Здесь можно найти учебные материалы, которые помогут вам в написании курсовых работ, дипломов, контрольных работ и рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

 

Повышение оригинальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение оригинальности любого файла в формате MS Word. После такого повышения оригинальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, РУКОНТЕКСТ, etxt.ru. Программа «StudentHelp» работает по уникальной технологии так, что на внешний вид, файл с повышенной оригинальностью не отличается от исходного.

Результат поиска


Наименование:


курсовая работа Электромагнитные поля и их биологическое действие

Информация:

Тип работы: курсовая работа. Добавлен: 15.12.2014. Год: 2014. Страниц: 23. Уникальность по antiplagiat.ru: < 30%

Описание (план):
















КУРСОВАЯ РАБОТА
на тему: «Электромагнитные поля и их биологическое действие»



Содержание

Введение
1. Что такое электромагнитное поле, его виды и классификация
2. Основные источники электромагнитного поля
2.1 Электротранспорт
2.2 Линии электропередач
2.3 Электропроводка
2.4 Бытовая электротехника
2.5 Теле- и радиостанции
2.6 Спутниковая связь
2.7 Сотовая связь
2.8 Радары
2.9 Персональные компьютеры
3. Биофизика взаимодействия электромагнитных излучений с биологическими объектами
4. Реакция организма человека на воздействие ЭМ излучений
5. Как защититься от ЭМП
6. Электромагнитная биосфера Земли
7. Биофизика воздействий мощных ЭМ полей Земли на человека
Заключение
Список использованной литературы



Введение

Влияние физических, особенно электромагнитных, полей на биосферу разнообразно и многогранно.
Для изучения этой трудной и важной проблемы требуется комплексный подход при участии широкого круга специалистов: биологов, медиков, геофизиков, биофизиков и т.д. бесспорно одно, что солнечно-земные связи – это звенья одной цепи, создающие естественный фон околоземного пространства, существенным образом, влияющим на живые организмы. С другой стороны, бесспорно и другое. В результате антропогенной деятельности увеличивается общий электромагнитный фон окружающей природной среды не только в количественном, но и качественном отношении. В результате широкого использования в современном производстве и технологии ЭМП, и других физических полей появились источники техногенного происхождения, отличающиеся по своим характеристикам от традиционных источников, к которым живые организмы биосферы адаптировались в процессе длительной эволюции. Например, миллиметровые волны, некоторые участки радиодиапазона, УФ, рентгеновские излучения, инфразвуковые и ультразвуковые колебания, сильные электростатические и магнитные поля и т.д. в существенной степени изменяют естественный фон. При этом возможно не простое наложение техногенных физических полей на естественный фон, а происходит их более сложное взаимодействие друг с другом, что существенно может влиять на устойчивость экосистем.
Речь идет об определении последствий, оценке степени опасности и разработке мер обеспечения полной безопасности в условиях влияния ЭМП на здоровье.



1. Что такое ЭМП, его виды и классификация

На практике при характеристике электромагнитной обстановки используют термины "электрическое поле", "магнитное поле", "электромагнитн е поле". Определим каждое их этих понятий.
Электрическое поле создается зарядами. Магнитное же поле создается при движении электрических зарядов по проводнику.
Для характеристики величины электрического поля используют понятие напряженность электрического поля (Е), [В/м]. Величина магнитного поля характеризуется напряженностью магнитного поля Н, [А/м]. При измерении сверхнизких и крайне низких частот часто также используется понятие магнитная индукция В, [Тл], одна миллионная часть Тл соответствует 1,25 А/м.
По определению, электромагнитное поле (ЭМП) – это особая форма материи, посредством которой осуществляется воздействие между электрическими заряженными частицами. Физические причины существования электромагнитного поля связаны с тем, что изменяющееся во времени электрическое поле E порождает магнитное поле Н, а изменяющееся Н – вихревое электрическое поле: обе компоненты Е и Н, непрерывно изменяясь, возбуждают друг друга. ЭМП неподвижных или равномерно движущихся заряженных частиц неразрывно связано с этими частицами. При ускоренном движении заряженных частиц, ЭМП "отрывается&quo ; от них и существует независимо в форме электромагнитных волн, не исчезая с устранением источника (например, радиоволны не исчезают и при отсутствии тока в излучившей их антенне).
Электромагнитные волны характеризуются длиной волны (?). Источник, генерирующий излучение, характеризуются частотой (f).
Важная особенность ЭМП – это деление его на "ближнюю" и "дальнюю" зоны. В "ближней" зоне, или зоне индукции, на расстоянии от источника r < ? ЭМП можно считать квазистатическим. Здесь оно быстро убывает с расстоянием, обратно пропорционально квадрату r-2 или кубу r-3 расстояния. В "ближней" зоне излучения электромагнитная волна еще не сформирована. Для характеристики ЭМП измерения переменного электрического поля Е и переменного магнитного поля Н производятся раздельно. Поле в зоне индукции служит для формирования бегущих составляющей полей (электромагнитной волны), ответственных за излучение. "Дальняя" зона – это зона сформировавшейся электромагнитной волны, начинается с расстояния r > 3? . В "дальней" зоне интенсивность поля убывает обратно пропорционально расстоянию до источника r-1.
В "дальней" зоне излучения есть связь между Е и Н:

Е = 377?Н [Ом],

где 377 - волновое сопротивление вакуума. Поэтому измеряется, как правило, только Е. В России на частотах выше 300 МГц обычно измеряется плотность потока электромагнитной энергии (ППЭ (S, [Вт/м2]), или вектор Пойтинга. ППЭ характеризует количество энергии, переносимой электромагнитной волной в единицу времени через единицу поверхности, перпендикулярной направлению распространения волны.

Таблица 1 Международная классификация электромагнитных волн по частотам
Наименование частотного диапазона
Границы диапазона
Наименование волнового диапазона
Крайние низкие, КНЧ
3 - 30 Гц
Декамегаметровые
Сверхнизкие, СНЧ
30 – 300 Гц
Мегаметровые
Инфранизкие, ИНЧ
0,3 - 3 кГц
Гектокилометровые
Очень низкие, ОНЧ
3 - 30 кГц
Мириаметровые
Низкие частоты, НЧ
30 - 300 кГц
Километровые
Средние, СЧ
0,3 - 3 МГц
Гектометровые
Высокие частоты, ВЧ
3 - 30 МГц
Декаметровые
Очень высокие, ОВЧ
30 - 300 МГц
Метровые
Ультравысокие,УВЧ
0,3 - 3 ГГц
Дециметровые
Сверхвысокие, СВЧ
3 - 30 ГГц
Сантиметровые
Крайне высокие, КВЧ
30 - 300 ГГц
Миллиметровые
Гипервысокие, ГВЧ
300 – 3000 ГГц
Децимиллиметровые


2. Основные источники ЭМП

Среди основных источников ЭМИ можно выделить:
    электротранспорт (трамваи, троллейбусы, поезда);
    линии электропередач (городского освещения, высоковольтные);
    электропроводка (внутри зданий, телекоммуникации);
    бытовые электроприборы;
    теле- и радиостанции (транслирующие антенны);
    спутниковая и сотовая связь (транслирующие антенны);
    радары;
    персональные компьютеры.

2.1 Электротранспорт

Транспорт на электрической тяге (электропоезда (в том числе поезда метрополитена), троллейбусы, трамваи и т. п.) является относительно мощным источником магнитного поля в диапазоне частот от 0 до 1000 Гц. По данным (Stenzel et al.,1996), максимальные значения плотности потока магнитной индукции в пригородных "электричках&qu t; достигают 75 мкТл при среднем значении 20 мкТл. Среднее значение В на транспорте с электроприводом постоянного тока зафиксировано на уровне 29 мкТл.



2.2 Линии электропередач

Провода работающей линии электропередачи создают в прилегающем пространстве электрическое и магнитное поля промышленной частоты (ПЧ). Расстояние, на которое распространяются эти поля от проводов линии достигает десятков метров. Дальность распространения электрического поля зависит от класса напряжения ЛЭП, чем выше напряжение - тем больше зона повышенного уровня электрического поля, при этом размеры зоны не изменяются в течении времени работы ЛЭП.
Дальность распространения магнитного поля зависит от величины протекающего тока или от нагрузки линии. Поскольку нагрузка ЛЭП может неоднократно изменяться как в течении суток, так и с изменением сезонов года, размеры зоны повышенного уровня магнитного поля также меняются.
Санитарные нормы
Исследования биологического действия ЭМП ПЧ, выполненные в СССР в 60-70х годах, ориентировались в основном на действие электрической составляющей, поскольку экспериментальным путем значимого биологического действия магнитной составляющей при типичных уровнях не было обнаружено. В 70-х годах для населения по ЭП ПЧ были введены жесткие нормативы. Они изложены в Санитарных нормах и правилах "Защита населения от воздействия электрического поля, создаваемого воздушными линиями электропередачи переменного тока промышленной частоты" № 2971-84. В соответствии с этими нормами проектируются и строятся все объекты электроснабжения.
На основании массовых эпидемиологических обследований населения, проживающего в условиях облучения магнитными полями ЛЭП как безопасный или "нормальный&quo ; уровень для условий продолжительного облучения, не приводящий к онкологическим заболеваниям, специалистами рекомендована величина плотности потока магнитной индукции 0,2 - 0,3 мкТл.
Основной принцип защиты здоровья населения от электромагнитного поля ЛЭП состоит в установлении санитарно-защитных зон для линий электропередачи и снижением напряженности электрического поля в жилых зданиях и в местах возможного продолжительного пребывания людей путем применения защитных экранов. Границы санитарно-защитных зон для ЛЭП определяются по критерию напряженности электрического поля.

Таблица 2 Границы санитарно-защитных зон для ЛЭП согласно СН № 2971-84
Напряжение ЛЭП
Размер санитарно-защитной (охранной) зоны


К размещению воздушных линий (ВЛ) ультравысоких напряжений (750 и 1150 кВ) предъявляются дополнительные требования по условиям воздействия электрического поля на население. Так, ближайшее расстояние от оси проектируемых ВЛ 750 и 1150 кВ до границ населенных пунктов должно быть, как правило, не менее 250 и 300 м соответственно.

Таблица 3 Допустимые уровни воздействия электрического поля ЛЭП
Условия облучения
внутри жилых зданий
на территории зоны жилой застройки
в населенной местности вне зоны жилой застройки; (земли городов в пределах городской черты в границах их перспективного развития на 10 лет, пригородные и зеленые зоны, курорты, земли поселков городского типа в пределах поселковой черты и сельских населенных пунктов в пределах черты этих пунктов) а также на территории огородов и садов;
на участках пересечения воздушных линий электропередачи с автомобильными дорогами I – IV категорий;
в ненаселенной местности (незастроенные местности, хотя бы и часто посещаемые людьми, доступные для транспорта, и сельскохозяйственные угодья);
в труднодоступной местности (недоступной для транспорта и сельскохозяйственных машин) и на участках, специально выгороженных для исключения доступа населения.




В пределах санитарно-защитной зоны ВЛ запрещается:
    размещать жилые и общественные здания и сооружения;
    устраивать площадки для стоянки и остановки всех видов транспорта;
    размещать предприятия по обслуживанию автомобилей и склады нефти и нефтепродуктов;
    производить операции с горючим, выполнять ремонт машин и механизмов.
Территории санитарно-защитных зон разрешается использовать как сельскохозяйственные угодья, однако рекомендуется выращивать на них культуры, не требующие ручного труда.
В случае если на каких-то участках напряженность электрического поля за пределами санитарно-защитной зоны окажется выше предельно допустимой 0,5 кВ/м внутри здания и выше 1 кВ/м на территории зоны жилой застройки (в местах возможного пребывания людей), должны быть приняты меры для снижения напряженности.
Для этого на крыше здания с неметаллической кровлей размещается практически любая металлическая сетка, заземленная не менее чем в двух точках.
В зданиях с металлической крышей достаточно заземлить кровлю не менее чем в двух точках. На приусадебных участках или других местах пребывания людей напряженность поля промышленной частоты может быть снижена путем установления защитных экранов, например это железобетонные, металлические заборы, тросовые экраны, деревья или кустарники высотой не менее 2 м.



2.3 Электропроводка

Наибольший вклад в электромагнитную обстановку жилых помещений в диапазоне промышленной частоты 50 Гц вносит электротехническое оборудование здания, а именно кабельные линии, подводящие электричество ко всем квартирам и другим потребителям системы жизнеобеспечения здания, а также распределительные щиты и трансформаторы. В помещениях, смежных с этими источниками, обычно повышен уровень магнитного поля промышленной частоты, вызываемый протекающим электротоком. Уровень электрического поля промышленной частоты при этом обычно не высокий и не превышает ПДУ для населения 500 В/м.


Рисунок 1. Распределение магнитного поля промышленной частоты в жилом помещении

На рисунке 1 источник поля – распределительный пункт электропитания, находящийся в смежном нежилом помещении. В настоящее время результаты выполненных исследований не могут четко обосновать предельные величины или другие обязательные ограничения для продолжительного облучения населения низкочастотными магнитными полями малых уровней.
Однако многие специалисты считают предельно допустимой величину магнитной индукции равной 0,2 - 0,3 мкТл. При этом считается, что развитие заболеваний - прежде всего лейкемии - очень вероятно при продолжительном облучении человека полями более высоких уровней (несколько часов в день, особенно в ночные часы, в течении периода более года).

2.4 Бытовая электротехника

Все бытовые приборы, работающие с использованием электрического тока, являются источниками электромагнитных полей. Наиболее мощными следует признать СВЧ-печи, аэрогрили, холодильники с системой “без инея”, кухонные вытяжки, электроплиты, телевизоры. Реально создаваемое ЭМП в зависимости от конкретной модели и режима работы может сильно различаться среди оборудования одного типа.
Значения магнитного поля тесно связаны с мощностью прибора - чем она выше, тем выше магнитное поле при его работе. Значения электрического поля промышленной частоты практически всех электробытовых приборов не превышают нескольких десятков В/м на расстоянии 0,5 м, что значительно меньше ПДУ 500 В/м.

Таблица 4 Уровни магнитного поля промышленной частоты 50 Гц бытовых электроприборов на расстоянии 0,3 м.
Бытовой электроприбор
Пылесос
Дрель
Утюг
Миксер
Телевизор
Люминесцентная лампа
Кофеварка
Стиральная машина
Микроволновая печь
Электрическая плита


Таблица 5 Предельно допустимые уровни электромагнитного поля для потребительской продукции, являющейся источником ЭМП
Источник
Диапазон
Значение ПДУ
Примечание
Индукционные печи
20 - 22 кГц
500 В/м
4 А/м
Условия измерения: расстояние 0,3 м от корпуса
СВЧ печи
2,45 ГГц
10 мкВт/см2
Условия измерения: расстояние 0,50 ± 0,05 м от любой точки, при нагрузке 1 литр воды
Видеодисплей-ный терминал ПЭВМ
5 Гц - 2 кГц
ЕПДУ = 25 В/м
ВПДУ = 250 нТл
Условия измерения: расстояние 0,5 м вокруг монитора ПЭВМ
2 - 400 кГц
ЕПДУ = 2,5 В/м ВПДУ = 25 нТл
поверхностный электростатический потенциал
V = 500 В
Условия измерения: расстояние 0,1 м от экрана монитора ПЭВМ
Прочая продукция
50 Гц
Е = 500 В/м
Условия измерения: расстояние 0,5 м от корпуса изделия
0,3 - 300 кГц
Е = 25 В/м
0,3 - 3 МГц
Е = 15 В/м
3 - 30 МГц
Е = 10 В/м
30 - 300 МГц
Е = 3 В/м
0,3 - 30 ГГц
ППЭ = 10 мкВт/см2



Возможные биологические эффекты
Человеческий организм всегда реагирует на электромагнитное поле. Однако, для того чтобы эта реакция переросла в патологию и привела к заболеванию, необходимо совпадение ряда условий – в том числе достаточно высокий уровень поля и продолжительность облучения. Поэтому, при использовании бытовой техники с малыми уровнями поля и/или кратковременно ЭМП бытовой техники не оказывает влияния на здоровье основной части населения. Потенциальная опасность может грозить лишь людям с повышенной чувствительностью к ЭМП и аллергикам.
Кроме того, согласно современным представлениям, магнитное поле промышленной частоты может быть опасным для здоровья человека, если происходит продолжительное облучение (регулярно, не менее 8 часов в сутки, в течение нескольких лет) с уровнем выше 0,2 мкТл.

2.5 Теле- и радиостанции
электромагнитный излучение биофизика
На территории России в настоящее время размещается значительное количество передающих радиоцентров различной принадлежности. Передающие радиоцентры (ПРЦ) размещаются в специально отведенных для них зонах и могут занимать довольно большие территории (до 1000 га). По своей структуре они включают в себя одно или несколько технических зданий, где находятся радиопередатчики, и антенные поля, на которых располагаются до нескольких десятков антенно-фидерных систем (АФС). АФС включает в себя антенну, служащую для измерения радиоволн, и фидерную линию, подводящую к ней высокочастотную энергию, генерируемую передатчиком.
Зону возможного неблагоприятного действия ЭМП, создаваемых ПРЦ, можно условно разделить на две части.
Первая часть зоны - это собственно территория ПРЦ, где размещены все службы, обеспечивающие работу радиопередатчиков и АФС. Это территория охраняется, и на нее допускаются только лица, профессионально связанные с обслуживанием передатчиков, коммутаторов и АФС. Вторая часть зоны - это прилегающие к ПРЦ территории, доступ на которые не ограничен и где могут размещаться различные жилые постройки, в этом случае возникает угроза облучения населения, находящегося в этой части зоны.
Высокие уровни ЭМП наблюдаются на территориях, а нередко и за пределами размещения передающих радиоцентров низкой, средней и высокой частоты (ПРЦ НЧ, СЧ и ВЧ). Детальный анализ электромагнитной обстановки на территориях ПРЦ свидетельствует о ее крайней сложности, связанной с индивидуальным характером интенсивности и распределения ЭМП для каждого радиоцентра. В связи с этим специальные исследования такого рода проводятся для каждого отдельного ПРЦ.
Широко распространенными источниками ЭМП в населенных местах в настоящее время являются радиотехнические передающие центры (РТПЦ), излучающие в окружающую среду ультракороткие волны ОВЧ и УВЧ-диапазонов.
Сравнительный анализ санитарно-защитных зон (СЗЗ) и зон ограничения застройки в зоне действия таких объектов показал, что наибольшие уровни облучения людей и окружающей среды наблюдаются в районе размещения РТПЦ «старой постройки» с высотой антенной опоры не более 180 м. Наибольший вклад в суммарную интенсивность воздействия вносят «уголковые» трех- и шестиэтажные антенны ОВЧ ЧМ-вещания.
Телевизионные передатчики. Передающие антенны размещаются обычно на высоте выше 110 м. С точки зрения оценки влияния на здоровье интерес представляют уровни поля на расстоянии от нескольких десятков метров до нескольких километров. Типичные значения напряженности электрического поля могут достигать 15 В/м на расстоянии 1 км от передатчика мощностью 1 МВт.
Основной принцип обеспечения безопасности – соблюдение установленных Санитарными нормами и правилами предельно допустимых уровней электромагнитного поля. Каждый радиопередающий объект имеет Санитарный паспорт, в котором определены границы санитарно-защитной зоны. Только при наличии этого документа территориальные органы Госсанэпиднадзора разрешают эксплуатировать радиопередающие объекты. Периодически они производят контроль электромагнитной обстановки на предмет её соответствия установленным ПДУ.

2.6 Спутниковая связь

Системы спутниковой связи состоят из приемопередающей станции на Земле и спутника, находящегося на орбите. Диаграмма направленности антенны станций спутниковой связи имеет ярко выраженной узконаправленный основной луч - главный лепесток. Плотность потока энергии (ППЭ) в главном лепестке диаграммы направленности может достигать нескольких сотен Вт/м2 вблизи антенны, создавая также значительные уровни поля на большом удалении. Например, станция мощностью 225 кВт, работающая на частоте 2,38 ГГц, создает на расстоянии 100 км ППЭ равное 2,8 Вт/м2. Однако рассеяние энергии от основного луча очень небольшое и происходит больше всего в районе размещения антенны.

2.7 Сотовая связь

В системе сотовой связи источниками ЭМП являются телефонные трубки и базовые станции (БС). Принцип действия этих источников ЭМП на человека различен. Отличительной особенностью сотового телефона, как источника ЭМП, является его максимальное приближение к голове пользователя на расстояние 0-3 см в неконтролируемых условиях (т.е. частоту и продолжительность воздействия контролирует сам пользователь). При этом воздействию ЭМП подвергаются головной мозг, периферические рецепторные зоны вестибулярного, слухового анализаторов, сетчатка глаза. Воздействию ЭМП сотового телефона подвергаются также и окружающие пользователя люди.
ЭМП базовых станций генерируется постоянно и накрывает "электромагнитн м покрывалом" всю зону действия сотовой связи. Базовые станции располагаются в местах постоянного пребывания человека, т.е. происходит круглосуточное хроническое облучение населения низкоинтенсивным ЭМП радиочастотного диапазона, даже если все санитарные правила и нормы при их возведении были соблюдены.
Стандарты, определяющие воздействие на человека радиочастот, излучаемых мобильными телефонами, используют такое понятие, как SAR - единицу измерения удельной величины поглощения излучения организмом человека. На основании научных исследований международные организации подготовили подробные рекомендации относительно максимального значения SAR для мобильных телефонов. SAR измеряется в ваттах на килограмм (Вт/кг). Для разных стран максимальное значение SAR составляет от 1,6 до 2 Вт/кг. Величина SAR – это максимальная мощность излучения, для которой сертифицирован телефон. На практике реальный уровень SAR может быть гораздо ниже, поскольку, как только осуществляется соединение, мобильный телефон действует при минимальном уровне мощности, который требуется для получения хорошего качества связи. Нормы СанПиН нельзя перевести в единицы SAR простым расчетным путем. Для того, чтобы определить соответствие новой модели сотового телефона российским стандартам, необходимо проводить лабораторные измерения. Эксперты отмечают, что российские требования фактически устанавливают более жесткие ограничения на мощность передатчиков сотовых телефонов, чем рекомендуют нормы Всемирной Организации Здравоохранения. Однако, по мнению ВОЗ, такое завышение стандартов не имеет за собой никаких научных предпосылок.
Система сотовой связи работает в диапазоне частот 450-1800 МГц с использованием различных видов модуляции. Интенсивность излучения ЭМП сильно колеблется в зависимости от модели телефона. Биологический эффект действия ЭМП формируется в зависимости от:
    технических характеристик телефона;
    режима и длительности воздействия (частоты и продолжительности телефонных разговоров);
    исходного состояния объекта воздействия (возраст, пол, состояние здоровья, индивидуальная чувствительность и т.д.);
    распределения энергии в биологических тканях (вид ткани, глубина проникновения и т.д.).
Таким образом, на развитие непосредственной реакции организма влияет целая группа факторов.
Повышенный интерес вызывают исследования воздействия ЭМП на функцию мозга, память, внимание; комбинированное действие ЭМП и различных канцерогенов (факторов, вызывающих злокачественное перерождение клеток); влияние ЭМП радиочастот на кардиостимуляторы.
На сегодняшний день нет достоверных данных о том, что сотовый телефон виновен в возникновении раковых заболеваний. Но есть прямая зависимость между длительностью разговоров и частотой возникновения жалоб на головные боли, головокружения, тошноту, неврологические расстройства, ощущение тепла около уха, быструю утомляемость. Обнаружено достоверное увеличение времени реакции (на 0,5-1 сек) и различные нарушения сна.
В рамках предупредительной стратегии ВОЗ в отношении сотовой связи Российский комитет по защите от неионизирующих излучений разработал ряд рекомендаций для населения. Среди которых: не использовать сотовые телефоны детям и подросткам до 16 лет, беременным, лицам, страдающим заболеваниями неврологического характера. А также ограничить продолжительность разговоров до 3 минут, максимально увеличивать период между двумя разговорами (минимум 15 минут), во время разговора снимать очки с металлической оправой, так как наличие подобной оправы, играющей роль вторичного излучателя, может привести к увеличению интенсивности ЭМП, падающего на определенные участки головы пользователя, по сравнению со стандартной ситуацией, и преимущественно использовать сотовые телефоны с гарнитурами и системами «свободные руки» («hands free»).
Людям, постоянно или временно находящимся на территориях, прилегающих к базовым станциям, следует лишь не подходить близко (0,5-1 м) к передающим антеннам БС, не трогать их руками. Проведение других мероприятий, таких как установка на окна экранирующей металлической сетки, оклейка помещений фольгой и т.п., в данной ситуации излишне.

2.8 Радары

Радиолокационные станции оснащены, как правило, антеннами зеркального типа и имеют узконаправленную диаграмму излучения в виде луча, направленного вдоль оптической оси.
Радиолокационные системы работают на частотах от 500 МГц до 15 ГГц, однако отдельные системы могут работать на частотах до 100 ГГц. Создаваемый ими ЭМ-сигнал принципиально отличается от излучения иных источников. Связано это с тем, что периодическое перемещение антенны в пространстве приводит к пространственной прерывистости облучения. Временная прерывистость облучения обусловлена цикличностью работы радиолокатора на излучение. Время наработки в различных режимах работы радиотехнических средств может исчисляться от нескольких часов до суток. Так у метеорологических радиолокаторов с временной прерывистостью 30 мин - излучение, 30 мин - пауза суммарная наработка не превышает 12 ч, в то время как радиолокационные станции аэропортов в большинстве случаев работают круглосуточно. Ширина диаграммы направленности в горизонтальной плоскости обычно составляет несколько градусов, а длительность облучения за период обзора составляет десятки миллисекунд.
Радары метрологические могут создавать на удалении 1 км ППЭ ~ 100 Вт/м2 за каждый цикл облучения. Радиолокационные станции аэропортов создают ППЭ ~ 0,5 Вт/м2 на расстоянии 60 м. Морское радиолокационное оборудование устанавливается на всех кораблях, обычно оно имеет мощность передатчика на порядок меньшую, чем у аэродромных радаров, поэтому в обычном режиме сканирование ППЭ, создаваемое на расстоянии нескольких метров, не превышает 10 Вт/м2.
Возрастание мощности радиолокаторов различного назначения и использование остронаправленных антенн кругового обзора приводит к значительному увеличению интенсивности ЭМИ СВЧ-диапазона и создает на местности зоны большой протяженности с высокой плотностью потока энергии. Наиболее неблагоприятные условия отмечаются в жилых районах городов, в черте которых размещаются аэропорты: Иркутск, Сочи, Сыктывкар, Ростов-на-Дону и ряд других.

2.9 Персональные компьютеры

Основным источником неблагоприятного воздействия на здоровье пользователя компьютера является средство визуального отображения информации на электронно-лучевой трубке. Ниже перечислены основные факторы его неблагоприятного воздействия.
Эргономические параметры экрана монитора:
    снижение контраста изображения в условиях интенсивной внешней засветки;
    зеркальные блики от передней поверхности экранов мониторов;
    наличие мерцания изображения на экране монитора.
Излучательные характеристики монитора:
    электромагнитное поле монитора в диапазоне частот 20 Гц- 1000 МГц;
    статический электрический заряд на экране монитора;
    ультрафиолетовое излучение в диапазоне 200- 400 нм;
    инфракрасное излучение в диапазоне 1050 нм- 1 мм;
    рентгеновское излучение > 1,2 кэВ.
Компьютер как источник переменного электромагнитного поля
Основными составляющими частями персонального компьютера (ПК) являются: системный блок (процессор) и разнообразные устройства ввода/вывода информации: клавиатура, дисковые накопители, принтер, сканер, и т. п. ПК часто оснащают сетевыми фильтрами (например, типа "Pilot"), источниками бесперебойного питания и другим вспомогательным электрооборудованием Все эти элементы при работе ПК формируют сложную электромагнитную обстановку на рабочем месте пользователя (см. таблицу 6).

Таблица 6 ПК как источник ЭМП
Источник
Диапазон частот (первая гармоника)
Монитор, сетевой трансформатор блока питания
50 Гц
Статический преобразователь напряжения в импульсном блоке питания
20 - 100 кГц
Блок кадровой развертки и синхронизации
48 - 160 Гц
Блок строчной развертки и синхронизации
15 110 кГц
Системный блок (процессор)
50 Гц - 1000 МГц
Устройства ввода/вывода информации
0 Гц, 50 Гц
Источники бесперебойного питания
50 Гц, 20 - 100 кГц


Электромагнитное поле, создаваемое персональным компьютером, имеет сложный спектральный состав в диапазоне частот от 0 Гц до 1000 МГц.



Таблица 7 Максимальные зафиксированные на рабочем месте значения ЭМП
Вид поля
диапазон частот
Значение напряженности поля по оси экрана вокруг монитора
Электрическое поле
100 кГц- 300 МГц
17-24 В/м
Электрическое поле
0,02- 2 кГц
150-155 В/м
Электрическое поле
2- 400 кГц
14-16 В/м
Магнитное поле
100кГц- 300МГц
НЧП
Магнитное поле
0,02- 2 кГц
550-600 мА/м
Магнитное поле
2- 400 кГц
35 мА/м


Таблица 8 Диапазон значений электромагнитных полей, измеренных на рабочих местах пользователей ПК
Наименование измеряемых параметров
Диапазон частот 5 Гц - 2 кГц
Диапазон частот 2 - 400 кГц
Напряженность переменного электрического поля, (В/м)
1,0 - 35,0
0,1 - 1,1
Индукция переменного магнитного поля, (нТл)
6,0 - 770,0
1,0 - 32,0


Исследования функционального состояния пользователя компьютера показали, что даже при кратковременной работе (45 минут) в организме пользователя под влиянием электромагнитного излучения монитора происходят значительные изменения гормонального состояния и специфические изменения биотоков мозга.

Таблица 9 Жалобы пользователей персонального компьютера и возможные причины их происхождения
Субъективные жалобы
Возможные причины
резь в глазах
визуальные эргономические параметры монитора, освещение на рабочем месте и в помещении
головная боль
аэроионный состав воздуха в рабочей зоне, режим работы
повышенная нервозность
электромагнитное поле, цветовая гамма помещения, режим работы
повышенная утомляемость
электромагнитное поле, режим работы
расстройство памяти
электромагнитное поле, режим работы
нарушение сна
режим работы, электромагнитное поле
выпадение волос
электростатические поля, режим работы
прыщи и покраснение кожи
электростатические поле, аэроионный и пылевой состав воздуха в рабочей зоне
боли в животе
неправильная посадка, вызванная неправильным устройством рабочего места
боль в пояснице
неправильная посадка пользователя, вызванная устройством рабочего места, режим работы
боль в запястьях и пальцах
неправильная конфигурация рабочего места, в том числе высота стола не соответствует росту и высоте кресла; неудобная клавиатура; режим работы


В качестве технических стандартов безопасности мониторов широко известны шведские ТСО92/95/98 и MPR II. Эти документы определяют требования к монитору персонального компьютера по параметрам, способным оказывать влияние на здоровье пользователя. Наиболее жесткие требования к монитору предъявляет ТСО 95. Он ограничивает параметры излучения монитора, потребления электроэнергии, визуальные параметры, так что делает монитор наиболее лояльным к здоровью пользователя. В части излучательных параметров ему соответствует и ТСО 92. Разработан стандарт Шведской конфедерацией профсоюзов.
Стандарт MPR II менее жесткий – устанавливает предельные уровни электромагнитного поля примерно в 2,5 раза выше. Разработан Институтом защиты от излучений (Швеция) и рядом организаций, в том числе крупнейших производителей мониторов. В части электромагнитных полей стандарту MPR II соответствует российские санитарные нормы СанПиН 2.2.2.542-96 “Гигиенические требования к видеодисплейным терминалам, персональным электронно-вычислител ным машинам и организации работ”. Средства защиты пользователей от ЭМП В основном из средств защиты предлагаются защитные фильтры для экранов мониторов. Они используется для ограничения действия на пользователя вредных факторов со стороны экрана монитора, улучшает эргономические параметры экрана монитора и снижает излучение монитора в направлении пользователя.



3. Биофизика взаимодействия ЭМИ с биологическими объектами

Организм человека осуществляет свою деятельность путем ряда сложных процессов и механизмов и, в том числе, с использованием внутри- и внеклеточной электромагнитной информации и соответствующей биоэлектрической регуляции. Электромагнитная среда обитания фактически может быть рассмотрена как источник помех в отношении жизнедеятельности человека и биоэкосистем. В этой связи возникает проблема биоэлектромагнитной совместимости как весьма сложной системы взаимодействия живой природы и технических средств, источников ЭМИ. В этой ситуации живой организм вынужден постоянно искать защиту от быстро меняющейся обстановки, используя свои внутренние возможности.
При взаимодействии электромагнитных излучений с биологическими объектами лишь часть энергии поглощается. В этом случае используют следующий принцип: только та часть энергии излучения может вызвать изменения в веществе, которая поглощается этим веществом; отраженная или проходящая энергия не оказывает никакого действия (принцип Гроттгосуса).
Это взаимодействие носит биофизический характер, т.е. происходит процесс поглощения и непосредственного распределения поглощенной энергии на уровне биотканей целого организма. При этом тканевые системы называются биомикросистемами, а отдельные части тела (голова, туловище и т.д.) - биомакросистемами.
В отличие от ионизирующего излучения, которое непосредственно создает электрические заряды, электромагнитные излучения не обладают ионизирующей способностью и воздействуют только на уже имеющиеся свободные заряды или диполи. Диэлектрические свойства биотканей сильно зависят от их химического состава, частоты колебаний, происходящих внутри биологического объекта. Электромагнитные свойства определяют процессы прохождения энергии через слои вещества, отраженной на границах их раздела, и поглощения внутри тканей.
Диэлектрические и магнитные свойства биотканей
При взаимодействии электромагнитного излучения с биовеществом возникают два типа эффекта, определяющих диэлектрические свойства тканей. Колебания свободных зарядов (ионов) приводят к увеличению токов проводимости и потере энергии, связанной с электрическим сопротивлением среды. Вращение дипольных молекул с частотой приложения электромагнитного излучения влияет на токи смещения и диэлектрические потери, обусловленные вязкостью среды.
Диэлектрические свойства биотканей описываются диэлектрической проницаемостью и проводимостью. Магнитные свойства биотканей описываются магнитной проницаемостью. Хотя все биоткани являются слабыми диа- и парамагнетиками, близкими по свойствам к вакуумной среде, рассеяние магнитной энергии в биообъекте может быть значительным в зависимости от размеров и электрических свойств этих объектов.
Диэлектрические свойства биотканей существенно зависят от частоты электромагнитных колебаний. Эти зависимости показаны на графиках (рис. 2, 3).


Рисунок 2. Зависимость мнимой диэлектрической проницаемости биотканей с высоким содержанием воды от частоты электромагнитных колебаний




Рисунок 3. Зависимость проводимости биотканей с высоким содержанием воды от частоты электромагнитных колебаний

При воздействии на биоткань электрических излучений она поляризуется, и ионные токи будут протекать только по межклеточной жидкости, т.к. мембраны клеток, являясь хорошими изоляторами, отделяют внутриклеточное содержание. Это справедливо для постоянного электрического поля.
При частоте, меньшей 10 кГц, период электромагнитных колебаний достаточно большой для того, чтобы клеточные мембраны успели перезарядиться за счет ионов вне и внутри клетки. Это объясняет наличие низкой удельной ионной проводимости даже для тканей с высоким содержанием воды. При этом полный заряд и диэлектрическая проницаемость ткани за период колебаний велики. Последующий рост удельной проводимости происходит вследствие уменьшения емкостного сопротивления мембран с увеличением частоты. Неполная перезарядка изолированных мембран вовлекает внутриклеточную жидкость в процесс образования ионных токов, проводимость ткани плавно увеличивается, а ее диэлектрическая проницаемость падает.
Лавинное вовлечение внутриклеточной среды в процесс образования ионных токов на частотах 10 кГц ...100 кГц вызывает резкое возрастание удельной проводимости. Кроме того, поляризация молекул тканей, в основном молекул воды, приводит к возникновению токов смещения, увеличивающих токи в тканях при тех же амплитудах напряженности электрического поля, т.е. уменьшает их удельное сопротивление.
При частотах 100 кГц ...10 МГц мембраны все меньше и меньше перезаряжаются, и емкостное сопротивление биоткани падает. Содержимое клеток все активнее включается в процесс образования ионных токов, т.е. проводимость ткани продолжает возрастать, а ее диэлектрическая проницаемость уменьшается. При этом значительно возрастают поляризация молекул и обусловленные ею токи смещения, что приводит к увеличению суммарных токов в биотканях.
При частотах больше 10 МГц емкостное сопротивление мембран клеток становится таким малым, что клетку считают короткозамкнутой. Поляризация молекул и токи смещения становятся доминирующими. Возбужденные молекулы приходят в колебательное движение, сталкиваются с псевдовозбужденными и передают им свою энергию, расходуемую на тепло и химические преобразования. Поэтому проводимость резко возрастает, а диэлектрическая проницаемость меняется незначительно.



4. Реакция организма человека на воздействие ЭМ излучений

Среди всего спектра наибольшей биологической значимостью и выраженностью симптоматики выделяются ЭМИ РЧ и СВЧ. В зависимости от интенсивности и продолжительности воздействия ЭМИ РЧ и СВЧ вызываемые изменения в организме подразделяют на изменения острого (термогенного) и хронического (атермального) воздействия. Острое воздействие обусловлено термическим воздействием ЭМИ, как правило, при нарушении техники безопасности. Термогенное воздействие обычно носит локальный характер, а возникающая симптоматика определяется топографией облучаемой области. При облучении пострадавшие ощущают тепло в месте воздействия, схожее с действием солнечных лучей. Иногда отмечают также общее недомогание, головную боль, головокружение, тошноту, рвоту, чувство страха, жажду, легкую слабость, боли в конечностях, повышенную потливость. У пострадавших наблюдаются повышение температуры тела, приступы тахикардии, нарушение сердечной деятельности, артериальная гипертензия. В ряде случаев в клинике острых воздействий могут преобладать диэнцефальные расстройства. Субъективная и объективная симптоматика у пострадавших через несколько дней исчезает, все клинические показатели приходят к доклиническому уровню, полностью восстанавливается работоспособность. Немногочисленные клинические наблюдения острого теплового действия ЭМИ на человека указывают на возможность локальных остаточных структурных изменений органов и тканей (ожогов, катаракты, атрофии семенников и т.д.).
Влияние излучений РЧ и СВЧ
Наиболее обширно в литературе представлены сведения, касающиеся клинико-эпидемиологи еского характера хронического влияния ЭМИ. Как правило, наблюдаемые изменения регистрировались при воздействии ЭМИ интенсивностью, подчас превышающей предельно допустимый уровень, но не приводящей к тепловым эффектам. По данным ряда отечественных авторов, у персонала, связанного с работой источников ЭМИ РЧ и СВЧ, выявляется разнообразная неврологическая симптоматика как субъективного, так и объективного характера. По зарубежным данным, при исследовании клинического статуса может отмечаться даже стимуляция неврологической симптоматики. Предъявляемые жалобы были хроническими и наблюдались еще до момента переоблучения. У таких пациентов может длительно сохраняться переоценка вреда, наносимого фактором. Для установления истинной картины в последнее время в практике клинико-эпидемиологи еского обследования начали широко применяться психологические методы. При использовании ряда психологических тестов у персонала, имеющего длительный контакт с ЭМИ, наблюдают достоверное усиление патологической компоненты тревожного поведения и депрессивного состояния при отсутствии каких-либо объективных симптомов. При анкетировании могут наблюдаться преобладание жалоб на снижение памяти, а также на ухудшение самочувствия, увеличение критической частоты слияния световых мельканий к концу рабочего дня. Наиболее характерными в динамике изменений реакции организма на хроническое воздействие ЭМИ являются: реакции центральной нервной и сердечно-сосудистой систем, а также системы крови. При этом выделяют три ведущих синдрома: астенический, астеновегетативный и гипоталамический. Астенический синдром наблюдают в начальных стадиях проявлений изменений, вызванных ЭМИ, два других - на умеренно выраженной и выраженной стадиях. Представленная симптоматика не всегда повторяется и не обязательно встречается у лиц, подвергающихся облучению.
Некоторые авторы считают, что хронические воздействия ЭМИ РЧ и СВЧ при интенсивности менее 10 Вт/м2 могут вызывать в системе крови различные неустойчивые изменения: лейкоцитоз, увеличение количества лимфоцитов. Иногда отмечают моноцитоз, патологическую зернистость нейтрофилов, ретикулоцитоз и тромбоцитопению. Однако большинство исследователей отмечают недостоверный характер этих изменений даже при кратковременном воздействии «до ощущения тепла» и неспецифичность проявлений, свойственных также многим неблагоприятным факторам труда.
Данные эпидемиологического изучения отдаленных последствий, предписываемых влиянию ЭМИ, в том числе возникновения специфических заболеваний крови, показывают, что нахождение стойких изменений в крови в условиях воздействия реально существующих уровней ЭМИ у профессионалов и тем более у населения представляется весьма проблематичным.
Таким образом, представленные данные клинико-эпидемиологи еских исследований о влиянии ЭМИ РЧ и СВЧ на организм человека свидетельствуют, что выраженность наблюдаемых изменений зависит от интенсивности и времени воздействия. Общая картина изменений под влиянием различных уровней ЭМИ представлена в табл. 10.

Таблица 10 Возможные изменения в организме человека под влиянием ЭМИ различных интенсивностей
Интенсивность ЭМИ, мВт/см2
Наблюдаемые изменения
600
Болевые ощущения в период облучения
200
Угнетение окислительно-восстано ительных процессов в ткани
100
Повышенное артериальное давление с последующим его снижением; в случае воздействия - устойчивая гипотензия. Двухсторонняя катаракта
40
Ощущение тепла. Расширение сосудов. При облучении 0,5-1 ч повышение давления на 20-30 мм рт. ст.
20
Стимуляция окислительно-восстано ительных процессов в ткани
10
Астенизация после 15 мин. облучения, изменение биоэлектрической активности головного мозга
8
Неопределенные сдвиги со стороны крови с общим временем облучения 150 ч, изменение свертываемости крови
6
Электрокардиографиче кие изменения, изменения в рецепторном аппарате
4-5
Изменение артериального давления при многократных облучениях, непродолжительная лейкопения, эритропения
3-4
Ваготоническая реакция с симптомами брадикардии, замедление электропроводимости сердца
2-3
Выраженный характер снижения артериального давления, тенденция к учащению пульса, незначительные колебания объема сердца
1
Снижение артериального давления, тенденция к учащению пульса, незначительные колебания объема крови сердца. Снижение офтальмотонуса при ежедневном воздействии в течение 3,5 месяцев
0,4
Слуховой эффект при воздействии импульсных ЭМП
0,3
Некоторые изменения со стороны нервной системы при хроническом воздействии в течение 5-10 лет
0,1
Электрокардиографиче кие изменения
до 0,05
Тенденция к понижению артериального давления при хроническом воздействии


Роль излучений КНЧ в ускорении роста раковых клеток
К электромагнитным излучениям крайне низкой частоты относятся электромагнитные излучения с частотами 30...300 Гц. КНЧ-поля не настолько энергетически сильны, чтобы изменить или разрушить связи в клетках на молекулярном уровне. Вместо этого КНЧ-поля, по-видимому, имитируют электрические изменения, которые обычно происходят в живой клетке организма.
Эта имитация обычных внутриклеточных процессов может лежать в основе потенциальной способности КНЧ-поля ускорять рост раковых опухолей. Некоторые ученые отметили, что участки мембраны, на которые воздействовало КНЧ-излучение, ведут себя как рецептор для химических веществ, ускоряющих рост раковых клеток.
Ученые считают, что КНЧ-поля также увеличивают химическую активность соединения, известного под названием ортинин декарбоксилаза, и этот эффект связывают с ускоренным развитием раковых клеток. Кроме того, КНЧ-поля разрушают функции соединения клеток - другой эффект, который также связывают с ростом раковых клеток.
Некоторые эксперименты обнаружили существование «оконных эффектов», т.е. некоторые биологические эффекты проявлялись только при определенной напряженности КНЧ-поля и не проявлялись при большей или меньшей напряженности. Кроме того, эти «оконные эффекты», по-видимому, зависели от наличия и ориентации статических полей, таких, как магнитное поле Земли.
Следует отметить, что, по-видимому, биологическое воздействие КНЧ-поля зависит от вида его волн. Ученые считают, что наименее активны синусоидальные волны, являющиеся характеристикой электричества, используемого в быту. Наиболее активными являются импульсные излучения, подобные тем, которые генерируются радарами, и поля с пилообразной характеристикой, которые генерируются схемами телевизоров и мониторов.
Вероятность возникновения рака у людей, живущих рядом с ЛЭП (ближе 400 м), возрастает на 29%. Ученые считают, что ЛЭП, ионизируя окружающий воздух, делает его опасным для здоровья: если вдыхать такой воздух, то заряженные частицы оседают в легких.
Пользователям компьютеров ученые советуют не работать в ночное и вечернее время, так как интенсивный свет действует на эпифиз, вследствие этого угнетается синтез мелатонина (гормона эпифиза), что может повлечь за собой заболевания. Свет угнетает синтез малатонина, поэтому его концентрация максимальна ночью, а утром и днем – минимальная. Вследствие систематического искусственного освещения человека ночью у него может образоваться опухоль. Особенный вред избыточная освещенность приобретает тогда, когда на организм действуют какие-либо канцерогенные факторы, например химические или радиационные.
Катаракта, как результат воздействия излучений РЧ и СВЧ
Особое место при изучении влияния ЭМИ РЧ и СВЧ на организм человека занимает исследование катарактогенеза – помутнения хрусталика с потерей зрительной функции. Результаты клинических исследований катаракты, возникшей от излучений РЧ и СВЧ, представляют собой неясную картину.
Среди факторов риска, способствующих возникновению катаракты, по данным ВОЗ, электромагнитным излучениям РЧ и СВЧ отводят пятое место после диабета, ультрафиолетового облучения, метаболических нарушений и ионизирующей радиации. Начиная с 1952 г. в печати сообщалось о десятках случаев возникновения у людей электромагнитной катаракты. Из всех представленных в литературе случаев возникновения катаракты у людей, контактирующих с источниками ЭМИ, следует, что процесс катарактогенеза может развиваться на фоне довольно длительного (от 1 года до 6 лет) хронического облучения ЭМИ с тепловыми уровнями, иногда при случайных кратковременных попаданиях в поле интенсивностью, превышающей средние значения в 20-100 раз. Помимо катаракты, под воздействием электромагнитных излучений при частотах, близких к 35 ГГц, могут возникать кератиты, а также повреждения стромы роговицы. При нетепловых интенсивностях в ряде случ
и т.д.................


Скачать работу


Скачать работу с онлайн повышением оригинальности до 90% по antiplagiat.ru, etxt.ru


Смотреть полный текст работы бесплатно


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.