Здесь можно найти учебные материалы, которые помогут вам в написании курсовых работ, дипломов, контрольных работ и рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

 

Повышение оригинальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение оригинальности любого файла в формате MS Word. После такого повышения оригинальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, РУКОНТЕКСТ, etxt.ru. Программа «StudentHelp» работает по уникальной технологии так, что на внешний вид, файл с повышенной оригинальностью не отличается от исходного.

Результат поиска


Наименование:


контрольная работа Физико-химические методы анализа нефти и нефтепродуктов

Информация:

Тип работы: контрольная работа. Добавлен: 02.09.2014. Год: 2014. Страниц: 22. Уникальность по antiplagiat.ru: < 30%

Описание (план):


Министерство образования и науки Российской Федерации

ИРКУТСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Кафедра Обогащения полезных ископаемых и инженерной экологии






Контрольная работа

по «Физико-химические методы анализа»


Тема:

«Физико-химические методы анализа нефти и нефтепродуктов»




Вариант №10

Выполнила студентка

Группы БЖТбз - 12-1

Жрижорева Д. Г.

Проверил: Пароротников Н. С.










СОДЕРЖАНИЕ


Введение……………….3

1 Физико-химические характеристики нефтяных углеводородных систем...4

2 Методы исследования нефти и нефтепродуктов и определение элементарного состава ……….7

3 Химические методы очистки нефтепродуктов………..…..9

Заключение……………….13

Список использованных источников………...14






















ВВЕДЕНИЕ


На современном этапе технического развития нефть и продукты ее переработки являются источником основных видов жидкого топлива: бензина, керосина, реактивного, дизельного и котельного. Из нефти вырабатывают смазочные и специальные масла, нефтяной пек, кокс, различного назначения битумы, консистентные (пластичные) смазки, нефтехимическое сырье – индивидуальные алканы (парафиновые углеводороды), алкены (олефины) и арены (ароматические углеводороды), жидкий и твердый парафин. Из нефтехимического сырья, в свою очередь, производят ряд важнейших продуктов для различных областей промышленности, сельского хозяйства, медицины и быта: пластические массы; синтетические волокна, каучуки и смолы; текстильно-вспомогат льные вещества; моющие средства; растворители; белково-витаминные концентраты; различные присадки к топливам, маслам и полимерам; технический углерод. Переработка нефти на НПЗ осуществляется с помощью следующих основных технологических процессов.

1. Физические процессы: Первичная переработка (обессоливание и обезвоживание, атмосферная и атмосферно-вакуумная перегонка нефти на установках АВТ, сольвентная деасфальтизация, вторичная перегонка бензинов, дизельных и масляных фракций); депарафинизация кристаллизацией (адсорбционная и карбамидная); производство парафинов и масел (деасфальтизация, депарафинизация, селективная очистка, адсорбционная и гидрогенизационная очистка).

2. Химические процессы: Термические (пиролиз, термический крекинг, висбрекинг, замедленное коксование, получение пеков);гидрогенизаци нные термические с применением водорода (гидропиролиз, гидрокрекинг, гидровисбрекинг, гидросольвентный крекинг); гидрогенизационные каталитические (гидрокрекинг, гидрокаталитический риформинг, гидроизомеризация, гидродепарафинизация гидродеароматизация ; каталитические по переработке углеводородных фракций (каталитический крекинг, алкилирование, полимеризация, изомеризация и др.).

3. В отдельную группу следует выделить процессы производства разнообразных битумов и битумполимеров, кокса и пеков различного назначения, а также элементной серы, водорода. Кроме того, получают ряд ценных полупродуктов и продуктов, имеющих самостоятельное значение: сжиженные газы, бензиновая и керосино-газойлевая фракции, направляемые на пиролиз; индивидуальные алканы, вырабатываемые на газо-фракционирующих установках предельных газов; пропан-пропиленовая, бутан-бутиленовая и пентан-амиленовая фракции, получаемые с газофракционирующих установок; ароматические углеводороды (бензол, толуол, ксилолы).


1 ФИЗЕКО-хХИМИЧЕСКИЕ ХАРАКТЕРИСТИКИ НЕФТЯНЫХ УГЛЕВОДОРОДНЫХ СИСТЕМ


На направления переработки, качество и количество получаемых углеводородных систем оказывает влияние природа нефтяного сырья. Нефть — маслянистая жидкость от светло-коричневого до темно-бурого (почти черного) цвета является многокомпонентной системой, содержащей огромное число различных веществ, поэтому для различных нефтей существует значительный интервал физико-химических свойств, например, температур кипения, плотностей, средних молекулярных масс и т. д. Среднечисловая молекулярная масса нефтей составляет 220-300 углеродных единиц (редко 450-470). Плотность, как правило, 0,65-1,05 г/см3; нижняя граница соответствует легким углеводородам, верхняя — тяжелым нефтям, обогащенным асфальто-смолистыми фракциями. Чаще всего встречаются нефти с плотностями 0,82-0,95 г/см3. Нефти с плотностями ниже 0,830 относятся к легким, 0,831-0,860 — к средним, выше 0,860 г/см3 — к тяжелым. Температура застывания нефти колеблется от -60°С в малопарафиновых нефтях до +30°С Удельная теплоемкость нефтей 1,7-2,1 кДж/(кг · К); удельная теплота сгорания очень высокая — до 43,7-46,2 МДж/кг.

Обезвоженная нефть не проводит электричество, диэлектрическая проницаемость составляет 2,5, электропроводность — 2 · 10-10—0,3 · 10-13 ом-1см-1. В многокомпонентной системе нефтей содержится огромное число соединений (свыше 1000). Жидкие углеводороды составляют примерно 80-90%, гетероорганические (содержащие серу, кислород и азот) — от 1 до 25% по массе. В состав нефти в небольших количествах входят металлокомплексные соединения (ванадиевые и никелевые). Основным компонентом нефти являются углеводородные смеси — алканов (парафинов), циклоалканов, аренов. Имеются сведения о наличии непредельных углеводородов в незначительном количестве. Соотношение между группами углеводородов придает нефтям различные свойства и оказывает большое влияние на выбор метода переработки нефти и свойств получаемых продуктов.

Алканы и циклоалканы (парафины и нафтены). Общее содержание алканов и циклоалканов в нефтях равно 25-40%, в некоторых нефтях — до 70%. С повышением средней молекулярной массы фракций нефти содержание алканов в них уменьшается. В бензиновой и средних дистиллятных фракциях содержатся жидкие алканы, в тяжелых фракциях и остатке — твердые парафины с числом углеродных атомов 16 и выше. В составе алканов нефти наиболее широко представлены соединения нормального строения и монометилзамещенные с различным положением метильной группы в цепи. Циклоалканы (циклопарафины, нафтены) содержатся во всех нефтях и входят в состав всех фракций. В среднем в нефтях различных типов обнаружено от 25 до 75% циклоалканов. В нефтях существуют только термодинамически устойчивые 5- и 6-членные циклы. Циклопропан и циклобутан, термодинамически метастабильные в термобарических условиях нефтяных коллекторов, в нефтяных фракциях не найдены. Моноциклические циклоалканы — гомологи цикло-пентана и циклогексана имеются в низкокипящих бензиновых и керосиновых фракциях. В высококипящих фракциях, как правило, содержатся углеводороды с 2-6 конденсированными циклами. Арены (ароматические углеводороды) содержатся в нефтях, как правило, в меньшем количестве, чем алканы и циклоалканы. Суммарное содержание аренов в нефтях равно 5-25%, в ряде ароматизированных нефтей это количество может составлять 25-35%. В бензиновой фракции арены представлены гомологическим рядом бензола; керосиновые фракции содержат, наряду с гомологами бензола, производные нафталина. В тяжелых фракциях арены находятся в виде гомологов нафталина и антрацена. Циклоалканоарены (нафтено-ароматическ е углеводороды). В отдельную группу выделяют достаточно широко представленные в нефти, особенно в высших фракциях, гибридные углеводороды — циклоалканоарены. В молекулах этих углеводородов содержатся конденсированные структуры из ароматических и нафтеновых 5-6-членных циклов. В высококипящих фракциях имеются структуры с 3-5 нафтеноароматическим циклами.

Гетероатомные соединения нефти. К гетероатомным компонентам нефти относятся сернистые, кислородсодержащие, азотсодержащие и высокомолекулярные (асфальто-смолистые) соединения, содержание которых колеблется от 5 до 20% масс. До 70-90% гетероатомных компонентов: сернистых в виде меркаптанов (тиолов), сульфидов, тиофенов и тиофанов, а также полициклических концентрируется в остаточных продуктах — мазуте и гудроне; азотсодержащие в виде гомологов пиридина, хинолина, индола, карбазола, пиррола, а также порфирины концентрируются в тяжелых фракциях и остатках; кислородсодержащие нафтеновые кислоты, фенолы, смолисто-асфальтенов е вещества сосредоточены обычно в высококипящих фракциях. Элементный состав (%): С 82-87; Н 11-14,5; S 0,01-8; N 0,001-1,8; О 0,005-1,2. С ростом температуры кипения нефтяных фракций и средней температуры кипения нефтей количество гетероатомных соединений увеличивается. Кратко рассмотрим основные группы гетероатомных веществ. Серосодержащие соединения нефти. Сера является наиболее распространенным гетероэлементом в нефтях и нефтепродуктах. Интерес к серосодержащим соединениям нефти возрос в связи с проблемой переработки высокосернистых нефтей. В пластовых нефтях содержится от 0,01 до 14% масс. серы. В нефтях идентифицированы гомологи меркаптанов (тиолов), обладающие кислотными свойствами и коррозионной активностью. Кроме того, в значительных количествах содержатся органические сульфиды, полисульфиды и гомологи тиофена. Кислородсодержащие соединения нефти. Эти соединения представлены алифатическими и нафтеноароматическим кислотами, фенолами, кетонами и эфирами. Они сосредоточены в высококипящих фракциях. Содержание фенолов в различных нефтях может достигать 0,01-0,05%. Нефтяные кислоты в основном представлены циклопентановыми и циклогексанкарбоновы и нафтеновыми кислотами. Содержание нефтяных кислот достигает в среднем 0,1-1,8%. Асфальто-смолистые вещества (АСВ). АСВ состоят из различающихся молекулярной массой асфальтенов и смол и являются гетероатомными высокомолекулярными системами. Они распространены в нефтях, природных битумах, высококипящих фракциях процессов нефтепереработки. Содержание АСВ в нефтях составляет 1-40%. Высококипящие нефтяные фракции (асфальты, гудроны, крекинг-остатки) являются концентратами АСВ. Асфальтены осаждаются из бензольных и толуольных растворов нефтей и нефтяных остатков избытком жидких алифатических углеводородов (способ Гольде). Смолы отделяются от масел мальтеновой части на силикагеле с последующей экстракцией бензолом и спирто-бензольной смесью.

Физико-химические свойства смол: среднечисловая молекулярная масса смол, определенная криоскопией в нафталине, колеблется от 600 до 800 ед. По данным ЭПР смолы отличаются парамагнетизмом (концентрацией стабильных свободных радикалов) до 1018—1019 спин/г и повышенной склонностью к ассоциации, что свидетельствует о наличии в структуре полиароматических свободнорадикальных фрагментов, отношение С/Н составляет 0,60-0,83. По данным ИК, ПМР и ЯМР 13С смолы состоят из полициклических нафтеноароматически гетероатомных и карбоциклических структур, включающих цепочки алкильных заместителей и О-, S-содержащие функциональные группы. Асфальтены отличаются от смол повышенными: молекулярной массой до нескольких тысяч, степенью конденсации нафтеноароматически ядер, содержанием серы и ванадия, парамагнетизмом до 1021 спин/г. Существование свободных радикалов и замещеных нафтено-ароматически структур обусловливает высокую реакционную способность АСВ в процессах дегидрополиконденсац и, сульфирования, галогенирования, хлорметилирования, гидрирования и в процессах их конденсации с формальдегидом, непредельными смолами, малеиновым ангидридом и т.д. Продукты химических превращений АСВ могут быть использованы как модификаторы битумов и сырье для производства эффективных сорбентов, ПАВ и электроизоляционных материалов. Кроме того, возможно применение АСВ для производства пеков, ингибиторов радикальных процессов окислительной деструкции полимеров, ингибиторов коррозии и т.д. В связи с проблемой рационального использования АСВ, определенную перспективу приобретает направление — получение концентратов АСВ путем глубокой деасфальтизации нефтяных остатков бензином (Добен-процесс). Продукты Добен-процесса могут быть использованы как стабилизаторы полимеров, сырье для углеродистых и композиционных материалов и т. д.

2 МЕТОДЫ ИССЛЕДОВАНИЯ НЕФТИ И НЕФТЕПРОДУКТОВ И ОПРЕДЕЛЕНИЕ ЭЛЕМЕНТАРНОГО СОСТАВА


Химический и фракционный состав нефтей необходимо знать для выбора наиболее рационального комплекса процессов нефтепереработки, их моделирования, обоснования мощности нефтеперерабатывающи установок, а также для развития представлений о генезисе нефти и решения задач нефтяной геологии.

Различают несколько видов анализа нефтей и нефтяных фракций: элементный, индивидуальный, групповой, структурно-групповой. Развитие техники современных физико-химических методов анализа смесей позволило перейти от определения элементного состава нефтей к исследованиям группового и индивидуального состава нефтяных фракций. Разработаны методы изучения индивидуального состава газа и бензиновых фракций (до С10), группового состава и идентификации ряда индивидуальных компонентов керосино-газойлевых фракций (до С20). При анализе масляных фракций и смолисто-асфальтено ых составляющих нефтей удается идентифицировать пока лишь некоторые индивидуальные соединения. Групповое разделение этих фракций, включающих гибридные структуры, - также достаточно сложная и не вполне решенная задача. С использованием масс-спектроскопии, ЯМР-спектроскопии и других современных методов проводят структурно-групповой анализ высокомолекулярных нефтяных фракций: определяют содержание углерода в алифатических, алициклических и ароматических структурах, содержание водорода в водородсодержащих фрагментах, среднее число ароматических и насыщенных колец и т. д.

Для правильного выбора метода переработки нефти, составления материальных балансов некоторых процессов необходимо знать элементный состав нефти.Наличие в нефти серо- и кислородсодержащих соединений требует сооружения специальных установок очистки. Для этого необходимы сведения о содержании в нефти серы и кислорода. Серосодержащие соединения наиболее вредны как при переработке нефти, так и при использовании нефтепродуктов; поэтому содержание серы входит как показатель в ГОСТ на нефть. Массовое содержание серы, кислорода и азота в нефти невелико и в сумме редко превышает 3-4%. Однако на каждую единицу массы этих элементов приходится 15-20 единиц массы углеводородных радикалов, откуда на долю углеводородной части нефти приходится только 40-50 % от общей массы нефти. Основную часть нефти и нефтепродуктов составляют углерод (83-87%) и водород (12-14%). Их содержание, а иногда и соотношение полезно знать для расчетов некоторых процессов. Например, процентное отношение массового содержания водорода к содержанию углерода (100 Н/С) показывает, сколько необходимо добавить водорода к сырью в процессе гидрогенизации (гидрокрекинга), чтобы получить желаемые продукты. Отношение 100 Н/С в бензине равно 17-18, в нефти 13-15, в тяжелых фракциях 9-12. При каталитическом крекинге происходит диспропорционирован е водорода между продуктами реакции. В идеальном процессе крекинга (когда весь водород сырья переходит в бензин) из нефти можно получить 75-80% бензина. На самом деле в промышленных условиях за счет газообразования и реакций уплотнения выход бензина снижается до 40-50%. Данные об элементном составе нефти и нефтепродуктов необходимы для расчета таких процессов, как горение, газификация, гидрогенизация, коксование и др. Данные элементного и структурно-группового состава узких фракций масел и тяжелых остатков, из которых выделение индивидуальных соединений практически невозможно, позволяет значительно расширить представления о структуре веществ, входящих в эти фракции, и построить модель их «средней» молекулы. Элементный анализ на углерод и водород основан на безостаточном сжигании органической массы нефтепродукта в токе кислорода до диоксида углерода и воды. Последние улавливают и по их количеству рассчитывают содержание указанных элементов. Необходимо, чтобы горение было полным (образующийся СО окисляют до СО2), а продукты сгорания были очищены от оксидов серы, галогенов и других примесей. Определение серы можно проводить различными методами. Для легких нефтепродуктов применяют ламповый метод или сжигание в кварцевой трубке. Для средних и тяжелых нефтепродуктов пригоден метод смыва конденсата при сжигании образца в калориметрической бомбе.

Сущность лампового метода заключается в сжигании нефтепродукта некоптящим пламенем в специальной лампе и улавливании образовавшегося диоксида серы в абсорберах с раствором соды. Последующим титрованием избытка соды определяют ее количество, пошедшее на связывание диоксида серы, и вычисляют количество серы. Метод сжигания в трубке принципиально ничем не отличается от лампового метода, только образовавшийся в процессе горения диоксид серы окисляют пероксидом водорода до триоксида серы; дальнейшее определение ведут как в предыдущем методе. Принцип метода смыва бомбы заключается в сжигании нефтепродукта в калориметрической бомбе, в которую предварительно залито 10 см3 дистиллированной воды. После сжигания воду из бомбы и смывы ее со стенок и других деталей переносят в колбу, подкисляют, кипятят для удаления СО2, затем добавляют хлорид бария. Выпавший осадок сульфата бария выделяют, сушат и по его массе вычисляют содержание серы.


и т.д.................


Скачать работу


Скачать работу с онлайн повышением оригинальности до 90% по antiplagiat.ru, etxt.ru


Смотреть полный текст работы бесплатно


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.