На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Курсовик Составление имитационной модели и расчет показателей эффективности системы массового обслуживания по заданны параметрам. Сравнение показателей эффективности с полученными путем численного решения уравнений Колмогорова для вероятностей состояний системы.

Информация:

Тип работы: Курсовик. Предмет: Математика. Добавлен: 17.12.2009. Сдан: 2009. Уникальность по antiplagiat.ru: --.

Описание (план):


2
Курсовая работа
«Имитационное моделирование системы массового обслуживания»
по курсу «Исследование операций»

Введение

При исследовании операций часто приходится сталкиваться с системами, предназначенными для многоразового использования при решении однотипных задач. Возникающие при этом процессы получили название процессов обслуживания, а системы - систем массового обслуживания (СМО). Каждая СМО состоит из определенного числа обслуживающих единиц (приборов, устройств, пунктов, станций), которые называются каналами обслуживания. Каналами могут быть линии связи, рабочие точки, вычислительные машины, продавцы и др. По числу каналов СМО подразделяют на одноканальные и многоканальные.

Заявки поступают в СМО обычно не регулярно, а случайно, образуя так называемый случайный поток заявок (требований). Обслуживание заявок также продолжается какое-то случайное время. Случайный характер потока заявок и времени обслуживания приводит к тому, что СМО оказывается загруженной неравномерно: в какие-то периоды времени скапливается очень большое количество заявок (они либо становятся в очередь, либо покидают СМО не обслуженными), в другие же периоды СМО работает с недогрузкой или простаивает.

Предметом теории массового обслуживания является построение математических моделей, связывающих заданные условия работы СМО (число каналов, их производительность, характер потока заявок и т.п.) с показателями эффективности СМО, описывающими ее способность справляться с потоком заявок. В качестве показателей эффективности СМО используются:

- Абсолютная пропускная способность системы (А), т.е. среднее число заявок, обслуживаемых в единицу времени;

- относительная пропускная способность (Q), т.е. средняя доля поступивших заявок, обслуживаемых системой;

- вероятность отказа обслуживания заявки ();

- среднее число занятых каналов (k);

- среднее число заявок в СМО ();

- среднее время пребывания заявки в системе ();

- среднее число заявок в очереди ();

- среднее время пребывания заявки в очереди ();

- среднее число заявок, обслуживаемых в единицу времени;

- среднее время ожидания обслуживания;

- вероятность того, что число заявок в очереди превысит определенное значение и т.п.

СМО делят на 2 основных типа: СМО с отказами и СМО с ожиданием (очередью). В СМО с отказами заявка, поступившая в момент, когда все каналы заняты, получает отказ, покидает СМО и в дальнейшем процессе обслуживания не участвует (например, заявка на телефонный разговор в момент, когда все каналы заняты, получает отказ и покидает СМО не обслуженной). В СМО с ожиданием заявка, пришедшая в момент, когда все каналы заняты, не уходит, а становится в очередь на обслуживание.

Одним из методов расчета показателей эффективности СМО является метод имитационного моделирования. Практическое использование компьютерного имитационного моделирования предполагает построение соответствующей математической модели, учитывающей факторы неопределенности, динамические характеристики и весь комплекс взаимосвязей между элементами изучаемой системы. Имитационное моделирование работы системы начинается с некоторого конкретного начального состояния. Вследствие реализации различных событий случайного характера, модель системы переходит в последующие моменты времени в другие свои возможные состояния. Этот эволюционный процесс продолжается до конечного момента планового периода, т.е. до конечного момента моделирования.

1. Основные характеристики CМО и показатели их эффективности

1.1 Понятие марковского случайного процесса

Пусть имеется некоторая система, которая с течением времени изменяет свое состояние случайным образом. В этом случае говорят, что в системе протекает случайный процесс.

Процесс называется процессом с дискретными состояниями, если его состояния можно заранее перечислить и переход системы из одного состояния в другое происходит скачком. Процесс называется процессом с непрерывным временем, если переходы системы из состояния в состояние происходят мгновенно.

Процесс работы СМО - это случайный процесс с дискретными состояниями и непрерывным временем.

Случайный процесс называют марковским или случайным процессом без последействия, если для любого момента времени вероятностные характеристики процесса в будущем зависят только от его состояния в данный момент и не зависят от того, когда и как система пришла в это состояние.

При анализе процессов работы СМО удобно пользоваться геометрической схемой - графом состояний. Обычно состояния системы изображаются прямоугольниками, а возможные переходы из состояния в состояние - стрелками. Пример графа состояний приведен на рис. 1.

Рис. 1.

Поток событий - последовательность однородных событий, следующих одно за другим в случайные моменты времени.

Поток характеризуется интенсивностью ? - частотой появления событий или средним числом событий, поступающих в СМО в единицу времени.

Поток событий называется регулярным, если события следуют одно за другим через определенные равные промежутки времени.

Поток событий называется стационарным, если его вероятностные характеристики не зависят от времени. В частности, интенсивность стационарного потока есть величина постоянная: .

Поток событий называется ординарным, если вероятность попадания на малый участок времени двух и более событий мала по сравнению с вероятностью попадания одного события, т.е., если события появляются в нем поодиночке, а не группами.

Поток событий называется потоком без последействия, если для любых двух непересекающихся участков времени и число событий, попадающих на одно из них, не зависит от числа событий, попадающих на другие.

Поток событий называется простейшим (или стационарным пуассоновским), если он одновременно стационарен, ординарен и не имеет последействия.

1.2 Уравнения Колмогорова

Все переходы в системе из состояния в состояние происходят под некоторым потоком событий. Пусть система находится в некотором состоянии , из которого возможен переход в состояние , тогда можно считать, что на систему воздействует простейший поток с интенсивностью , переводящий ее из состояния в . Как только появляется первое событие потока, происходит ее переход . Для наглядности на графе состояний у каждой стрелки, соответствующей переходу, указывается интенсивность . Такой размеченный граф состояний позволяет построить математическую модель процесса, т.е. найти вероятности всех состояний как функции времени. Для них составляются дифференциальные уравнения, называемые уравнениями Колмогорова.

Правило составлений уравнений Колмогорова: В левой части каждого из уравнений стоит производная по времени от вероятности данного состояния. В правой части стоит сумма произведений всех состояний, из которых возможен переход в данное состояние, на интенсивности соответствующих потоков событий минус суммарная интенсивность всех потоков, выводящих систему из данного состояния, умноженная на вероятность данного состояния.

Например, для графа состояний, приведенного на рис. 1, уравнения Колмогорова имеют вид:

Т.к. в правой части системы каждое слагаемое входит 1 раз со знаком и 1 раз со знаком , то, складывая все уравнений, получим, что

,

,

. (1.2.1)

Следовательно, одно из уравнений системы можно отбросить и заменить уравнением (1.2.1).

Чтобы получить конкретное решение надо знать начальные условия, т.е. значения вероятностей в начальный момент времени.

1.3 Финальные вероятности и граф состояний СМО

При достаточно большом времени протекания процессов в системе (при ) могут устанавливаться вероятности состояний, не зависящие от времени, которые называются финальными вероятностями, т.е. в системе устанавливается стационарный режим. Если число состояний системы конечно, и из каждого из них за конечное число шагов м. перейти в любое другое состояние, то финальные вероятности существуют, т.е.

Смысл финальных вероятностей состоит в том, что они равны среднему относительному времени нахождения системы в данном состоянии.

Т.к. в стационарном состоянии производные по времени равны нулю, то уравнения для финальных вероятностей получаются из уравнений Колмогорова путем приравнивания нулю их правых частей.

Графы состояний, используемые в моделях систем массового обслуживания, называются схемой гибели и размножения. Такое название обусловлено тем, что эта схема используется в биологических задачах, связанных с изучением численности популяции. Его особенность состоит в том, что все состояния системы можно представить в виде цепочки, в которой каждое из состояний связано с предыдущим и последующим (рис 2).

Рис. 2. Граф состояний в моделях СМО

Предположим, что все потоки, переводящие систему из одного состояния в другое, простейшие. По графу, представленному на рис. 2, составим уравнения для финальных вероятностей системы. Они имеют вид:

Получается система из (n+1) уравнения, которая решается методом исключения. Этот метод заключается в том, что последовательно все вероятности системы выражаются через вероятность .

,

,

.

Подставляя эти выражения в последнее уравнение системы, находим , затем находим остальные вероятности состояний СМО.

1.4 Показатели эффективности СМО

Цель моделирования СМО состоит в том, чтобы рассчитать показатели эффективности системы через ее характеристики. В качестве показателей эффективности СМО используются:

- абсолютная пропускная способность системы (А), т.е. среднее число заявок, обслуживаемых в единицу времени;

- относительная пропускная способность (Q), т.е. средняя доля поступивших заявок, обслуживаемых системой;

- вероятность отказа (), т.е. вероятность того, что заявка покинет СМО не обслуженной;

- среднее число занятых каналов (k);

- среднее число заявок в СМО ();

- среднее время пребывания заявки в системе ();

- среднее число заявок в очереди () - длина очереди;

- среднее число заявок в системе ();

- среднее время пребывания заявки в очереди ();

- среднее время пребывания заявки в системе ()

- степень загрузки канала (), т.е. вероятность того, что канал занят;

- среднее число заявок, обслуживаемых в единицу времени;

- среднее время ожидания обслуживания;

- вероятность того, что число заявок в очереди превысит определенное значение и т.п.

Доказано, что при любом характере потока заявок, при любом распределении времени обслуживания, при любой дисциплине обслуживания, среднее время пребывания заявки в системе (очереди) равна среднему числу заявок в системе (очереди), деленному на интенсивность потока заявок, т.е.

(1.4.1)

(1.4.2)

Формулы (1.4.1) и (1.4.2) называются формулами Литтла. Они вытекают из того, что в предельном стационарном режиме среднее число заявок, прибывающих в систему, равно среднему числу заявок, покидающих ее, т.е. оба потока заявок имеют одну и ту же интенсивность .

Формулы для вычисления показателей эффективности приведены в таб. 1.

Таблица 1.

Показатели

Одноканальная СМО с

ограниченной очередью

Многоканальная СМО с

ограниченной очередью

Финальные

вероятности

,

Вероятность

отказа

Абсолютная пропускная

способность

Относительная пропускная

способность

Среднее число заявок в

очереди

Среднее число заявок под

обслуживанием
Среднее число заявок в системе

1.5 Основные понятия имитационного моделирования

Основная цель имитационного моделирования заключается в воспроизведении поведения изучаемой системы на основе анализа наиболее существенных взаимосвязей ее элементов.

Компьютерное имитационное моделирование следует рассматривать как статический эксперимент.

Из теории функций случайных величин известно, что для моделирования случайной величины с любой непрерывной и монотонно возрастающей функцией распределения достаточно уметь моделировать случайную величину , равномерно распределенную на отрезке . Получив реализацию случайной величины , можно найти соответствующую ей реализацию случайной величины , так как они связаны равенством

(1.5.1)

Предположим, что в некоторой системе массового обслуживания время обслуживания одной заявки распределено по экспоненциальному закону с параметром , где - интенсивность потока обслуживания. Тогда функция распределения времени обслуживания имеет вид

Пусть - реализация случайной величины , равномерно распределенной на отрезке , а - соответствующая ей реализация случайного времени обслуживания одной заявки. Тогда, согласно (1.5.1)

1.6 Построение имитационных моделей

Первый этап создания любой имитационной модели - этап описания реально существующей системы в терминах характеристик основных событий. Эти события, как правило, связаны с переходами изучаемой системы из одного возможного состояния в другое и обозначаются как точки на временной оси. Для достижения основной цели моделирования достаточно наблюдать систему в моменты реализации основных событий.

Рассмотрим пример одноканальной системы массового обслуживания. Целью имитационного моделирования подобной системы является определение оценок ее основных характеристик, таких, как среднее время пребывания заявки в очереди, средняя длина очереди и доля времени простоя системы.

Характеристики самого процесса массового обслуживания могут изменять свои значения либо в момент поступления новой заявки на обслуживание, либо при завершении обслуживания очередной заявки. К обслуживанию очередной заявки СМО может приступить немедленно (канал обслуживания свободен), но не исключена необходимость ожидания, когда заявке придется занять место в очереди (СМО с очередью, канал обслуживания занят). После завершения обслуживания очередной заявки СМО может сразу приступить к обслуживанию следующей заявки, если она есть, но может и простаивать, если таковая отсутствует. Необходимую информацию можно получить, наблюдая различные ситуации, возникающие при реализациях основных событий. Так, при поступлении заявки в СМО с очередью при занятом канале обслуживания длина очереди увеличивается на 1. Аналогично длина очереди уменьшается на 1, если завершено обслуживание очередной заявки и множество заявок в очереди не пусто.

Для эксплуатации любой имитационной модели необходимо выбрать единицу времени. В зависимости от природы моделируемой системы такой единицей может быть микросекунда, час, год и т.д.

Так как по своей сути компьютерное имитационное моделирование представляет собой вычислительный эксперимент, то его наблюдаемые результаты в совокупности должны обладать свойствами реализации случайной выборки. Лишь в этом случае будет обеспечена корректная статистическая интерпретация моделируемой системы.

При компьютерном имитационном моделировании основной интерес представляют наблюдения, полученные после достижения изучаемой системой стационарного режима функционирования, так как в этом случае резко уменьшается выборочная дисперсия.

Время, необходимое для достижения системой стационарного режима функционирования, определяется значениями ее параметров и начальным состоянием.

Поскольку основной целью является получение данных наблюдений с возможно меньшей ошибкой, то для достижения этой цели можно:

1) увеличить длительность времени имитационного моделирования процесса функционирования изучаемой системы. В этом случае не только увеличивается вероятность достижения системой стационарного режима функционирования, но и возрастает число используемых псевдослучайных чисел, что также положительно влияет на качество получаемых результатов.

2) при фиксированной длительности времени Т имитационного моделирования провести N вычислительных экспериментов, называемых еще прогонами модели, с различными наборами псевдослучайных чисел, каждый из которых дает одно наблюдение. Все прогоны начинаются при одном и том же начальном состоянии моделируемой системы, но с использованием различных наборов псевдослучайных чисел. Преимуществом этого метода является независимость получаемых наблюдений , показателей эффективности системы. Если число N модели достаточно велико, то границы симметричного доверительного интервала для параметра определяются следующим образом:

, , т.е. , где

математическое ожидание (среднее значение), находится по формуле

,

исправленная дисперсия, ,

N - число прогонов программы, - надежность, .

2. Аналитическое моделирование СМО

2.1 Граф состояний системы и уравнения Колмогорова

Рассмотрим двухканальную систему массового обслуживания (n = 2) с ограниченной очередью равной шести (m = 4). В СМО поступает простейший поток заявок со средней интенсивностью ? = 4,8 и показательным законом распределения времени между поступлением заявок. Поток обслуживаемых в системе заявок является простейшим со средней интенсивно и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.