Здесь можно найти учебные материалы, которые помогут вам в написании курсовых работ, дипломов, контрольных работ и рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

 

Повышение оригинальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение оригинальности любого файла в формате MS Word. После такого повышения оригинальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, РУКОНТЕКСТ, etxt.ru. Программа «StudentHelp» работает по уникальной технологии так, что на внешний вид, файл с повышенной оригинальностью не отличается от исходного.

Результат поиска


Наименование:


контрольная работа Контрольная работа по «Физиология и биохимия растений»

Информация:

Тип работы: контрольная работа. Добавлен: 16.12.2014. Год: 2014. Страниц: 27. Уникальность по antiplagiat.ru: < 30%

Описание (план):


Министерств сельского хозяйства и продовольствия Российской Федерации
Иркутская государственная сельскохозяйственная академия

Кафедра агроэкологии, агрохимии, физиологии и защиты растений



Контрольная работа
по курсу «физиология и биохимия растений»

















Иркутск 2014
10. Внутренние и внешние факторы, влияющие на проницаемость цитоплазмы.
Внешние условия не только регулируют степень открытости устьиц, но и оказывают влияние непосредственно на процесс транспирации. Зависимость интенсивности испарения от условий среды подчиняется уравнению Дальтона. Транспирация также подчиняется этой формуле, правда, с отклонениями. Чем больше дефицит влажности воздуха, тем ниже (более отрицателен) его водный потенциал и тем быстрее идет испарение. Это в целом справедливо и для транспирации. Однако надо учесть, что при недостатке воды в листе вступает в силу устьичная и внеустьичная регулировка, благодаря чему влияние внешних условий сказывается в смягченном виде и транспирация начинает возрастать медленнее, чем это следовало бы, исходя из формулы Дальтона. Несмотря на это, общая закономерность зависимости транспирации от насыщенности водой атмосферы остается справедливой. Чем меньше относительная влажность воздуха, тем выше интенсивность транспирации. Следующим фактором среды, оказывающим влияние на процесс транспирации, является температура. Влияние температуры можно проследить также исходя из уравнения Дальтона. С повышением температуры значительно увеличивается количество паров воды, которое насыщает данное пространство. Возрастание упругости паров воды приводит к повышению дефицита влажности. В связи с этим с повышением температуры транспирация увеличивается.
Сильное влияние на транспирацию оказывает свет. Если влияние влажности атмосферы и температуры с большей силой сказывается на испарении со свободной водной поверхности, то свет сильнее влияет именно на транспирацию.
1. На свету, благодаря тому, что зеленые листья поглощают определенные участки солнечного спектра, повышается температура листа, и это вызывает усиление процесса транспирации. В связи с этим действие света на транспирацию проявляется тем сильнее, чем выше содержание хлорофилла. У зеленых растений даже рассеянный свет повышает транспирацию на 30—40%.
2. Под влиянием света устьица раскрываются.
3. Увеличивается проницаемость цитоплазмы для воды, что также, естественно, увеличивает скорость ее испарения. Все это в целом приводит к тому, что на свету транспирация идет во много раз интенсивнее, чем в темноте.
На интенсивность процесса транспирации оказывает влияние влажность почвы. С уменьшением влажности почвы транспирация уменьшается. Чем меньше воды в почве, тем меньше ее в растении. Уменьшение содержания воды в растительном организме автоматически снижает процесс транспирации в силу устьичной и внеустьичной регулировки. В этой связи имеет значение и величина осмотического потенциала почвенного раствора. Чем более отрицателен , тем ниже при прочих равных условиях интенсивность транспирации. Формула Дальтона выведена для спокойной погоды. Однако ветер, перемешивая слои воздуха, очень сильно увеличивает скорость испарения. Ветер оказывает влияние и на транспирацию, правда, по сравнению с испарением в несколько ослабленной форме. Поскольку обычно ветер не проникает внутрь листа, то под его влиянием возрастает в основном третий этап транспирации, т. е. перенос насыщенного водой воздуха от поверхности листа. В силу этого при ветре усиливается, прежде всего, кутикулярная транспирация. Большее действие ветер оказывает на транспирацию тех растений, где кутикула развита слабее. Сильнее на интенсивность транспирации сказываются суховеи. В этом случае ветер сгибает и разгибает листья и горячий воздух врывается в межклетники. Этим вызывается усиление транспирации уже на первом ее этапе. Транспирация зависит и от ряда внутренних факторов, прежде всего от содержания воды в листьях. Всякое уменьшение содержания воды уменьшает интенсивность транспирации. Транспирация изменяется в зависимости от концентрации клеточного сока. Молекулы воды удерживаются осмотическими силами. Чем концентрированнее клеточный сок, тем слабее транспирация. Интенсивность транспирации зависит от эластичности (способности к обратимому растяжению) клеточных стенок. Если клеточные стенки малоэластичны, то уже небольшая потеря воды приводит к сокращению объема клетки до минимума. В этот период клеточные оболочки не растянуты и не оказывают сопротивления, водный потенциал становится равным всей величине осмотического потенциала. Увеличение отрицательной величины водного потенциала клетки приводит к уменьшению интенсивности транспирации. Транспирация изменяется в зависимости от величины листовой поверхности, а также при изменении соотношения корни/побеги. Чем больше развита листовая поверхность, больше побеги, тем значительнее общая потеря воды. Однако в процессе естественного отбора у растений выработалась компенсирующая способность к меньшему испарению с единицы поверхности листа (меньшая интенсивность транспирации) при увеличении листовой поверхности. Так, в опытах с сахарной свеклой было показано, что при возрастании поверхности листьев в 5 раз потеря воды в процессе транспирации увеличилась всего в 3 раза. Эти наблюдения имеют большое значение при расчетах потребности растений в воде, в частности при орошении. Вместе с тем с увеличением отношения корни/побеги интенсивность транспирации возрастает. Интенсивность транспирации зависит и от фазы развития. С увеличением возраста растений транспирация, как правило, падает. Так, в опытах с пшеницей оказалось, что в фазу колошения интенсивность транспирации снижается. Высокая интенсивность испарения у молодых листьев может происходить за счет усиления кутикулярной транспирации, кутикула в этот период еще слабо развита. Так, по данным проф. ПЛ. Генкеля, у молодых листьев березы кутикулярная транспирация составляет около 50%, а у старых только 20% от общего испарения. Нельзя также не учитывать, что молодые листья более оводнены. При этом интересно, что на интенсивности испарения сказывается не только собственный возраст листа, но и общий возраст всего растительного организма.
П.Л. Генкель и Н.И. Антипов считают, что постепенное снижение интенсивности транспирации в процессе онтогенеза как органа, так и растения в целом может служить подтверждением биогенетического закона (онтогенез повторяет филогенез). Действительно, имеется соответствие между тем, как шло приспособление растений к наземному образу жизни в филогенезе и к лучшему сохранению влаги в онтогенезе (рекапитуляция).
Смена дня и ночи, изменение условий в течение суток наложили отпечаток и на процесс транспирации. Как устьичные движения, так и транспирация имеют свой определенный суточный ход. Английский исследователь Д. Лофтфельд разделил все растения в отношении суточного хода устьичных движений на три группы:
1. Растения, у которых ночью устьица всегда закрыты. Утром устьица открываются, и их дальнейшее поведение в течение дня зависит от условий среды. Мало воды — они закрываются, достаточно воды — открываются. К этой группе относятся в первую очередь хлебные злаки.
2. Растения, у которых ночное поведение устьиц зависит от дневного. Если днем устьица были закрыты, то ночью они открываются, если днем были открыты, то ночью закрываются. К этой группе принадлежат растения с тонкими листьями — люцерна, горох, клевер, свекла, подсолнечник.
3. Растения с более толстыми листьями, у которых ночью устьица всегда открыты, а днем, как и у всех остальных групп растений, открыты или закрыты в зависимости от условий (картофель, капуста).
Что касается суточного хода транспирации, то в ночной период суток транспирация резко сокращается. Это связано как с изменением внешних факторов (повышение влажности воздуха, снижение температуры, отсутствие света), так и с внутренними особенностями (закрытие устьиц). Измерения показывают, что ночная транспирация составляет всего 3—5% от дневной. Дневной ход транспирации обычно следует за изменением напряженности основных метеорологических факторов (освещенности, температуры, влажности воздуха). Наиболее интенсивно транспирация происходит в 12—13 ч. Ведущим в этом комплексе внешних воздействий будет напряженность солнечной инсоляции. Интересно, что растения с разным расположением листьев несколько различаются по суточному ходу транспирационного процесса. На листья, повернутые ребром к горизонту, солнечные лучи начинают падать раньше. В связи с этим подъем транспирации у таких растений в утренние часы также начинается несколько раньше. В случае недостатка влаги кривая суточного хода транспирационного процесса из одновершинной превращается в двухвершинную, в полуденные часы интенсивность транспирации сокращается благодаря закрытию устьиц. Это позволяет растению восполнить недостаток воды, и тогда к вечеру транспирация снова возрастает. При частом измерении транспирации можно заметить, что этому процессу свойственно ритмичное увеличение и уменьшение интенсивности. По-видимому, это связано главным образом с колебанием содержания воды в растении. Увеличение транспирации приводит к уменьшению содержания воды, что, в свою очередь, сокращает интенсивность транспирации. Как следствие, содержание воды растет, и транспирация также возрастает, и так непрерывно. Напряженность транспирации, а также ее связь с другими процессами, в частности с фотосинтезом, принято выражать в следующих единицах.
Интенсивность транспирации — это количество воды, испаряемой растением (в г) за единицу времени (ч) единицей поверхности листа (в дм2). Эта величина колеблется в пределах 0,15—1,47 г/дм2 x ч.
Транспирационный коэффициент—количеств воды (в г), испаряемой растением при накоплении им 1 г сухого вещества. Транспирационные коэффициенты заметно колеблются у одного и того же растения в зависимости от условий среды. Все же в некоторой степени они могут служить показателем требований растений к влаге. Так, если транспирационный коэффициент пшеницы, в зависимости от условий, колеблется от 217 до 755 г Н20/г сухого вещества, то для проса эти величины значительно ниже и составляют 162—447. Значительно более экономное расходование воды растениями проса является одной из причин большой устойчивости этого растения к засухе. Особенно важно подчеркнуть, что транспирационный коэффициент резко падает на фоне достаточного снабжения питательными элементами. Так, по данным И.С. Шатилова, транспирационные коэффициенты на фоне удобрений снизились для озимой пшеницы с 417 до 241, для овса с 257 до 177. Эти данные хорошо подчеркивают значение удобрений как фактора, влияющего на более экономное расходование растениями воды.
Продуктивность транспирации — величина, обратная транспирационному коэффициенту,— это количество сухого вещества (в г), накопленного растением за период, когда оно испаряет 1 кг воды. Относительная транспирация — отношение воды, испаряемой листом, к воде, испаряемой со свободной водной поверхности той же площади за один и тот же промежуток времени. Экономность транспирации — количество испаряемой воды (в мг) на единицу (1 кг) воды, содержащейся в растении. Тонколистные растения расходуют за час больше воды по сравнению с растениями с мясистыми листьями, которые испаряют 8—20% от общего количества содержащейся в них воды.

27. Биоэлектрические потенциалы и токи в клетке. Межклеточные связи.

В 1950-х годах при помощи микроэлектродов, вводимых в клетку, у нитчатой водоросли нителлы были обнаружены такие же значения потенциалов покоя, как и у животных клеток — порядка 0,09-0,05 В. Было установлено, что электрические, механические, химические и другие раздражители умеренной интенсивности вызывают в местах своего приложения к органам растения (листу, корню и т. д.) изменения потенциалов, сходные с местными (подпороговыми) потенциалами у животных клеток. Обнаружены у растений и специальные потенциалы возбуждения, подобные потенциалам действия животных клеток. Наиболее приближаются к классическим потенциалам действия электрические потенциалы, возникающие при распространении волны возбуждения по органам растения. Так, типичные двухфазные токи действия длительностью 0,1-0,2 мс сопровождают быстрые движения насекомоядного растения дианова мухоловка, а также защитную двигательную реакцию складывания листьев у стыдливой мимозы (Mimosa pudica) в ответ на механическое или электрическое раздражение растения.

Таким образом, биопотенциалы лежат в основе нормальной жизнедеятельности любой клетки и особенно важны для процессов возбуждения и торможения у животных и человека и раздражимости у растений. Нарушения проводимости клеточных мембран могут приводить к серьезным патологиям организма (вплоть до смерти). Исследования биоэлектрических потенциалов применяют с диагностическими целями в электрокардиографии, электроэнцефалографии, электромиографии.


Межклеточные контакты — соединения между клетками, образованные при помощи белков. Межклеточные контакты обеспечивают непосредственную связь между клетками. Кроме того, клетки взаимодействуют друг с другом на расстоянии с помощью сигналов (главным образом — сигнальных веществ), передаваемых через межклеточное вещество

Строение межклеточных соединений

В тех тканях, в которых клетки или их отростки плотно прилежат друг к другу (эпителий, мышечная ткань и пр.) между мембранами контактирующих клеток формируются связи – межклеточные контакты. Каждый тип межклеточных контактов формируется за счет специфических белков, подавляющее большинство которых — трансмембранные белки. Специальные адапторные белки могут соединять белки межклеточных контактов с цитоскелетом, а специальные «скелетные» белки — соединять отдельные молекулы этих белков в сложную надмолекулярную структуру. Во многих случаях межклеточные соединения разрушаются при удалении из среды ионов Ca2+.

Функции межклеточных соединений

Межклеточные соединения возникают в местах соприкосновения клеток в тканях и служат для межклеточного транспорта веществ и передачи сигналов (межклеточное взаимодействие), а также для механического скрепления клеток друг с другом.

Через щелевые контакты могут передаваться электрические сигналы. Клетки органов и тканей вырабатывают ряд химических веществ, действующих на другие клетки (в том числе через межклеточные контакты) и вызывающих изменения в работе цитоскелета, в интенсивности обмена веществ и процессе синтеза клеткой белков.


61. Хлорофилл, его формы. Понятие о возбужденном хлорофилле.

Среди пигментов зеленого листа хлорофилл, по выражению Ч. Дарвина, это, по-видимому, одно из интереснейших веществ во всем органическом мире.
В центре молекулы хлорофилла находятся магний и четыре пирольных кольца, соединенные друг с другом метиновыми мостиками.
Хлорофиллы являются сложными эфирами дикарбоновой хлорофиллиновой кислоты, соединенной с двумя спиртами – фитолом и метанолом.
Таким образом, в карбоксильных группах водород замещен остатками этилового спирта (СН3) и фитола (C20H39).
Важнейшей частью молекулы хлорофилла является центральное ядро. Оно состоит из четырех диррольных пятичленных колец, соединенных между с 5-ю углеродными мостиками и образующих большое порфириновое ядро с атомами азота посередине, связанными с атомом магния. В молекуле хлорофилла есть дополнительное циклопентаноновое кольцо которое содержит карбонильную, а также карбоксильную группы, связанные эфирной связью с метиловым спиртом. Наличие в порфириновом ядре конъюгированной по кругу системы десяти двойных связей и магния обусловливает характерный для хлорофилла зеленый цвет.
Хлорофилл а только тем, что вместо метильной группы во втором пиррольном кольце имеет альдегидную группу СОН. Хлорофилл а имеет сине-зеленую окраску, а хлорофилл в -- светло-зеленую. Адсорбируются они в разных слоях хроматограммы, что свидетельствует о разных химических и физических свойствах. По современным представлениям, биосинтез хлорофилла в идет через
Спирт фитол по своей природе подобен пигменту каротину и является производным насыщенного углеводорода изопрена.
Наличие остатка фитола в хлорофилле придает ему липоидные свойства, которые проявляются в том, что он растворяется в жировых растворителях.
По своему строению порфириновое ядро хлорофилла подобно активным группам некоторых важнейших дыхательных, ферментов: пероксидазе, каталазе, цитохромоксидазе и гемину - красящему веществу крови. В состав этих ферментов и гема крови также входят четыре пирролльных остатка, соединенных в виде порфиринового ядра, в центре которого содержится железо.
Флуоресценция. Одним из важнейших свойств хлорофиллов является их ярко выраженная способность к флуоресценции, которая интенсивна в растворе и угнетена в хлорофилле, содержащемся в тканях листьев, в пластидах. Известно, что флуоресценция -- это свойство многих тел под влиянием падающего света, в свою очередь, излучать свет: при этом длина волны излучаемого света обычно больше длины - волны возбуждающего света.
Если смотреть на раствор хлорофилла в лучах света, проходящего через него, то он кажется изумрудно-зеленым, если же рассматривать его в лучах отраженного света, то он приобретает красную окраску - это явление флуоресценции.
Свойство вещества поглощать свет зависит от его атомного строения и в первую очередь от расположения окружающих ядро электронов. При поглощении фотона, атомом или молекулой энергия фотона воспринимается одним из электронов, и атом или молекула переходят на уровень более богатый энергией, - в возбужденное состояние. Возбудить атом или молекулу могут лишь фотоны определенной длины волны, т. к. процесс возбуждения молекулы имеет не непрерывный, а квантовый характер, т. е. энергия света поглощается определенными порциями, - или квантами, по принципу все или ничего. Возбуждение молекулы светом происходит менее чем 10-15с. Обычно возбужденные молекулы неустойчивы: время их жизни в возбужденном состоянии составляет в среднем 10-9 - 10-8с. Когда действие света прекращается, возбужденная молекула возвращается в начальное состояние с более низким уровнем энергии. Возвращение к основному состоянию сопровождается потерей энергии, которая была поглощена во время возбужденного состояния, она переходит в тепло или излучается в виде света. Излучение света в этом случае называется флуоресценцией. Ослабление флуоресценции хлорофилла в живых тканях, очевидно объясняется поглощением света флуоресценции самими пигментами.

74. Темновая стадия фотосинтеза. Заслуга М. Кальвина.

Эта фаза протекает в строме хлоропласта. Для ее реакций не нужна энергия света, поэтому они происходят не только на свету, но и в темноте. Реакции темновой фазы представляют собой цепочку последовательных преобразований углекислого газа (поступает из воздуха), приводящую к образованию глюкозы и других органических веществ.

Фотосинтез (от греч. цщфп- - свет и уэниеуйт - синтез, совмещение, помещение вместе) - процесс образования органических веществ из углекислого газа и воды на свету при участии фотосинтетических пигментов (хлорофилл у растений, бактериохлорофилл и бактериородопсин у бактерий). В современной физиологии растений под фотосинтезом чаще понимается фотоавтотрофная функция - совокупность процессов поглощения, превращения и использования энергии квантов света в различных эндэргонических реакциях, в том числе превращения углекислого газа в органические вещества.

Первая реакция в этой цепочке — фиксация углекислого газа; акцептором углекислого газа является пятиуглеродный сахаррибулозобифосфат (РиБФ); катализирует реакцию фермент рибулозобифосфат-карбоксилаза (РиБФ-карбоксилаза). В результате карбоксилирования рибулозобисфосфата образуется неустойчивое шестиуглеродное соединение, которое сразу же распадается на две молекулы фосфоглицериновой кислоты (ФГК). Затем происходит цикл реакций, в которых через ряд промежуточных продуктов фосфоглицериновая кислота преобразуется в глюкозу. В этих реакциях используются энергии АТФ и НАДФ·Н2, образованных в световую фазу; цикл этих реакций получил название «цикл Кальвина»:

6СО2 + 24Н+ + АТФ > С6Н12О6 + 6Н2О.

Кроме глюкозы, в процессе фотосинтеза образуются другие мономеры сложных органических соединений — аминокислоты, глицерин и жирные кислоты, нуклеотиды. В настоящее время различают два типа фотосинтеза: С3- и С4-фотосинтез.

Цикл Кальвина - серия биохимических реакций, осуществляемая при фотосинтезе растениями (в строме хлоропластов), цианобактериями, прохлорофитами и пурпурными бактериями, а также многими бактериями-хемосинте иками, является наиболее распространённым из механизмов автотрофной фиксации CO2.
Мемлвин Эмллис Камлвин (англ. Melvin Ellis Calvin; 8 апреля 1911, Сент-Пол, Миннесота, США - 8 января 1997, Беркли, Калифорния, США) - американский биохимик, член Национальной академии наук в Вашингтоне. Иностранный член Лондонского королевского общества, почётный член многих зарубежных академий наук и обществ. Лауреат Нобелевской премии.
С 1940-х гг. работал над проблемой фотосинтеза; к 1957 с помощью CO2, меченного по углероду, выяснил химизм усвоения растениями CO2(восстановительный карбоновый цикл Кальвина) при фотосинтезе.
Цикл Кальвина или восстановительный пентозофосфатный цикл состоит из трёх стадий:
a) карбоксилирования;
b) восстановления;
c) регенерация акцептора CO2.
На первой стадии к рибулозо-1,5-бифосфа у присоединяется CO2 под действием фермента рибулозобисфосфат-карбоксилаза/оксиген за. Этот белок составляет основную фракцию белков хлоропласта и предположительно наиболее распространённый фермент в природе. В результате образуется промежуточное неустойчивое соединение, распадающееся на две молекулы 3-фосфоглицериновой кислоты (ФГК).
Во второй стадии ФГК в два этапа восстанавливается. Сначала она фосфорилируется АТФ под действием фосфороглицерокиназ с образованием 1,3-дифосфоглицерин вой кислоты (ДФГК), затем при воздействии триозофосфатдегидрог назы и НАДФН ацил-фосфатная группа ДФГК дефосфорилируется и восстанавливается до альдегидной и образуется глицеральдегид-3-фос ат - фосфорилированный углевод (ФГА).
В третьей стадии участвуют 5 молекул ФГА, которые через образование 4-, 5-, 6- и 7-углеродных соединений объединяются в 3 5-углеродных рибулозо-1,5-бифосф та, для чего необходимы 3АТФ.
Наконец, две ФГА необходимы для синтеза глюкозы. Для образования одной её молекулы требуется 6 оборотов цикла, 6 CO2, 12 НАДФН и 18 АТФ.
С4-фотосинтез
При низкой концентрации растворённого в строме CO2 рибулозобифосфаткарб ксилаза катализирует реакцию окисления рибулозо-1,5-бифосфа а и его распад на 3-фосфоглицериновую кислоту и фосфогликолевую кислоту, которая вынужденно используется в процессе фотодыхания.
Для увеличения концентрации CO2 растения С4 типа изменили анатомию листа. Цикл Кальвина у них локализуется в клетках обкладки проводящего пучка, в клетках мезофилла же под действием ФЕП-карбоксилазы фосфоенолпируват карбоксилируется с образованием щавелеуксусной кислоты, которая превращается в малат или аспартат и транспортируется в клетки обкладки, где декарбоксилируется с образованием пирувата, возвращаемого в клетки мезофилла.
С4 фотосинтез практически не сопровождается потерями рибулозо-1,5-бифосфа а из цикла Кальвина, поэтому более эффективен. Однако он требует не 18, а 30 АТФ на синтез 1 молекулы глюкозы. Это оправдывает себя в тропиках, где жаркий климат требует держать устьица закрытыми, что препятствует поступлению CO2 в лист, а также при рудеральной жизненной стратегии.
САМ фотосинтез
При CAM (англ. Crassulaceae acid metabolism - кислотный метаболизм толстянковых) фотосинтезе происходит разделение ассимиляции CO2 и цикла Кальвинане в пространстве как у С4, а во времени. Ночью в вакуолях клеток по аналогичному вышеописанному механизму при открытых устьицах накапливается малат, днём при закрытых устьицах идёт цикл Кальвина. Этот механизм позволяет максимально экономить воду, однако уступает в эффективности и С4, и С3. Он оправдан при стресстолерантной жизненной стратегии.

92. Суммарные уравнения химических превращений при аэробном и анаэробном дыхании. Интенсивность дыхания, методы ее определения.

Анаэробная фаза дыхания (гликолиз)

В процессе гликолиза происходит преобразование молекулы гексозы до двух молекул пировиноградной кислоты: С6Н12О6->2СзН4О2 + 2H2. Этот окислительный процесс может протекать в анаэробных условиях (в отсутствие кислорода) и идет через ряд этапов. Прежде всего, для того чтобы подвергнуться дыхательному распаду, глюкоза должна быть активирована. Активация глюкозы происходит путем фосфорилированияшест го углеродного атома за счет взаимодействия с АТФ. Реакция идет в присутствии ионов магния и фермента гексокиназы: глюкоза + АТФ>глюкозо-6-фосфат + АДФ. Затем глюкозо-6-фосфат изомеризуется до фруктозо-6-фосфата. Процесс катализируется ферментомфосфоглюко зомеразой: глюкозо-6-фосфат> фруктозо-6-фосфат. Далее происходит еще одно фосфорилирование при участии АТФ. Фосфорная кислота присоединяется к первому углеродному атому молекулы фруктозы, процесс катализируется ферментом фосфофруктокиназой: фруктозо-6-фосфат + АТФ> фруктозо-1,6-дифосфа +АДФ.

Дальнейшие реакции, составляющие процесс гликолиза, складываются следующим образом: фруктозо-1,6-дифосфа расщепляется собразованием двух триоз, реакция катализируется ферментом альдолазой, которая состоит из четырех субъединиц и содержит свободные SH-группы. Реакция протекает по уравнению:



Молекула фосфодиоксиацетона при участии фермента триозофосфатизомераз превращается также в 3-фосфоглицериновый альдегид (ФГА). Дальнейшим превращениям подвергается именно ФГА, окисляясь до 1,3-дифосфоглицерин вой кислоты (ДФГК). Это важнейший этап гликолиза. Процесс идет с участием неорганического фосфата (H3РО4) и фермента глицеральдегид-3-фосфатдегидрогеназы.
Молекула этого фермента состоит из четырех идентичных субъединиц. Каждая субъединица представляет одиночную полипептидную цепь приблизительно из 220 аминокислотных остатков. Фермент содержит SH-группы и кофермент НАД, который взаимосвязан с ферментом на всем протяжении процесса. Сущность процесса заключается в окислении альдегидной группы ФГА в карбоксильную ДФГК. Окисление идет с выделением энергии. За счет энергии окисления при участии неорганического фосфата (Н3РО4) в молекуле ДФГК образуется макроэргическая фосфатная связь. Одновременно происходит восстановление кофермента НАД.

В целом реакция выглядит следующим образом:

На следующем этапе за счет имеющейся макроэргической связи в 1,3-дифосфоглицерино ой кислоте образуется АТФ. Процесс катализируется ферментом фосфоглицераткиназой




Таким образом, на этом этапе энергия окисления аккумулируется в форме энергии фосфатной связи АТФ. Затем 3-ФГК превращается в 2-ФГК, иначе говоря, фосфатная группа переносится из положения 3 в положение 2. Реакция катализируется ферментом фосфоглицеромутазой и идет в присутствии магния:







Далее происходит дегидратация ФГК. Реакция идет при участии фермента енолазы в присутствии ионов Mg2+ или Мn2+. Дегидратация сопровождается перераспределением энергии внутри молекулы, в результате чего возникает макроэргическая связь. Образуетсяфосфоенолп ровиноградная кислота (ФЕП):








Затем фермент пируваткиназа переносит богатую энергией фосфатную группу на АДФ с образованием АТФ и пировиноградной кислоты. Для протекания реакции необходимо присутствие ионов Mg2+ или Мn2+:


Поскольку при распаде одной молекулы глюкозы образуются две молекулы ФГА, то все реакции повторяются дважды. Таким образом, суммарное уравнение гликолиза следующее:

глюкоза + 2АТФ+ 2НАД+ + 2Фн + 4АДФ>2 пирувата + 4АТФ+ 2НАД.Н2 + 2АДФ.

В результате процесса гликолиза образуются четыре молекулы АТФ, однако две из них покрывают расход на первоначальное активирование субстрата. Следовательно, накапливаются две молекулы АТФ. Образование АТФ в процессе гликолиза носит название субстратногофосфорил рования, поскольку макроэргические связи возникают на молекуле окисляемого субстрата. Если считать, что при распаде АТФ на АДФ и Фн выделяется 30,6 кДж, то за период гликолиза накапливается в макроэргических фосфатных связях всего 61,2 кДж. Прямые определения показывают, что распад молекулы глюкозы до пировиноградной кислоты сопровождается выделением 586,6 кДж. Следовательно, энергетическая эффективность гликолиза невелика. Кроме того, образуется 2НАД.Н2. НАДН2 вступает в дыхательную цепь, что приводит к дополнительному образованию АТФ. Образовавшиеся две молекулы пировиноградной кислоты вступают в аэробную фазу дыхания.

Аэробная фаза дыхания

Вторая фаза дыхания — аэробная — локализована в митохондриях и требует присутствия кислорода. В аэробную фазу дыхания вступает пировиноградная кислота. Общее уравнение этого процесса следующее:

Процесс можно разделить на три основные стадии: 1) окислительное декарбоксилирование пировиноградной кислоты; 2) цикл трикарбоновых кислот (цикл Кребса); 3) заключительная стадия окисления — электронно-транспортн я цепь (ЭТЦ) требует обязательного присутствия О2. Первые две стадии происходят в матриксе митохондрий, электронно-транспорт ая цепь локализована на внутренней мембране митохондрий.

Первая стадия — окислительное декарбоксилирование пировиноградной кислоты. Общая формула данного процесса следующая:



Процесс этот состоит из ряда реакций и катализируется сложной мультиферментной системой пируватдекарбоксилаз й.Пируватдекарбоксилаз включает в себя три фермента и пять коферментов (тиаминпирофосфат, липоевая кислота, коэнзим A (KoA-SH), ФАД и НАД.Вся эта система имеет молекулярную массу 4,0 . 106. В результате этого процесса образуется активный ацетат — ацетилкоэнзим А (ацетил-КоА), восстановленный НАД (НАД.Н + Н+), и выделяется углекислота (первая молекула). Восстановленный НАД поступает в цепь переноса электронов, аацетил-КоА вступает в цикл трикарбоновых кислот. Важно отметить, что пируватдегидрогеназн я система ингибируется АТФ. При накоплении АТФ выше определенного уровня превращение пировиноградной кислоты подавляется. Это один из способов регуляции интенсивности протекания аэробной фазы.

Вторая стадия — цикл трикарбоновых кислот (цикл Кребса). В 1935 г. венгерский ученый А. Сент-Дьердьи установил, что добавление небольших количеств органических кислот (фумаровой, яблочной или янтарной) усиливает поглощение кислорода измельченными тканями. Продолжая эти исследования, Г. Кребс пришел к выводу, что главным путем окисления углеводов являются циклические реакции, в которых происходит постепенное преобразование ряда органических кислот. Эти преобразования и были названы циклом трикарбоновых кислот или циклом Кребса.

Общая схема цикла представлена на рисунке 3. В цикл вступает активный ацетат, или ацетил-КоА. Сущность реакций, входящих в цикл, состоит в том, что ацетил- Ко А конденсируется с щавелевоуксусной кислотой (ЩУК). Далее превращение идет через ряд ди- и трикарбоновых органических кислот. В результате ЩУК регенерирует в прежнем виде. В процессе цикла присоединяются три молекулы Н2О, выделяются две молекулы СО2 и четыре пары водорода, которые восстанавливают соответствующие коферменты (ФАД и НАД).


Суммарная реакция цикла выражена уравнением: СН3СО — S —КоА + ЗН2О + ЗНАД + ФАД+АДФ + Фн >2СО2 + НS-КоА + ЗНАД.Н2 + ФАДН2 + АТФ. Отдельные реакции протекают следующим образом. Ацетил-КоА, конденсируясь с ЩУК, дает лимонную кислоту, при этом КоА выделяется в прежнем виде. Этот процесс катализируется ферментом цитратсинтетазой. Лимонная кислота превращается в изолимонную. На следующем этапе происходит окисление изолимонной кислоты, реакция катализируется ферментом



Цикл трикарбоновых кислот (цикл Кребса).


и т.д.................


Скачать работу


Скачать работу с онлайн повышением оригинальности до 90% по antiplagiat.ru, etxt.ru


Смотреть полный текст работы бесплатно


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.