоких знаний о сущности экспериментального познания определяется той ролью, которую играет эксперимент в физических исследованиях: во-первых, он является источником новых знаний о фактах, которые затем систематизируются и обобщаются в законах и теориях; во-вторых, только эксперимент служит падежным критерием истинности любой теоретической концепции, гипотезы, положения; в-третьих, через эксперимент осуществляется связь физических знаний с техникой, производством и бытом.

В настоящее время, когда резко возросла роль теории в преподавании физики, важно не и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.