На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Курсовик Понятие и особенности обучения математике. Математика как учебный предмет. Предмет методики преподавания математики. Основные задачи методики преподавания математики. Цели и содержание обучения математике. Формы обучения математике.

Информация:

Тип работы: Курсовик. Предмет: Педагогика. Добавлен: 04.09.2006. Сдан: 2006. Страниц: 2. Уникальность по antiplagiat.ru: --.

Описание (план):


5

Введение

Перед преподаванием математики в школе кроме общих целей обучения стоят ещё свои специфические цели, определяемые особенностями математической науки. Одна из них - это формирование и развитие математического мышления. Это способствует выявлению и более эффективному развитию математических способностей школьников, подготавливает их к творческой деятельности вообще и в математике с ее многочисленными приложениями в частности.
Вообще интеллектуальное развитие детей можно ускорить по трём направлениям: понятийный строй мышления, речевой интеллект и внутренний план действий.
Прочное усвоение знаний невозможно без целенаправленного развития мышления, которое является одной из основных задач современного школьного обучения.
Хочется обратить внимание на две главные проблемы дидактики математики: модернизация содержания школьного математического образования и совершенствование структуры курса.
Быстрый рост объема научной информации, ограниченность срока школьного обучения и невозможность сокращения объема изучаемых в школе основ науки с целью включения новой информации усложняют проведение реформ по модернизации школьного образования, а поэтому готовить их придется в течение более длительного времени, тщательно и строго на научной основе.
Имеют место успешные эксперименты по модернизации курса начальных классов и изучению в нем начал алгебры, что позволило дать значительную пропедевтику алгебры и геометрии в I-V классах, позволяющую изучить систематические курсы этих предметов в более быстром темпе и перенести ряд тем из старших классов в средние; включить в программу старших классов элементы высшей математики. Таким образом, улучшение системы курса возможно и в период между реформами, т.е. независимо от модернизации образования.
Мы не беремся решать эти вопросы, т.к. работаем в более узком направлении, предлагая на данном этапе ввести в общеобразовательный курс тему «Комплексные числа».
Говоря об алгебраической культуре, заметим, что некоторые разделы алгебры, которые иногда даже не рассматриваются в математических классах, целесообразно вводить в общеобразовательную программу. Так, например, понятие числа в школе заканчивается изучением действительных чисел, что можно считать существенным пробелом в математической подготовке учащихся, т.к. более естественным является формирование понятия комплексного числа.
Борьба за сознание учащихся твердой убежденности в научной обоснованности и даже неизбежности введения комплексных чисел вполне возможна и может вестись по нескольким различным линиям, учитывая то, что учащиеся обладают уже достаточно зрелым математическим развитием. В старших классах они в состоянии уже понимать и уважать нужды самой математической науки, являющейся косвенным проявлением нужд и запросов самой практики.
Взаимосвязь учителя и ученика происходит в виде передачи информации в двух противоположных направлениях: от учителя к ученику (прямая), от учения к учителю (обратная).
Задачи:
- исследовать особенности математического мышления школьников;
- исследовать учебные пособия для 5го - 11го классов
Глава 1 Понятие и особенности обучения математике
1.1Математика как учебный предмет

Первые сведения об учении детей простейшим вычислениям встре-чаются в источниках по истории стран Древнего Востока. Большое влияние на развитие школь-ного математического образования оказала математическая куль-тура Древней Греции, где уже в 5 веке до н.э. в связи с развитием торговли, мореплавания, ремёсел в начальной школе изучались счёт и практическая геометрия.
Содержание учебного предмета математики меняется со временем в связи с расширением целей образования, появления новых требований к школьной подготовке, изменением стандартов образования Колягин Ю.М., Луканкин Г.Л., Мокрушин Е.Л. и другие. Методика преподавания математики в средней школе. Частные методики / М., Просвещение, 1997.
Кроме того, непрерывное развитие самой науки, появление новых ее отраслей и направлений влечет за собой также обновление содержания образования: сокращаются разделы, не имеющие практическую ценность, вводятся новые перспективные и актуальные темы. Вместе с тем, не стоят на месте и педагогические науки, новый педагогический опыт вводится в практику работы массовой школы.
Учебный предмет математики в школе представляет собой элемен-ты арифметики, алгебры, начал математиче-ского анализа, евклидовой геометрии плоско-сти и пространства, аналитической геометрии, тригонометрии.
Обучение учащихся математике на-правлено на овладение учащимися системой математических знаний, умений и навыков, необходимых для дальнейшего изучения мате-матики и смежных учебных предметов и реше-ния практических задач, на развитие логиче-ского мышления, пространственного воображе-ния, устной и письменной математической речи, формирование навыков вычислений, алгебраических преобразований, решения уравне-ний и неравенств, инструментальных и графи-ческих навыков.
Математика как учебный предмет отличается от математики как науки не только объёмом, системой и глубиной изложения, но и при-кладной направленностью изучаемых вопросов.
Учебный курс математики постоянно оказыва-ется перед необходимостью преодолевать проти-воречие между математикой - развивающейся наукой и стабильным ядром математики - учебным предметом. Развитие науки требует непрерывного обновления содержания матема-тического образования, сближения учебного предмета с наукой, соответствия его содержа-ния социальному заказу общества.
Совре-менный этап развития математики как учебного предмета характеризуется: жёстким отбором основ со-держания; чётким определением конкретных це-лей обучения, межпредметных связей, требо-ваниями к математической подготовке учащихся на каждом этапе обучения; усилением воспиты-вающей и развивающей роли математики, её связи с жизнью; систематическим формирова-нием интереса учащихся к предмету и его приложениям .      Епишева О.Б. Общая методика преподавания математики в средней школе / Тобольск, Изд-во ТГПИ им. Д.И. Менделеева, 1997.
Дальнейшее совершенствование содержания школьного математического образования связа-но с требованиями, которые предъявляет к ма-тематическим знаниям учащихся практика: промышленность, производство, военное дело, сельское хозяйство, социальное переустройство и т.д.
Движение за гуманизацию, демократиза-цию и деидеологизацию среднего образования, характерное для развития отечественной педа-гогики 90-х годов, оказало определённое вли-яние и на содержание школьного математи-ческого образования. Идея дифференциации обучения проявилась в возникновении в Россий-ской Федерации относительно нового типа школ (лицеев, гимназий, колледжей и др.) или классов различных направлений (гуманитарно-го, технического, экономического, физико-ма-тематического и др.). В связи с существенными различиями в построе-нии курса математики для школ разного профи-ля возникает актуальная проблема «математи-ческого стандарта», под которым понимается содержание и уровень математической подго-товки.
1.2 Предмет методики преподавания математики
Слово «методика» в переводе с древнегреческого означает «способ познания», «путь исследования». Метод - это способ достижения какой-либо цели, решения конкретной учебной задачи.
Существу-ют разные точки зрения на содержание понятия «методика». Одни, признавая методику наукой педагогической, рассматривали ее как частную дидактику с общими для всех предметов принципами обучения. Другие считали методику специальной педагогической наукой, решающей все задачи обучения и развития личности через содержание предмета. Приведем несколько примеров определений.
Методика преподавания математики - наука о математике как учебном предмете и закономерностях процесса обучения математике учащихся различных возрастных групп и способностей.
Методика обучения математике - это педагогическая наука о задачах, содержании и методах обучения математике. Она изучает и исследует процесс обучения математике в целях повышения его эффективности и качества. Методика обучения математике рассматривает вопрос о том, как надо преподавать математику.
Методика преподавания математики - раздел педагогики, исследующий закономерности обучения математике на определенном уровне ее развития в соответствии с целями обучения подрастающего поколения, поставленными обществом. Методика обучения математике призвана исследовать проблемы математического образования, обучения матема-тике и математического воспитания.
Методика преподавания математики в средней школе возникла с целью поиска педагогически целесообразных путей и способов изложения учебного материала. Методика преподавания математики начала разрабатываться чешским учёным Я.А. Коменским. Методика обучения математике впервые вы-делилась как самостоятельная дисциплина в книге швейцарского учёного И.Г. Песталоцци «Наглядное учение о числе» (1803, русский перевод 1806). Первым пособием по методике матема-тики в России стала книга Ф.И. Буссе «Руковод-ство к преподаванию арифметики для учителей» (1831). Создателем русской методики арифме-тики для народной школы считается П.С. Гурь-ев, который критерием правильности решения методических проблем признавал опыт и прак-тику.
Цель методики обучения математике заключается в исследовании основных ком-понентов системы обучения математике в школе и связей между ними. Под основными компонентами понимаются: цели, содержание, методы, формы и средства обучения матема-тике.
Предмет методики обучения математике отличается исклю-чительной сложностью. Предметом методики обучения ма-тематике является обучение математике, состоящее из целей и содер-жания математического образования, методов, средств, форм обучения математике.
На функционирование системы обучения математике ока-зывает влияние ряд факторов: общие цели образования, гуманизация и гуманитаризация образования, развитие мате-матики как науки, прикладная и практическая направленность математики, новые образовательные идеи и технологии, результаты исследо-ваний в психологии, дидактике, логике и т.д. Совокупность этих факторов образует внешнюю среду, которая оказывает непосредственное влияние на си-стему обучения математике. Многие компоненты внешней среды воз-действуют на нее через цели обучения математике.
Методика преподавания математики претерпевает в своем развитии большие трудности, прежде всего, из-за сложностей преодоления разрыва между школьной математикой и математической наукой, а также из-за того, что она является пограничным разделом педагогики на стыке философии, математики, логики, психологии, биологии, кибернетики и, кроме того, искусства.
В методике преподавания математики, в практике обучения предмету находят свое отражение особенности многовековой истории развития математики от глубокой древности до наших дней. Для глубокого понимания методических закономерностей студентам необходимо знать историю развития методики преподавания математики.
1.3 Основные задачи методики преподавания математики
Определить конкретные цели изучения математики по классам, темам урокам.
Отбирать содержание учебного предмета в соответствии с целями и познавательными возможностями учащихся.
Разработать наиболее рациональные методы и организационные формы обучения, направленные на достижение поставленных целей.
Рассмотреть необходимые средства обучения и разработать рекомендации по их применению в практике работы учителя.
Методика преподавания математики призвана дать ответы на следующие три вопроса: Зачем надо учить математике? Что надо изучать? Как надо обучать математике?
Предусмотренное программой содержание школьного математического образования, несмотря на происходящие в нем изменения, в течение достаточно длительного времени сохраняет свое основное ядро. Такая устойчивость основного содержания программы объясняется тем, что математика, приобретая в своем развитии много нового, сохраняет и все ранее накопленные научные знания, не отбрасывая их как устаревшие и ставшие ненужными. Каждый из вошедших в это “ядро” разделов имеет свою историю развития как предмет изучения в средней школе. Вопросы их изучения подробно рассматриваются в специальной методике преподавания математики .      Епишева О.Б. Общая методика преподавания математики в средней школе / Тобольск, Изд-во ТГПИ им. Д.И. Менделеева, 1997.
Выделенное ядро школьного курса математики составляет основу его базисной программы, которая является исходным документом для разработки тематических программ. В тематической программе для средней школы, кроме распределения учебного материала по классам, излагаются требования к знаниям, умениям и навыкам учащихся, раскрываются межпредметные связи, даются примерные нормы оценок.
За рубежом, в школах развитых стран, значительное место в программах по математике отводится теории вероятностей и статистике. В программах школ Японии раздел «Статистика» является основ-ным уже в 1-м классе начальной школы. Эле-менты теории вероятностей на строгой матема-тической основе вводятся в старших классах школ Бельгии и Франции. Геометрия как само-стоятельный учебный предмет во многих шко-лах не изучается, отдельные её вопросы вклю-чены в курс арифметики, алгебры и начал мате-матического анализа.
В большинстве развитых стран математическое образование на старшей ступени общеобразовательной подготовки диф-ференцировано в соответствии с определенным профилем специализации. На всех ступенях обучения боль-шую роль играет развитие функциональных представлений, овладение математическими методами, формирование исследовательских навыков.
В качестве недостатков традиционного обучения можно выделить:
преобладание словесных методов изложения, способствующих распылению внимания и невозможности его акцентирования на сущности учебного материала;
средний темп изучения математического материала;
большой объем материала, требующего запоминания;
недостаток дифференцированных заданий по математике и др.
Недостатки традиционного обучения можно устранить путем усовершенствования процесса ее преподавания.
Метод обучения - упорядоченный комплекс дидактических приемов и средств, посредством которых реализуются цели обучения и воспитания. Методы обучения - это взаимосвязанные способы целенаправленной деятельности учителя и учащихся. Под методами обучения поимают последовательное чередование способов взаимодействия учителя и учащихся, направленных на достижение определенной дидактической цели. «Метод» - по-гречески - «путь к чему-либо» - способ достижения цели. Метод обучения - способ приобретения знаний.
Любой метод обучения предполагает цель, систему действий, средства обучения и намеченный результат. Объектом и субъектом метода обучения является ученик.
Очень редко какой-либо один метод обучения используется в чистом виде. Обычно преподаватель сочетает различные методы обучения. Методы в чистом виде применяют лишь в специально спланированных учебных или исследовательских целях.
Метод обучения - историческая категория. На протяжении всей истории педагогики проблема методов обучения разрешалась с различных точек зрения: через формы деятельности; через логические структуры и функции форм деятельности; через характер познавательной деятельности. Сегодня существуют различные подходы к современной теории методов обучения.
Классификация методов обучения проводится по различным основаниям:
По характеру познавательной деятельности (М.Н. Скаткин, М.И. Махмутов, И.Я. Лернер):
*  объяснительно-иллюстративные (рассказ, лекция, беседа, демонстрация и т.д.);
*  репродуктивные (решение задач, повторение опытов и т.д.);
*  проблемные (проблемные задачи, познавательные задачи и т.д.);
*  частично-поисковые - эвристические;
*  исследовательские.
По компонентам деятельности (Ю.К. Бабанский):
*  организационно-действенному - методы организации и осуществления учебно-познавательной деятельности;
*  стимулирующему - методы стимулирования и мотивации учебно-познавательной деятельности;
*  контрольно-оценочному - методы контроля и самоконтроля эффективности учебно-познавательной деятельности.
По дидактическим целям (методы изучения новых знаний, методы закрепления знаний, методы контроля).
По способам изложения учебного материала:
*  монологические - информационно-сообщающие (рассказ, лекция, объяснение);
*  диалогические (проблемное изложение, беседа, диспут).
По формам организации учебной деятельности.
По уровням самостоятельной активности учащихся.
По источникам передачи знаний ( А.А, Вагин, П.В. Гора):
*  словесные: рассказ, лекция, беседа, инструктаж, дискуссия;
*  наглядные: демонстрация, иллюстрация, схема, показ материала, график;
*  практические: упражнение, лабораторная работа, практикум.
По учету структуры личности (сознания, поведение, чувства):
*  сознание (рассказ, беседа, инструктаж, иллюстрирование и др.);
*  поведение (упражнение, тренировка и т.д.);
*  чувства - стимулирование (одобрение, похвала, порицание, контроль и т.д.).
Все из указанных классификаций рассматриваются в дидактическом аспекте, предметное содержание математики учитывается здесь не в достаточной мере, поэтому невозможно отразить всю номенклатуру методов обучения математике. Выбор методов обучения - дело творческое, однако, оно основано на знании теории обучения. Методы обучения невозможно разделить, универсализировать или рассматривать изолированно. Кроме того, один и тот же метод обучения может оказаться эффективным или неэффективным в зависимости от условий его применения.
Новое содержание образования порождает новые методы в обучении математике. Необходим комплексный подход в применении методов обучения, их гибкость и динамичность.
Педагогическая классификация методов обучения разделяет методы преподавания и методы изучения (учения), которые в свою очередь представлены научными и учебными методами изучения математики .
Методы преподавания - средства и приемы, спосо и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.