На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Курсовик Изучение качеств мышления, а именно критичности. Возможность развития критичности мышления посредством использования математических софизмов. Методика работы с математическими софизмами, способы их предъявления. Применение софизмов на уроках математики.

Информация:

Тип работы: Курсовик. Предмет: Педагогика. Добавлен: 06.05.2010. Сдан: 2010. Страниц: 2. Уникальность по antiplagiat.ru: --.

Описание (план):


37
Государственное образовательное учреждение
высшего профессионального образования
“Поморский государственный университет имени М.В. Ломоносова”
Кафедра методики преподавания математики
КУРСОВАЯ РАБОТА

Развитие критичности мышления с использованием математических софизмов

Выполнила
студентка 4 курса
математического факультета
Лебедева Ирина Сергеевна.
Научный руководитель
Кандидат педагогических наук,
доцент
Томилова Анна Евгеньевна.

Архангельск
2005г.
Содержание

ВВЕДЕНИЕ.
ГЛАВА I
§ 1. Понятие мышления.
§ 2. Критичность и критическое мышление
§ 3. Софизмы и их место в развитии критичности
ГЛАВА II
§ 1. Способы предъявления софизмов.
§ 2. Методика работы с математическими софизмами
§ 3. Применение софизмов на уроках математики.
ЗАКЛЮЧЕНИЕ.
СПИСОК ЛИТЕРАТУРЫ.
ВВЕДЕНИЕ

В настоящее время основной задачей перестройки школьного образования является переориентация на приоритет развивающей функции обучения. Пожалуй, ни один школьный предмет не конкурировать с возможностями математики в воспитании мыслящей личности.
Развитие учащихся - это процесс изменения их сознания, выражающийся в переходе от одного уровня к другому, более высокого порядка, появления в их интеллектуальной сфере новообразований, совершенствование имеющихся. Под новообразованием понимают приобретение учащимися новых качеств, таких как гибкость ума, умение самостоятельно ставить цель деятельности, обобщать наблюдаемые явления, критичность, умение анализировать, критически оценивать то или иное решение и.т.д.
Современный педагогический опыт позволяет заметить, что лишь при особой организации учебного процесса, в условиях современной парадигмы образования, носящей личностно-ориентированный характер, создаются условия для развития школьников, поэтому мышление необходимо не только стимулировать, но и специально развивать.
Различным аспектам вопроса развития математического мышления школьников посвящено большое число исследований математиков, педагогов, психологов. Среди целей математического образования Ю.М. Колягин выделяет развитие математического мышления, отмечая, что прочное усвоение математических знаний не возможно без целенаправленного развития мышления и поэтому развитие мышления учащихся - одна из основных задач школьного математического обучения.
А.Н.Леонтьев подчёркивает, что обучение и умственное развитие ребёнка тесно связаны между собой, и хотя ребёнок обучается, развивается, однако умственное развитие его относительно самостоятельно. Оказывается, что математические понятия не формируются у учащихся помимо познавательного процесса, а постепенно конструируются с различной степенью полноты, на отдельных этапах обучения.
Педагоги и психологи, методисты-математики в научной, психолого-дидактической и др. литературе выделяют различные качества математического мышления. Так С.Л.Рубинштейн выделяет: убедительность, критичность и объективность, гибкость и лаконизм, и ясность, интуиция, готовность памяти, вкус к исследованию и поиску закономерностей. Ю.М.Колягин говорит об оригинальности, глубине, целенаправленности, рациональности, активности, четкости и лаконичности речи и записи. А.Ф. Шикун и Х.И. Лейбович кроме этих качеств, вводят следующие: лабильность, быстрота, самостоятельность, логичность, прочность, ясность.
Это говорит о том, что процесс развития мышления сложен и многоаспектен.
Необходимо заметить, что для успешного действия в изменяющемся мире учащиеся должны уметь хорошо управлять информацией, для чего у них должны быть сформированы практические мыслительные навыки сортировки информации, то есть воспринятая идея должна быть изменена и преобразована. Речь идёт о таком качестве мышления как критичность.
В процессе обучения математике воспитанию критичности у учащихся способствует постоянное обращение к, различного рода, проверкам, прикидкам найденного результата, к проверке исходной гипотезы.
В литературе встречаются различные точки зрения на понятие критичности мышления.
Например, С.И.Ожегов в толковом словаре критичность трактует как «способность относиться с критикой к чему-либо, видеть недостатки». А Д.Халперн считает, что критическое мышление - это использование когнитивных техник или стратегий, которые увеличивают вероятность грамотного конечного результата
Задача развития у учащихся критичности мышления является важным и перспективным направлением методической работы, способной внести свежую струю в совершенствование процесса обучения.
Одним из ценных дидактических средств развития критичности мышления школьников являются математические софизмы, которые можно использовать как с первых ступеней обучения, так, и, на протяжении дальнейшего обучения.
Таким образом, целью данной работы вижу изучение качеств мышления, а именно критичности, а также возможность развития критичности мышления посредством использования математических софизмов.
Методы исследования - анализ психолого-педагогической и методической литературы.
Структура работы. Работа состоит из двух глав, введения и заключения. Первая глава посвящена рассмотрению понятия мышления и изучению качеств мышления. В первом параграфе говорится непосредственно о понятии мышления. Во втором параграфе рассказывается о критичности мышления, а третий параграф математическим софизмам. Во второй главе описана методика работы с софизмами, направленная на развитие критичности мышления. А также предложены тематические примеры математических софизмов.
Список литературы включает 20 источников.
ГЛАВА I

§ 1. Понятие мышления

Познание действительности возможно лишь при участии мышления, являющегося важным компонентом в структуре познавательной деятельности. Благодаря мышлению человек познаёт предметы и те явления, признаки, свойства которые нельзя воспринять непосредственно. Мыслительная деятельность позволяет установить причинно-следственные зависимости, раскрыть объективные закономерности явлений и их сущность. Осмысление своего чувственного опыта позволяет вести целенаправленный поиск решения возникающих проблем, предвидеть ход событий, изменять и совершенствовать практику.
Мышление начинается там, где создалась проблемная ситуация. Проблемная ситуация - это, в простейшем случае, ситуация, которая требует выбора из двух или более возможностей. Эта ситуация характеризуется возникновением определённого познавательного барьера, трудностей, которые предстоит преодолеть в результате мышления. Если одно из возможных решений имеет явные преимущества и легко предпочитается всем другим, то такая проблема - нетрудная. Она гораздо сложнее, если решения имеют равные или почти равные субъективные вероятности. В проблемных ситуациях всегда возникают такие цепи рассуждений, на которых для достижения ответа, имеющихся средств, способов и знаний оказывается недостаточно. Американский психолог К. Прибрам рассматривает принятие решения как выход из неопределённости. Причём неопределённость он трактует как несоответствие между содержанием текущих восприятий и содержанием памяти, в том числе, по - видимому, несоответствие текущего опыта со сформированными моделями будущего. Это несоответствие включает эмоции и служит толчком к началу мышления.
Известный психолог А.Н. Леонтьев обоснованно считал, что «жизненный правдивый подход к обучению - это такой подход к отдельным образовательным задачам, который исходит из требований к человеку: каким человек должен быть в жизни и чем он должен быть для этого вооружён, какими должны быть его знания, его мышление, его чувства и т.д.». [ 8 ]
Если с этой точки зрения посмотреть на задачи общего образования и в частности на задачи школьного курса математики, то придём к выводу, что одной из первоначальных является задача развития мышления учащихся.
В современной психологии мышление понимается как «социально обусловленный, неразрывно связанный с речью психологический процесс поисков и открытия существенно нового, процесс опосредованного и обобщённого отражения действительности в ходе анализа и синтеза». Мышление возникает на основе практической деятельности из чувственного познания и далеко выходит за его пределы.
Мышление потому и необходимо, что в ходе жизни и деятельности каждый человек наталкивается на какие-то новые свойства предметов. Прежних знаний оказывается недостаточно. Мышление всегда устремлено в бескрайние глубины неизведанного, нового. Когда человек мыслит, он самостоятельно делает открытия. Например, решая учебную задачу, обязательно открывает для себя нечто новое.
Мышление, являясь одним из главных компонентов познавательной деятельности, не может существовать без связи с другими психическими процессами. Оно развивается наиболее интенсивно во взаимодействии с ними. Мышление невозможно осуществить вне ощущения, восприятия, памяти, речи, понимания. Уровень развития мышления во многом зависит от степени сформированности всех познавательных процессов. С другой стороны, чем выше уровень мышления, тем на более высокой ступени развития оказываются все другие познавательные процессы.
Особенности мышления определяются через его опосредованный характер и его обобщённость. Опосредованный характер мышления обуславливается тем, что человек не может понять прямо, непосредственно, он познаёт косвенно, опосредованно: одни свойства через другие, неизвестное, через известное. Мышление всегда опирается на данные чувственного опыта, ощущения, восприятия, представления - и на ранее приобретённые теоретические знания. Косвенное познание и есть познание опосредованное.
Обобщенность мышления как познание общего и существенного в объектах действительности возможна потому, что все свойства этих объектов связаны друг с другом. Общее существует, а проявляется лишь в отдельном, в конкретном. [ 5 ]
Методисты и психологи выделяют различные виды мышления, в том числе:
Теоретическое и практическое;
Словесно-логическое и наглядно-действенное;
Аналитическое и интуитивное;
Реалистическое и артистическое;
Продуктивное и репродуктивное;
Непроизвольное и произвольное.
Чтобы развивать естественно-математическое мышление в обучении, необходимо целенаправленное постепенное формирование следующих основных умений и навыков при решении задач.
1. Анализ и синтез.
2. Сравнение.
3. Обобщение.
4. Конкретизация.
5. Абстрагирование. [ 13]
Анализ - это мысленное разложение целого на части или мысленное выделение из целого его сторон, действий, отношений.
Синтез - это обратный анализу процесс мысли, это объединение частей, свойств, действий, отношений в одно целое. Анализ и синтез - две взаимосвязанные логические операции. Синтез, как и анализ, может быть как практическим, так и умственным.
Анализ и синтез сформировались в практической деятельности человека.
Сравнение - это установление сходства и различия предметов и явлений. Сравнение основано на анализе. Прежде чем сравнивать объекты, необходимо выделить один или несколько признаков их, по которым будет произведено сравнение.
Сравнение может быть односторонним, или неполным, и многосторонним, или более полным. Сравнение, как анализ и синтез, может быть разных уровней - поверхностное и более глубокое. В этом случае мысль человека идёт от внешних признаков сходства и различия к внутренним, от видимого к скрытому, от явления к сущности.
Обобщение - это выделение в предметах и явлениях общего, которое выражается в виде понятия, закона, правила, формулы и тому подобное.
Конкретизация - это процесс, обратный абстрагированию и неразрывно связанный с ним. Конкретизация есть возвращение мысли от общего и абстрактного к конкретному, с целью раскрытия содержания.
Абстрагирование - это процесс мысленного отвлечения от некоторых признаков, сторон конкретного с целью лучшего познания его. Ученик мысленно выделяет какой-нибудь признак предмета и рассматривает его изолированно от всех других признаков, временно отвлекаясь от них. Изолированное изучение отдельных признаков объекта при одновременном отвлечении от всех остальных помогает ученику глубже понять сущность понятий и явлений. Благодаря абстракции человек смог оторваться от единичного, конкретного и подняться на самую высокую ступень познания - научного теоретического мышления.
Развитие мыслительных операций ведёт к формированию устойчивых свойств мышления, называемых качествами мышления. К ним относят гибкость, целенаправленность, рациональность, самостоятельность, активность, широта, глубина и критичность.
Гибкость мышления характеризуется подвижностью мыслительных процессов, т.е. умением видоизменять способ решения задачи в соответствии с особенностями новой задачи; умением отказаться от привычного способа решения и умением найти различные способы решения. Гибкости мышления противостоит инертность мышления. Ученику инертной мысли более свойственно точное воспроизведение усвоенного материала, нежели, активные поиски неизвестного.
О целенаправленности мышления говорит стремление осуществить выбор действий при решении проблемы, стремление к поиску кратчайших путей решения поставленной задачи.
О рациональности мышления свидетельствует оптимальность выбираемых способов решения, владение методами поиска (экономичность мыслительных операций).
Самостоятельность мышления характеризуется умением найти способ решения без посторонней помощи, умением внести элемент новизны в способ решения задачи.
Активность мышления характеризуется постоянством усилий, усилий направленных на решение проблемы, желание обязательно решить её, изучить различные подходы к её решению. Развитию этого качества способствует рассмотрение различных способов решения задачи, обращение к исследованию полученного результата.
О широте мышления свидетельствует способность к формированию обращённых способов действий, имеющих широкий диапазон переноса и применения к частным, нетипичным случаям. Развитию этого качества способствует проведение обобщений и классификаций.
Развитию глубины мышления способствуют задачи, направленные на установление взаимосвязи различных понятий, разных методов математики.
О критичности мышления говорят умения дать оценку рациональности способов решения задач, как в целом, так и отдельных операций; осуществить самоконтроль своей деятельности, прогнозировать результат использования различных способов решения задач. [ 6 ]
Традиционная система образования озабочена тем, чтобы дать учащимся некоторую сумму знаний. Но сейчас недостаточно заучить наизусть какой-то объём материала и выработать навыки манипулирования с ним.
Главной целью обучения должно быть развитие умения учиться, а для этого необходимо совершенствовать качества мышления, в том числе, его критичность.
Далее рассмотрим более подробно вопрос о критичности мышления.
§ 2. Критичность и критическое мышление

Способность критически мыслить была важны во все времена, в XXI веке без неё просто не обойтись. Впервые в истории человечества возникает опасность, что мы способны уничтожить всё живое на нашей планете. Решения, которые мы принимаем как частные лица, и как члены общества отразятся на будущих поколениях народов всего земного шара. Кроме того, приходится принимать решения по целому ряду важных вопросов имеющих локальный или частный характер. Поскольку каждому гражданину требуется принимать огромное количество важных решений, представляется естественным, чтобы общество побеспокоилось о том, каким образом эти решения принимаются.
Необходимо обучать школьников мыслить продуктивно. Зачастую учащиеся лишаются самого важного компонента образования - обучения способности мыслить. [18]
В процессе мышления нужен последовательный переход от одного звена, в цепи рассуждений, к другому. Порой из-за этого не удаётся мысленным взором охватить всю картину целиком, все рассуждения от первого до последнего шага. В связи с этим необходимо быть очень внимательным после какого-либо умозаключения всякого рассуждения, тем более, что ученик имеет предрасположенность вести длинную цепь рассуждений. [8]
Критическое мышление позволяет осуществить выбор между несколькими гипотезами и тем самым определяет дальнейшее направление мысли школьника.
Критическое мышление диктует вопросы, которые способствуют определению рационального выбора.
В контексте психологии мышления критичность обычно трактуется как одно из свойств ума и определяется как осознанный контроль, за ходом интеллектуальной деятельности человека. Приведём высказывания ряда ведущих советских психологов.
Б.М. Теплов определял критичность как «умение строго оценивать работу мысли, тщательно взвешивать все доводы за и против намечающихся гипотез и подвергать эти гипотезы всесторонней проверке».
С.Л. Рубинштейн считал, что проверка, критика, контроль характеризуют мышление как сознательный процесс.
А.А. Смирнов связывал самостоятельность ума с его критичностью, то есть с умением не поддаваться внушающему влиянию чужих мыслей, а строго и правильно оценивать их, видеть их сильные и слабые стороны, вскрывать, то ценное, что в них имеется , и те ошибки, которые допущены в них. Он также подчёркивал, что критичность является необходимой предпосылкой творческой деятельности.
Б.В. Зейгарник указывает, что критичность состоит в умении обдуманно действовать, сличать, проверять и исправлять свои действия в соответствии с ожидаемыми результатами.
Совершенно иное отношение к критичности содержится в эмпирических исследованиях зарубежных психологов. В работах А.Осборна и У. Гордона для повышения творческого и интеллектуального потенциала учащихся рекомендуются мероприятия, снижающие критичность. Снижение критичности может осуществляться двумя путями: прямой инструкцией (“быть свободным, творческим, оригинальным, подавить критичность к себе и своим идеям, не бояться критики окружающих”) и созданием благоприятных внешних условий, снижающих критичность опосредованно - сочувствие, поддержка, ободрение и одобрение партнёров, преодоление “боязни выглядеть глупым” (А.Осборн).
Критичность как деятельность оценочного анализа по отношению к себе и своим гипотезам является необходимой и полезной на стадии рассуждения может быть противопоказана во время работы воображения, при выдвижении новых идей и постановке новых целей. [ 18 ]
Оценка влияния критичности на развитие умений требует содержательного подхода. Необходимо описывать и анализировать то содержание , по отношению к которому субъект проявляет критичность. На процессе постановки новых оригинальных целей благотворно сказывается снижение критичности субъекта к себе, к оценке своей личности и способствует успешности целеполагания. Желательным оказывается также усиление критического отношения к внешнему миру и другим людям.
Развитие критичности ведёт к формированию у человека критического мышления. Хотя специалисты по психологии и смежным с ней наукам предложили несколько определений термина «критическое мышление», все эти определения довольно близки по смыслу, вот одно из самых простых передающее суть идеи: критическое мышление - это использование когнитивных техник или стратегий, которые увеличивают вероятность получения желаемого конечного результата. Это определение характеризует мышление как нечто отличающееся контролируемостью, обоснованностью и целенаправленностью, т.е. такой тип мышления, к которому прибегают при решении задач, формулировании выводов, вероятностной оценке и принятии решений. При этом, думающий использует навыки, которые обоснованы и эффективны для конкретной ситуации и типа решаемой задачи. [ 5 ]
Другие определения дополнительно указывают, что для критического мышления характерно построение логических умозаключений, создание согласованных между собой логических моделей и принятие обоснованных решений, касающихся того, отклонить какое-либо суждение, согласиться с ним или временно отложить его рассмотрение. Все эти определения подразумевают решение конкретной мыслительной задачи.
Слово критическое, используемое в определении, предполагает оценочный компонент. Иногда это слово употребляется для передачи отрицательного отношения к чему-либо. Но оценка и должна быть конструктивным выражением и позитивного, и негативного отношения . когда мы мыслим критически, мы оцениваем результаты своих мыслительных процессов - насколько правильно принятое нами решение или насколько удачно мы справились с поставленной задачей. Критическое мышление также включает в себя оценку самого мыслительного процесса - хода рассуждений, которые привели к нашим выводам, или тех факторов, которые были учтены при принятии решения.
Критическое мышление иногда называют ещё и направленным мышлением, поскольку оно нацелено на получение желаемого результата. Существуют виды мыслительной деятельности, которые не предполагают преследования определённой цели, такие виды мышления не относятся к категории критического мышления. Например, при решении сложной математической задачи, выполняя некоторое промежуточное действие, например, действие умножение, мышление ориентировано на определённую цель, а именно решение задачи, поэтому практически выполнение действия умножения не предполагает сознательной оценки совершаемых действий. Это один из примеров ненаправленного, или автоматического мышления.
Критическое мышление подразумевает обязательное присутствие этапа проверки и оценки предположений перед ответом на поставленный вопрос с точки зрения их достоверности и значимости, в противовес оперированию готовыми фразами, подсказанными память, без участия их творческой переработки.
Формирование критичности мышления, на уроках математики, можно сочетать с использованием математических софизмов.
§ 3. Софизмы. Их место в развитии математического мышления

В решении проблемы развития критичности математического мышления учащихся одним из эффективных средств является использование софизмов в обучении.
История математики полна неожиданных и интересных софизмов .И зачастую именно их разрешение служило толчком к новым открытиям, из которых в свою очередь, вырастали новые софизмы.
Софизмы - ложные результаты, полученные с помощью рассуждений, которые только кажутся правильными, но обязательно содержат ту или иную ошибку.
Практика обучения математике показывает, что поиск заключенных в софизме ошибок, ясное понимание их причин ведут к осмысленному постижению математики. Обнаружение и анализ ошибки, заключённой в софизме, зачастую оказываются более поучительными, чем просто разбор решений «безошибочных» задач. Можно сколько угодно объяснять, что деление на ноль недопустимо или что корень квадратный из квадрата числа равен абсолютной величине этого числа, но учащийся продолжает совершать одни и те же ошибки. В то же время эффективная демонстрация «доказательства» явно неверного результата, в чём и состоит смысл софизма, демонстрация того, к какой нелепице приводит пренебрежение тем или иным математическим правилом. Последующий поиск и разбор ошибки, приведшей к нелепице, позволяют на эмоциональном уровне понять и «закрепить», то или иное математическое правило или утверждение.
Математические софизмы представляют собой тот частный случай ошибок в математических рассуждениях, когда при разительной неверности результата ошибка, приводящая к нему, более или менее, хорошо замаскирована.
Раскрыть софизм - это, значит, указать ошибку в рассуждениях, с помощью которой была создана внешняя видимость правильности доказательства. [ 9 ]
В основном математические софизмы строятся на неверном словоупотреблении, на неточности формулировок, очень часто на неправильном применении теорем, на скрытом выполнении невозможных действий, на незаконных обобщениях, особенно при переходе от конечного числа объектов к бесконечному, и на маскировке ошибочных рассуждений.
Софизмы способствуют развитию всех компонентов математической подготовки, а именно:
1) фактических знаний и умений, предусмотренных программой обучения;
2) мыслительных операций и методов присущей деятельности;
3) математического стиля мышления;
4) рациональных способов учебно-познавательной деятельности.
Софизмы в процессе обучения могут служить следующим целям:
- стимулировать изучение математики;
- выполнять пропедевтические функции;
- способствовать развитию интеллекта учащихся, нравственных качеств личности;
- способствовать усвоению теоретического материала (если тематика софизма соответствует изучаемой в школьном курсе математике теме).
Таким образом, математические софизмы относятся к очень эффективным средствам развития мышления.
Исходя из дидактических целей и этапа усвоения материала, подбираются софизмы с соответствующим содержанием и структурой. Хотя чаще всего применяются не в системе образовательной деятельности, а в
Математический софизм тем более замысловат, чем более тонкого характера ошибка в нём проводится, чем менее она предупреждена обычным школьным курсом. [ 2]
Таким образом, решая математический софизм, ученик активизирует своё мышление на нахождении ошибки, оценивает свои действия со стороны, прогнозирует возможные результаты ошибок, критикует предложенные доказательства софизмов.
На первых порах применения софизмов на уроках математики эти процессы осуществляются с помощью системы наводящих вопросов учителя, эвристической беседы, подводящей на такие рассуждения. Но если софизмы использовать систематически и целенаправленно на уроках математики, то по средствам постоянного сталкивания с ошибочными рассуждениями, у учащихся развивается критическое мышление. Значит, использование софизмов способствует развитию критичности мышления.
Одним из важных вопросов использования софизмов является определение места софизмов в системе уроков математики. Надо ли вводить их тогда, когда ученики окрепнут в математических знаниях и смогут проявить критическое отношение к разбору софизмов или знакомство с математическими софизмами надо начинать на ранней ступени изучения математики? Но тогда не будет ли посеяно недоверие математике у школьников, когда у них ещё нет надёжной опоры в логических рассуждениях, и нет основательных знаний?
Можно рассматривать их в связи с прохождением текущего материала и тогда софизм служит важным педагогическим моментом для усиления внимания учеников к отдельным вопросам школьного курса математики. Также можно включать софизмы на этапе обобщения и систематизации изученного материала для проверки степени осознанности усвоения материала. Что касается использования софизмов на конкретном уроке, то здесь учитель сам определяет, на каком этапе урока он будет рассматривать тот или иной софизм
ГЛАВА II
§ 1. Способы предъявления софизмов

Способы предъявления софизмов могут быть различными. Рассмотрим некоторые из них.
1. Текст софизма записывается на доску до начала урока и учитель обращает внимание учеников, что они могут во время перемены подумать над заданием. В начале урока учитель даёт ещё 3-5 минут на обдумывание, после чего выслушивает ответы учеников.
2. Текст софизма может быть записан на доске до начала урока, но скрыт от учащихся. Это возможно в том случае, если софизм планируется рассмотреть в конце урока или по ходу его.
3. Если софизм связан с изучением текущей темы и логически «вписывается» в ход урока, то учитель может предложить его непосредственно по ходу урока. Но в этом случае он должен быть максимально «рабочим». Положительным моментом при этом и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.